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Summary.

Amyloid beta (Aβ) peptides have been implicated in both Alzheimer’s disease (AD) and glaucoma 

and have been shown to be the key etiological factor in these dangerous health complications. On 

the other hand, it is well known that Aβ peptide can be generated from its precursor protein and 

massively released from the blood to nearby tissue upon the activation of platelets due to their 

involvement in innate immunity and inflammation processes. Here we review evidence about the 

development of AD and glaucoma neuronal damage showing their dependence on platelet count 

and activation. The correlation between the effect on platelet count and the effectiveness of anti-

AD and anti-glaucoma therapies suggest that platelets may be an important player in these 

diseases.
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Introduction

Amyloid beta (Aβ) peptides are 36–43 amino acids in length, have a specific sequence that 

is slightly different between mammalian species (GenScript database), and are produced in 

many cell types by cleavage of the longer amyloid precursor protein (APP). Due to hydrogen 

bonding between the peptide bonds of parallel monomers, Aβ forms dimeric or tetrameric 

oligomers, even at very low concentrations, while in higher concentrations it associates into 

β-pleated sheets, tending to join in misfolded aggregations known as amyloid plaques 

(Lomakin et al., 1997; Tjernberg et al., 1999). Mutations within Aβ and its precursor affect 

this aggregation, which is the basis of familial early-onset diseases (reviewed and studied in 

Hatami et al., 2017). A common factor in a number of health problems is the accumulation 

of Aβ in tissues, including different cancerous tissues (Hansel et al., 2003; Jin et al., 2017), 

the zone of traumatic brain injury (Johnson et al., 2010), skeletal muscles in special cases of 

myositis (Askanas et al, 1992), myocardium with diastolic dysfunction (Gianni et al., 2010), 

and the placenta during preeclampsia (Buhimschi et al., 2014). Aβ peptides also accumulate 

and are thought to be important players in two other well-known health problems, 

Offprint requests to: Dr. Mikhail Inyushin, School of Medicine, Universidad Central del Caribe (UCC), PR 00960 USA. 
mikhail.inyushin@uccaribe.edu. 

HHS Public Access
Author manuscript
Histol Histopathol. Author manuscript; available in PMC 2019 August 01.

Published in final edited form as:
Histol Histopathol. 2019 August ; 34(8): 843–856. doi:10.14670/HH-18-111.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Alzheimer’s disease (AD) and glaucoma. Both of these diseases have hereditary forms, 

usually developing as an early onset, and sporadic forms, usually affecting elderly subjects. 

In this review, we concentrate on these two sporadic diseases and the evidence for a common 

systemic source of Aβ, which accumulates in and damages tissues during the course of these 

diseases, and its relation to platelets.

Alzheimer’s disease (AD)

This disease is a slowly developing progressive dementia, with extensive damage to neurons 

in the brain and their connections (reviewed in: Zott et al., 2018) that is accompanied by 

reactive astrogliosis and even astroglial atrophy (Verkhratsky and Rodríguez, 2018). It has 

been shown that the first signs of change in the AD brain are in the olfactory bulb, 

suggesting that the olfactory tracts provide a portal of entry to the brain for any pathogenic 

agent(s) that might be responsible for induction of the disease (Ohm and Braak, 1987; Mann 

et al., 1988). Next, damage to the entorhinal cortex follows, which is known to convey 

olfactory information and is a major input and output structure of the hippocampus. The 

hippocampus, in turn, is affected in the next stage of the disease, which is characterized by 

disorientation in space and memory problems. Damage then spreads to other cortical parts, 

leading to destruction of virtually all isocortical association areas and severe cognitive 

impairment (Braak and Braak, 1991). Microscopically, the AD-affected brain is 

characterized by extracellular amyloid-like senile plaques and intracellular neurofibrillary 

tangles. Since the time that beta-amyloid (Aβ) peptides were found to be the major 

constituent of amyloid cerebrovascular senile plaques described by Dr. Alois Alzheimer in 

the brain of dementia patients, these peptides became associated with the development of 

AD (Glenner and Wong, 1984). The Aβ hypothesis was formulated, suggesting that an 

imbalance between production and clearance of Aβ (Aβ dyshomeostasis) is an early, often 

initiating factor in AD (Selkoe and Hardy, 2016). However, it was discovered that Aβ 
plaques were sometimes present in cognitively normal individuals, while neuronal death also 

occurred in brain regions devoid of plaques (Sloane et al., 1997). It then became clear that 

only oligomers of Aβ peptides are toxic to brain cells and that there is no direct correlation 

between the manifestation of the disease and plaque burden (reviewed in: Sengupta et al., 

2016). The most common view is that increased concentrations of Aβ oligomers trigger 

neuronal dysfunction and network alterations, with secondary damage produced by 

hyperphosphorylated tau protein aggregated in tangles (reviewed in: Jeong, 2017; Mroczko 

et al., 2018).

Glaucoma

This disease is a slowly developing, progressive blindness. In many cases glaucoma involves 

elevated intraocular pressure (IOP) that precedes damage to the optic nerve and vision loss. 

Disproportionate IOP develops due to a constraint on the outflow of liquid from the eye, in 

some cases due to vein occlusion (Săninoiu, 1992; Călugăru and Călugăru, 2001). This leads 

to accumulation of excessive aqueous humor, especially if anatomical problems have 

complicated the alternative escape (drainage) of the aqueous humor through the trabecular 

meshwork. Due to disrupted hemodynamics there are also clearly visible anatomical 

changes in the eye, termed cupping, in the zone of the entrance of blood vessels and the 

optic nerve to the retina, and the level of damage in this zone is the hallmark of glaucoma. 
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The common view is that IOP at first harms the optic nerve vasculature, leading to optic 

nerve damage, or that it directly causes damage to the optic nerve, which consists of the 

axons of retinal ganglion cells (RGC), affecting also the soma of these cells, and finally 

leads to blindness (Mann et al., 2019). It is also known that many glaucoma cases exhibit 

only moderate or even normal intraocular pressure.

It is still a matter of debate which factors in glaucoma induce damage to retinal cells, but Aβ 
is evidently involved. It was shown that Aβ accumulates in the retina, with the highest 

concentration colocalizing with the layer of apoptotic retinal ganglion cells in experimental 

glaucoma, while application of synthetic Aβ induces significant RGC apoptosis in vivo in a 

dose-and time-dependent manner. Anti-Aβ treatment was effective in prevention of RGC 

apoptosis in glaucoma patients (Yoneda et al., 2005; Guo et al., 2007; Ning et al., 2008, Ito 

et al., 2012; see also reviews: Sivak, 2013; Ratnayaka et al., 2015). An increased risk of 

developing AD was established for persons diagnosed with glaucoma and certain other 

ophthalmic conditions (Lee et al., 2019). All these results suggest common pathological 

mechanisms in glaucoma and AD.

The association of AD and glaucoma with inflammation and infection

Glaucoma is often initiated by inflammation, and there is a 50% coincidence of glaucoma 

with chronic uveitis, which can be induced by an autoimmune reaction or a reaction caused 

by infection (Netland and Denton, 2006; also reviewed in: Bodh et al., 2011). The most 

common eye infections correlated with glaucoma are caused by herpes simplex virus or 

varicella zoster virus (Miserocchi et al., 2002). In herpetic anterior uveitis 75% of patients 

develop elevated IOP (Hoeksema et al., 2017). Various periodontal bacteria may also cause 

the development of glaucoma (Astafurov et al., 2014). The cause of inflammation leading to 

glaucoma can be chemical- or laser-induced trauma (Ştefan et al., 2016) or simple 

mechanical trauma (Markovic et al., 2017). Thus, in many cases glaucoma is a response to 

inflammation with or without infection.

Similarly, AD pathological changes clearly correspond to regions with inflammation 

(Akiyama et al., 2000). Inflammatory signaling cytokines, especially the expression and 

signaling of the cytokines interleukin 12 and interleukin 23, can affect the cerebral amyloid 

load and the development of AD (Vom Berg et al., 2012; Griffin, 2013; Wilcock and Griffin, 

2013). Brain inflammation also develops after trauma (Corps et al., 2015). Interestingly, it 

was shown that temporary Aβ plaques appeared in the brain of an AD mouse model after 

mild brain trauma and then disappeared after 7 days, which was correlated with the post-

traumatic concentration of soluble Aβ oligomers in the brain (Washington et al., 2014). Aβ 
plaques and oligomers may also be found in the brains of human patients within hours of 

traumatic brain injury (TBI) in non-AD patients (Roberts et al., 1991; Ikonomovic et al., 

2004; also reviewed in: Johnson et al., 2010). Like in glaucoma, there are significant 

associations between AD and various pathogens, including Herpes simplex virus type 1 

(HSV-1), cytomegalovirus, other Herpesviridae, Chlamydophila pneumoniae, spirochetes, 

Helicobacter pylori, and various periodontal pathogens (Harris and Harris, 2015, 2018; 

Maheshwari and Eslick, 2015). Recently, the gram-negative periodontal pathogen 

Porphyromonas gingivalis, which causes chronic periodontitis, was also identified in the 
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brain of AD patients (Dominy et al., 2019), while previously this pathogen was found to 

cause brain inflammation, neurodegeneration, and Aβ production in a wild type mouse 

model (Ilievski et al., 2018). Genes upregulated in the AD brain match those upregulated by 

multiple bacteria, viruses, fungi, or protozoa in immunocompetent cells (Carter, 2017). 

Lyme spirochetes are also suspected of causing AD (Eimer et al., 2018). Recently, the 

evidence for human transmission of Aβ pathology after the treatment of children with 

human cadaver-derived growth hormone was reported, and it was suggested that this was an 

example of the prion-like spread of AD (Jaunmuktane et al., 2015), although it could be the 

spread of a septic agent provoking AD development. All these results suggest that Aβ 
pathology in AD is, in many cases, a response to inflammation and is sometimes a result of 

infection, which raises the question of why the buildup of Aβ in both glaucoma and AD is 

correlated with these processes.

Aβ as a defense peptide

It has been shown that Aβ peptide has strong antibiotic activity against both Gram-negative 

and Gram-positive bacteria as well as fungi and viruses (Lukiw et al., 2010; Soscia et al., 

2010; Bourgade et al., 2014; White et al., 2014). Aβ peptide also protects mice against 

microbial infection in in vivo experiments (Kumar et al., 2016). It has been suggested that 

Aβ is a previously unrecognized antimicrobial agent that may normally function in the 

innate immune system (Soscia et al., 2010; Kumar et al., 2016; Kucheryavykh et al., 2017; 

Inyushin et al., 2017; Gosztyla et al., 2018). We have shown that during thrombosis in skin 

blood vessels Aβ peptides are generated and released in the nearby skin tissue, functioning 

as an antibiotic against infection (Kucheryavykh et al., 2018). The appearance of Aβ peptide 

in the tissues during thrombosis suggests that it has an important function in the platelet 

defense arsenal. It has been shown that Aβ peptide oligomers aggregated into fibrils entrap 

microbes (Kumar et al., 2016) or can bind herpesvirus surface glycoproteins, accelerating 

Aβ deposition and leading to protective viral entrapment (Eimer et al. 2018). Additionally, 

we suggest that an antimicrobial effect can be achieved by the pore-forming properties of 

Aβ peptide (Inyushin et al., 2017; Kucheryavykh et al., 2017, 2018). It was shown that 

soluble Aβ peptide oligomers at low concentrations (number) perforate cell membranes by 

forming tetrameric channels penetrable by K+ ions and do so at higher concentrations by 

forming Ca++-permeable hexameric pores (Kawahara et al., 1997; Lin et al., 2001; Lal et al., 

2007). An excess of Ca++ permeability through these pores induces calcium dyshomeostasis 

and is extremely toxic (Kawahara, 2010; Sepulveda et al, 2010). We have shown that 

synthetic Aβ peptide perforates the external membrane of yeast (Kucheryavykh et al., 2018), 

and it is known that natural peptide antibiotics with channel-forming activity kill target cells 

by this same mechanism (Harder et al., 1997; Hancock and Chapple, 1999). Thus, Aβ may 

be released as a response to infection (Inyushin et al., 2017; Eimer et al. 2018), and this 

release is likely triggered by tissue damage and inflammation (Kucheryavykh et al., 2018).

Platelets are a source of systemic APP and Aβ

Aβ peptides are released by different types of cells. In the brain the most established sources 

of Aβ are neurons and astrocytes, but there is another important systemic source of these 

peptides—platelets (reviewed in: Inyushin et al., 2017). Platelets are small anuclear cells 
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derived from the processes of the megakaryocyte precursor cell, and their production is 

tightly regulated (reviewed in: Kutler, 1996, 2014). They contain diverse types of granules 

that include alpha granules, dense granules, and lysosomes (Sharda, Flaumenhaft, 2018). 

Besides coagulation factors, platelet α-granules contain amyloid precursor protein (APP), 

and full-length APP (containing Aβ peptide) is liberated upon platelet degranulation (Bush 

et al., 1990; Van Nostrand et al., 1990; Rosenberg et al., 1997; Sevush et al., 1998; Baskin et 

al., 2000, Padovany et al., 2001). APP represents about half of all proteins secreted from 

agonist-treated platelets (Van-Nostrand et al., 1990). APP is itself a Kunitz-type protease 

inhibitor, which effectively inhibits chymotrypsin, trypsin, and other proteolytic enzymes 

(Van Nostrand et al., 1990; Ledesma et al., 2000) and promotes the activation of coagulation 

factor XII, affecting the hemostasis and temporal stability of the thrombus (Schmaier, 2016; 

Zamolodchikov et al., 2016). Brain vessels endothelial cell enzymes can cleave the platelet-

released APP, forming Aβ, especially if activated platelets adhere directly to the endothelial 

cells (Davies et al, 1998). Platelets also generate Aβ peptide itself and are the primary 

source (~90%) of this peptide in human blood (Chen et al., 1995). The generation of Aβ 
peptide in platelets involves a regulated secretory vesicle pathway (Hook et al., 2005, 2008).

While in neurons the release of Aβ and cleavage by β-secretase occurs in the soluble 

intracellular environment (cytoplasm), cleavage by γ-secretase occurs within the 

transmembrane domain of APP when it is inserted in the membrane (Selkoe, 2004; Haass 

and Selkoe, 2007). Hook et al. (2008) called this the constructive secretory pathway.

The regulated secretory vesicle pathway (in which APP is present in soluble, non-

transmembrane form in intracellular vesicles) releases full-length, soluble APP or Aβ and 

other fragments. This is known to occur in platelets (Bush et al., 1990, 1993; Van Nostrand 

et al., 1990) and in chromaffin cells (Tezapsidis et al., 1998). Full-length soluble APP thus 

has β- and γ-secretease sites accessible for direct proteolytic cleavage in solution 

(Tezapsidis et al., 1998). The specialized cathepsin B enzyme works as a β-secretase in this 

pathway. It was suggested that the major portion of secreted, extracellular Aβ peptides is 

produced by the regulated secretory pathway (Tezapsidis et al., 1998, 2013; Hook et al., 

2005, 2009, 2014). Aβ peptides secreted by platelets are similar to those found in the senile 

plaques of AD patients (Scheuner et al., 1996). Production of shorter Aβ peptides ending at 

residue 40 (Aβ40) increases if platelets are closely packed in the thrombus, while production 

of Aβ42 does not depend on platelet density (Casoli et al., 2007).

Platelets are an important component of the inflammation and immune 

response

Platelets are best known as cellular mediators of thrombosis, but they are also immune cells 

that initiate and accelerate many inflammatory conditions. In some contexts these conditions 

are protective, whereas in others they contribute to adverse inflammatory outcomes 

(reviewed in: Klinger and Jelkmann, 2002; Morrell et al., 2014, 2019; Manne et al., 2017; 

Łukasik et al., 2018). Platelets have receptors activated by viral and bacterial antigens and in 

response release microbicidal peptides (Yount et al., 2004; Trier et al., 2008; Yeaman, 2010; 

Seyoum et al., 2018). We have shown that during thrombosis after skin injury there is a 
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massive release of Aβ peptide and that this peptide can perforate yeast cell membranes while 

not affecting somatic cell membranes at the same concentration (Kucheryavykh et al., 2018). 

However, Aβ peptide is not the only weapon in the platelet arsenal, as other antibacterial 

peptides were identified long ago (Yeaman et al., 1993, 1997; Krijgsveld et al., 2000; 

Kupferwasser et al., 2002; Tang et al., 2002). Like Aβ, one of these antibacterial peptides 

present in rabbit has a variable length of 72–73 amino acids and is cleaved from a longer 

precursor (Yount et al., 2004).

Platelets express numerous specialized Toll-like receptors (TLR) that recognize microbe-

associated threats. Moreover, they (1) interact with other immune cells using cell-specific 

adhesion molecules, (2) attach neutrophils and monocytes at the site of lesion and also 

activate them as well as themselves, (3) release multiple antibacterial factors, and (4) 

participate in both innate and acquired immune responses (reviewed in: Morell et al., 2014; 

Łukasik et al., 2018). Stimulation of TLR type 2 (TLR2) amplifies P-selectin expression on 

the surface of platelets, enhances the pro-inflammatory response of platelets, and increases 

the formation of platelet-neutrophil aggregations necessary for the innate response (Blair et 

al., 2009). It was previously shown that the presence of long-chain bacterial polyphosphates 

or bacteria in the bloodstream promotes platelet activation in a FXII-dependent manner, 

which may contribute to sepsis-associated thrombotic processes (Zilberman-Rudenko et al., 

2018). It is also known that the Aβ peptides that are released by platelets are recognized by 

TLR2 on the surface of lymphocytes, similarly to other pore-formers, such as nystatin and 

amphotericin B, inducing a cellular response and leading to the secretion of inflammation 

factors and tumor necrosis factors (Razonable et al., 2005; Chen et al., 2006; Liu et al., 

2012). This additional activation may add positive feedback to the inflammation process.

An important component of innate immunity, FcγRIIB, is the only inhibitory receptor for 

the fragment crystallizable region (Fc region) of IgM antibodies, which are involved in the 

complex regulation of acquired defense against infection (Smith and Clatworthy, 2010). On 

the surface of B lymphocytes this receptor inhibits IgM production until the necessary 

concentration is achieved. The affinity of FcγRIIB to soluble monomeric IgM is low, and it 

is activated only when the concentration of IgM is sufficiently high. However, Aβ liberated 

by platelets can shift this regulation, because FcγRIIb is also a receptor for soluble Aβ 
oligomers, and it was shown that both cell-derived and synthetic Aβ oligomers bind to the 

immobilized FcγRIIb ectodomain (Lee et al., 2018). Thus, overproduction of Aβ may lead 

to overproduction of IgM, provoking pathological inflammation. The overall mechanism of 

how Aβ affects the regulation of tissue inflammation is unclear. But it is known that 

FcγRIIB mediates Aβ neurotoxicity and memory impairment in AD, soluble Aβ oligomers 

interact with FcγRIIb in vitro and in AD brains, and inhibition of their interaction blocks 

synthetic Aβ neurotoxicity (Kam et al., 2013). FcγRIIb is significantly upregulated in the 

hippocampus of AD brains and neuronal cells exposed to synthetic Aβ (Kam et al., 

2013).These results show that Aβ effects on the brain can also be indirect.

Platelets in AD and glaucoma

Glaucoma is strongly correlated with coagulation abnormalities. Platelets are hyperactivated 

in patients with different types of glaucoma and tend to aggregate (Hoyng et al., 1985; Bojić 
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and Skare-Librenjak, 1998–1999; Matsumoto et al., 2001; Kuprys et al., 2014). In primary 

open angle glaucoma platelet aggregation and the fibrinolytic system may become triggers 

of vascular damage that can lead to microcirculatory defect at the optic nerve head 

(Matsumoto et al., 2001). An age-dependent association between spontaneous platelet 

aggregation and the presence of glaucoma was also observed (p<0.05; Hoyng et al., 1985). 

Anti-platelet effects of anti-glaucomatous eye drops was reported (Moschos et al., 2017), 

suggesting that glaucoma-related Aβ originates from platelets. A study in human glaucoma 

patients has shown that the number of platelets (the mean plateletcrit and platelet 

distribution width) is increased (Li et al., 2016). Aβ co-localizes with apoptotic retinal 

ganglion cells (RGCs) in experimental glaucoma in rat and induces significant RGC 

apoptosis in vivo in a dose- and time-dependent manner (Guo et al., 2007). Similarly, Aβ 
appears in the RGC layer in monkey retina after chronic ocular hypertension (Ito et al., 

2012). In AD patients, accumulation of Aβ in the eye is more uniform in retina and is spread 

also to the eye lens, unlike in “pure” glaucoma (van Wijngaarden et al., 2017). Data on Aβ 
accumulation suggest some similarity in the mechanisms of AD and primary glaucoma, but 

there is no clear statistical correlation between these diseases (Tsolaki et al., 2011).

Correspondingly, abnormal clotting was found in AD patients and was correlated with 

cognitive ability, and it was suggested that APP is involved by perturbing clotting parameters 

(Suidan et al., 2018). Persons with AD dementia have a ~200% higher risk of stroke, 

according to a study of a large cohort of AD patients in Finland and Taiwan (Tolppanen et 

al., 2013; Chi et al., 2013). Clots are formed in atherosclerotic lesions (Badimon and 

Vilahur, 2014), with APP and Aβ peptide present in advanced human atherosclerotic 

plaques, and these substances originated from platelets (De Meyer et al., 2002). We also 

reported that Aβ peptide can be detected by immunocytochemistry in and around blood 

vessels in the brain after experimental thrombosis, and that this peptide is released to the 

tissue from platelets (Kucheryavikh et al., 2017). During clot formation, the density of 

platelets in the lumen of the thrombotic vessel is significantly increased (more than 300–500 

times), thus allowing a massive release of Aβ peptide (Kucheryavikh et al., 2017). Platelet 

inclusions in cerebral blood vessels are the first signs of disease in an AD mouse model 

(Kniewallner et al., 2016). Microinfarcts are closely related to AD pathology (Kövari et al., 

2013; Saito and Ihara, 2014, 2016), and there is a correlation with intracranial vessel 

arteriosclerosis (Dolan et al., 2010; Lathe et al., 2014), in which microclots are chronically 

formed in brain blood vessels during arteriosclerosis (Holvoet and Collen, 1998; Badimon 

and Vilahur, 2014). These findings illustrate the fact that the coagulation system, and 

platelets in particular, are involved in AD. There are many additional pieces of evidence that 

AD is a thrombo-hemorrhagic disorder (Schmaier, 2016).

The activated platelets in AD retain greater amounts of APP (Davies et al., 1997) while 

showing increased platelet adhesion and thrombus formation (Canobbio et al., 2016). In a 

transgenic mouse model of AD, platelets were found to be the major contributors to cerebral 

amyloid angiopathy (CAA), which then forms a shield of insoluble Aβ around brain blood 

vessels (Gowert et al., 2014). Recently, using parabiosis between APPswe/PS1dE9 

transgenic AD mice and their wild-type littermates, it was demonstrated that human Aβ 
originating from transgenic AD model mice entered the circulation and accumulated in the 

brains of wild-type mice and formed cerebral amyloid angiopathy and Aβ plaques after a 
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12-month period of parabiosis (Bu et al., 2018). These authors did not study the source of 

blood-derived Aβ but suggested that it may be platelets.

Liberation of α-granule content is mediated by specific receptors on the platelet. Some of 

the most important platelet membrane receptor classes that produce platelet activation and 

generation of Aβ during traumatic/inflammatory tissue damage were previously reviewed 

(Inyushin et al., 2017). These include the purinergic receptors P2X and P2Y, which are 

activated by ADP released from damaged tissues, and the thromboxane receptors (TxA2); 

both these types signal via the specific G protein Gq. It was found that RxR retinoid receptor 

ligands strongly inhibit Gq, thus impeding both purinergic and thromboxane receptors on the 

surface of platelets and drastically reducing platelet activation/agregation (Moraes et al., 

2007). Interestingly, the RXR ligand bexarotene induces miraculously rapid clearance of 

soluble Aβ, thereby reducing plaque burden and improving cognition in a mouse model of 

AD (Cramer et al., 2012; Mariani et al., 2017). Moreover, bexarotene rescues glaucoma 

phenotypes in mice (Dheer et al., 2019). While the authors of these studies on bexarotene 

effects proposed alternative explanations for their results, we suggest that platelet 

deactivation may also be involved. Another antiplatelet drug, cilostazol, inhibits the 

activation-dependent membrane surface glycoprotein GPIIb/IIIa on the surface of platelets, 

preventing their activation (Inoue et al., 1999). Cilostazol may reduce the decline of 

cognitive function in AD patients and patients with mild cognitive impairment (Taguchi et 

al., 2013; Tai et al., 2017) as well as glaucoma (Okamoto et al., 2010). Similarly, blocking 

only purinergic receptors on the surface of platelets by antiplatelet drugs, such as 

clopidogrel, decreased plaque burden in AD model mice (Donner et al., 2016), while the 

effects of this drug on glaucoma are unknown. These investigators showed that Aβ 
stimulates the integrin receptor in platelets, leading to the release of ADP and the protein 

clusterin, and that this protein promoted β-sheet folding and the formation of fibrillar Aβ 
aggregates (Gowert et al., 2014; Donner et al., 2016). The authors did not discuss the source 

of Aβ but did confirm the existence of specific mechanisms involving platelets in the process 

of Aβ aggregation and showed the importance of platelets in AD development.

On the other hand, thrombocytopenia (a low platelet count) is extremely rare in AD patient 

cohorts. Out of 20,591 FDA reports on cases of AD-type dementia, only0.4% developed 

thrombocytopenia, appearing in the advanced stages of the disease after long use of certain 

anti-AD medicines (eHealthMe, 2018). It has been reported that, while AD patients have 

similar platelet counts as age-matched controls, their platelets are in a more activated state 

(Sevush et al., 1998). Twenty years ago these authors (Sevush et al., 1998) concluded that, in 

light of evidence that platelets are the principal source of both APP and Aβ peptide in 

human blood, it is possible that AD platelet activation reflects, or even contributes to, the 

pathogenesis of AD. Unfortunately, this idea has never been tested directly.

Recently, we have shown that thrombocytopenic animals produce lower levels of Aβ peptide 

during clotting (Kucheryavykh et al., 2017). Therefore, induction of mild thrombocytopenia 

may be a novel approach to reducing the damaging effects of overproduction of systemic 

Aβ.
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X-ray treatment of glaucoma and AD

Exposure to X-rays directly affects blood platelet count. For glaucoma it was shown that a 

mild X-ray dose rapidly ameliorates retinal damage (Anderson et al., 2005; Bosco et al., 

2012; Howell et al., 2012). This effect was first shown for whole-body irradiation. 

Destroying the bone marrow and replacing it with donor bone marrow in a genetic model of 

mouse glaucoma (DBA/2J mice) reduced glaucoma retinal damage after whole-body 

irradiation (Anderson et al., 2005). Later, the same group reported that only a single local X-

ray treatment (7.5 Gy) of an individual eye in young mice provided the eye with long-term 

protection from glaucoma. They claim that it had no effect on the contralateral eye (Howell 

et al., 2012). This X-ray effect was challenged, however, by the research showing that there 

was no protective outcome if the X-ray irradiation was applied locally (Johnson et al, 2014). 

Neither of these studies investigated the effects on platelets.

Similar effects for whole-body irradiation and head-only irradiation were reported for AD 

(Simard et al., 2006; Mildner et al., 2011). The whole-body irradiation (10 Gy) was used 

first in experiments with a transgenic mouse strain (APPSwe/PS1), genetically modified to 

develop Aβ plaques, and it was shown that the amount of these plaques after X-ray 

irradiation was reduced by more than 50% (Simard et al., 2006). Later, whole-body and 

partial-body (lower part of the body only) irradiation was used in mouse models of AD 

(APPswe/PS1, APPswe, and APP23 mice) (Mildner et al., 2011). At the dosage used in 

these experiments, the bone marrow and its entire hematopoietic lineage became ablated, 

and the work of both Simard and coworkers as well as that of Mildner, used the repopulation 

of animals with donor bone marrow to study the effects of newly generated monocytes. 

After whole-body irradiation senile plaque formation ceased, and the authors concluded that 

monocytes/microglia were responsible, although thrombocytopenia was not assessed in 

these experiments. After irradiation of the lower part of the body the effect on plaque 

formation in brain parenchyma was insignificant (Mildner et al., 2011).

Following the success in treatment of tracheo-bronchial amyloidosis (TBA) with irradiation 

(20 Gy, administered as 10×2Gyover two weeks), it was proposed to use mild levels of 

radiation to treat AD (Bistolfi, 2008). Indeed, the other research group used direct irradiation 

of the cranium to show that radiation causes plaques to became wiped out in the 

hippocampus and cortex. In AD transgenic mice, high doses of X-rays produced a very clear 

(>50%) reduction in amyloid deposition, and the authors attributed this to yet undetermined 

immune mechanisms (Marples et al., 2012; also see WO2012034019A1 Patent Application, 

2010). Later, the same group, using different regimes of X-ray irradiation of the cranium, 

assessed not only Aβ plaque accumulation but also other AD parameters (Marples et al., 

2016; Wilson and Marples, 2016). In this work only one side of the brain was irradiated, and 

a lead irradiation jig was used to shield the other side of the brain and all other tissues from 

the treatment field. The number of Aβ plaques in the irradiated side of the brain was then 

compared with the number of plaques in the shielded non-irradiated side. The authors found 

a clear difference between treated and untreated hemispheres. Anyway, one can see that at 

higher multiple doses, both shielded and irradiated hemispheres showed fewer plaques, 

suggesting that the effect of X-ray irradiation is not entirely local (Marples et al., 2016). 

Similarly, a visible difference can be observed between sham-irradiated and irradiated 
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brains, suggesting that the nonlocal effects of irradiation were much more pronounced 

(Marples et al., 2016). How effective was the shielding of, for example, lungs, is difficult to 

determine from the description of the author’s work.

It is known that X-ray irradiation of the upper chest, even at low doses (150 mGy), can 

produce thrombocytopenia. It was shown also that endothelial cell irradiation lowered their 

ability to attract migrating megakaryocytes (MKs). Moreover, the adhesion of MKs to 

human vascular endothelial cells (HUVECs) was markedly reduced when these cells were 

exposed to radiation, which was accompanied by a decreased production of platelets by 

MKs (Chen et al., 2017). While there is evidence of platelet production in bone marrow/

spleen (Davis et al., 1997), it was found recently that the majority of platelet production 

from the pro-platelet processes of megakaryocyte-type extravascular progenitors is mainly 

concentrated in the pulmonary capillary bed of the lungs (Howell and Donahue, 1937; 

Zucker-Franklin and Philipp, 2000; Lefrançais et al., 2017). Thus, special shielding of the 

lower chest is needed to exclude the effects of a reduction of platelet count on plaque 

formation.

Additionally, a case report was published in which a low dose of X-rays generated by a CT 

scan (5× 50 mGy=250 mGy) produced miraculous, but transient, recovery of a patient with 

terminal AD after cranium imaging studies (Cuttler et al., 2016). CT scanning is performed 

by a 3D X-ray instrument, which to some extent also applies X-ray irradiation along the Z-

axis to the lung during cranial imaging. It must be mentioned that the thrombocytopenia 

after the low doses of radiation is usually temporary and reverses in a few weeks due to 

compensatory effects (Ebbe et al., 1986).

The overall results on X-ray effects are interesting and can be interpreted from different 

points of view. While we suggest that reduction of the platelet count can explain the reported 

effects of ionizing radiation on both AD and glaucoma, this subject surely needs further in-

depth exploration.

Blood transfusion in glaucoma and AD treatment

Blood transfusion unquestionably affects platelet count and activation. Unfortunately, there 

are no recent studies devoted to the effects of blood transfusion on glaucoma. We have found 

only old review of effects in human patients and it was found that blood transfusion can 

dramatically reduce glaucoma retinal damage. The suggested explanation was that it helps to 

restore eye hemodynamics and reduce hypoxia, especially if patients previously have some 

general impairment of the cardiovascular system (reviewed in: Iusupov and Medvedev, 

1965).

Blood transfusion has been shown to have profound effects on AD development. Bu and 

coworkers (Bu et al., 2018) showed that the blood from transgenic AD mice, which usually 

develop Aβ plaques and neuronal brain damage by 6–7 months of age, can induce similar 

plaques and damage in normal wild type animal brain after constant transfusion. Constant 

exchange of blood was achieved by parabiosis, in which the vascular system of one animal is 

surgically united with the vascular system of another so that they shared a common reservoir 
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of blood. These authors used APPswe/PS1dE9 transgenic AD mice, producing human Aβ, 

which can be easily distinguished from intrinsic mouse Aβ. Parabiosis between these AD 

mice and their wild-type littermates has shown that human Aβ originating from transgenic 

AD model mice enters the circulation and accumulates in the brains of wild-type mice and 

forms cerebral amyloid angiopathy and Aβ plaques after a 12-month period (Bu et al., 

2018). While the source of blood-derived Aβ was not specifically studied, it was suggested 

that it might be platelets (Bu et al., 2018).

Vice versa, the transfusion of blood from healthy subjects can reduce plaque formation in 

AD. It was previously shown that parabiosis between young animals and aged mice 

mitigates age-related impairment of cognitive function, memory, and vascular function, but 

exclusively neuronal mechanisms were suggested (Katsimpardi et al., 2014; Villeda et al., 

2014). This was followed by a preclinical study with mice (Middeldorp et al., 2016) and 

clinical trials in which blood from young persons was transfused into AD patients 

(PLASMA study NCT02256306). Because the study was not specifically focused on 

platelets, the preclinical animal trial did not investigate if a simple blood dilution (reducing 

the platelet count) by physiological solution will produce a similar effect. In the clinical trial 

there is still no published data on whether the effect of saline is any different from plasma 

transfusion and whether both are positive. If the platelet count is involved in the effect, it is 

possible that simple plasma dilution (platelet count lowering with saline) will have positive 

effects.

The overall results concerning the effects of blood transfusion are very interesting and can 

be interpreted from different points of view. While we suggest that reducing the platelet 

count can explain the reported effects on both AD and glaucoma, this subject surely needs 

further in-depth exploration.

Why older age is a factor in sporadic glaucoma and AD

The greatest known risk factor for AD is increasing age, and the majority of people with AD 

are 65 and older, similarly people have six times more risk to get glaucoma if they are over 

65 years old. Correspondingly, there are clear age-related changes in platelet count, function, 

and reactivity, driven by changes in hematopoietic tissue, the composition of the blood, and 

vascular health. These age-related changes are particularly pertinent given that thrombotic 

disease is much more prevalent in the elderly population (Jones, 2016). As an example, 

acute coronary syndromes and atrial fibrillation -the most frequent indications for platelet 

inhibition or anticoagulation- occur mostly in older patients, as does stroke, transient 

ischemic attack, myocardial infarction, systemic embolism, deep vein thrombosis, and 

pulmonary embolism (Andreotti et al., 2015). It is known that infarcts are closely related to 

AD pathology (Kövari et al, 2013; Saito and Ihara, 2014, 2016), as well as the intracranial 

vessel arteriosclerosis in which microclots are chronically being formed in brain blood 

vessels (Holvoet and Collen, 1997; Dolan et al., 2010; Lathe et al., 2014; Badimon and 

Vilahur, 2014). Platelets are responsible for APP and Aβ peptide present in advanced human 

atherosclerotic plaques (De Meyer et al., 2002).Thus stroke is associated with AD among 

elderly individuals (Honig et al., 2003).
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Similarly, a10 year follow up study within the population of Taiwan have shown that 

glaucoma is strongly correlated to stroke (Lee et al., 2017). The similar strong correlation 

was found for myocardial infarction and glaucoma in large India and Taiwan studies 

(Mondal et al., 2013; Chen et al., 2016).

Platelet count is stable up to about 60 years old in humans, and then falls about 8% 

(reviewed in Jones, 2016) in the general population, this may be as a compensation for the 

increased platelet reactivity which is augmented with age in an almost linear fashion. Similar 

changes occur in other mammalian species with aging (Balduini and Noris, 2014; Jones, 

2016). Platelets are hyper-activated in AD (Jarre et al, 2014) and glaucoma (Kuprys et al., 

2014), and these hyper-activated platelets more aggressively damage healthy vessels 

(Kniewallner et al., 2018).

Therefore, regulation of platelet count and activation, especially in old age, may be a novel 

approach to reducing the damaging effects of platelet-generated systemic Aβ in AD and 

glaucoma.

Conclusions

• Aβ peptide is implicated in both AD and glaucoma and has been shown to be the 

important etiological factor for these dangerous health complications.

• Aβ has many functions, but is well established as an antimicrobial/antibiotic 

peptide.

• It is known that Aβ peptide is generated from its precursor protein and massively 

released to the blood upon the activation/aggregation of platelets, and is thereby 

accumulated locally from a systemic source.

• Platelets are an important part of the inflammation and immune response, and 

both glaucoma and AD correlate with significant local inflammation.

• Platelets are the main source of systemic APP and Aβ.

• Platelet hyper-activation has been conclusively shown to be an aspect of both AD 

and glaucoma.

• Induction of mild thrombocytopenia and/or the reduction of platelet activation 

may be an effective approach to reduce the damaging effects of systemic Aβ.
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Fig. 1. 
Platelets generate Aβ, and this activity is affected by inflammation and age-related changes.
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