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Abstract

Objective: To parameterize and validate two existing algorithms for identifying out-of-bed time 

using 24-hour hip-worn accelerometer data from older adults.

Approach: Overall, 628 women (80±6 years old) wore ActiGraph GT3X+ accelerometers 24 

hours/day for up to 7 days and concurrently completed sleep-logs. Trained staff used a validated 

visual analysis protocol to measure in-bed periods (criterion). The Tracy and McVeigh algorithms 

were adapted for optimal use in older adults. A training set of 314 women was used to choose two 

key thresholds by maximizing the sum of sensitivity and specificity for each algorithm and data 

(vertical axis, VA, and vector magnitude, VM) combination. Data from the remaining 314 women 

were then used to test agreement in waking wear time (i.e., out-of-bed time while wearing the 

accelerometer) by computing sensitivity, specificity, and kappa. Waking wear time-adjusted means 

of sedentary time, light-intensity physical activity (light PA) and moderate-to-vigorous-intensity 

physical activity (MVPA) were then estimated and compared.
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Main results: Waking wear time agreement with the criterion was high for Tracy_VA, Tracy_VM, 

McVeigh_VA, and highest for McVeigh_VM. Compared to the criterion, McVeigh_VM had mean 

sensitivity=0.92, specificity=0.87, kappa=0.80, and overall mean difference±SD=−0.04±2.5 hours/

day. Minutes of sedentary time, light PA, and MVPA adjusted for waking wear time using the 

criterion measure and McVeigh_VM were not meaningfully different (p >0.43 | all).

Significance: The McVeigh algorithm with optimal parameters using VM performed best 

compared to sleep-log assisted visual analysis and is suitable for automatic identification of 

waking wear time in older women when visual analysis is not feasible.

INTRODUCTION

Accelerometers have been used to measure human movement beginning in 1983 (Montoye 

et al 1983) and have since become the most used sensor in physical activity research (Chen 

et al 2012). Early research protocols required accelerometers be worn only while awake, 

often requiring participants remove devices when they were likely to get wet (e.g., during 

showers or while swimming) and while sleeping [eg, (Diaz et al 2017)]. One problem with 

this waking-wear protocol is that taking devices off before bed and putting them on after 

waking presents opportunities for participants to forget to wear devices while awake 

(Troiano et al 2014). This non-wear results in missing data (Tudor-Locke et al 2015) that is 

more likely to occur just before and just after sleep—a pattern that is not missing at random. 

Furthermore, systematically requiring device removal creates missed opportunities to assess 

sleep duration and several other dimensions of sleep that can be measured using hip-worn or 

wrist-worn accelerometers, though accuracy of some sleep dimensions measured with hip-

worn accelerometry remains debatable (Zinkhan et al 2014, Weiss et al 2010).

For the assessment of time spent in physical activity, accelerometers are commonly worn on 

the hip to measure whole-body acceleration in three dimensions 30 to 100 times per second 

(Migueles et al 2017). Raw acceleration data are summarized to manageable epochs 

(commonly 1 minute) using proprietary algorithms built into manufacturer-provided 

software, resulting in activity measures known as “counts per minute” (cpm). The resulting 

cpm data can be used to classify each minute of the day into one of four categories: 

sedentary behavior; physical activity (light, moderate, vigorous); sleep; or non-wear.

Data processing techniques for classifying sedentary behavior and physical activity that rely 

solely on cpm data are widely used (Freedson et al 1998, Troiano et al 2008, Matthews et al 
2008). These techniques use cpm thresholds, also called “cutpoints”, that are established 

often in laboratory studies that calibrate cpm data to energy expenditure while participants 

perform various tasks such as walking on a treadmill, folding laundry, moping, and watching 

TV (Evenson et al 2015). Automated algorithms to classify non-wear time (Choi et al 2011) 

are also pervasively used. The identification of in-bed time (sometimes a proxy for sleep 

duration) using automated algorithms is common when accelerometers are worn on the wrist 

(Ancoli-Israel et al 2003). Identifying in-bed time using data from hip-worn accelerometers 

is more challenging because differences in whole-body movement patterns between 

sedentary behavior and sleep are not as clearly distinct as those observed on wrist-worn 

accelerometers. Despite the added difficulty, several automated in-bed detection algorithms 
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for hip-worn accelerometer data have been developed and validated against whole-room 

calorimetry (Tracy et al 2014), parent-reported sleep logs (Barreira et al 2015) and expert 

visual analysis of cpm data (Tudor-locke et al 2014, McVeigh et al 2016). Two of the 

algorithms—Tracy et al.’s bed-rest algorithm (referred to as the “Tracy algorithm”) and 

McVeigh et al.’s waking wear time algorithm (referred to as the “McVeigh algorithm)—rely 

solely on cpm output from ActiGraph accelerometers (McVeigh et al 2016, Tracy et al 
2014). The simplicity of the cpm algorithms makes their application in large epidemiologic 

studies more feasible than other time intensive approaches.

Algorithms designed to categorize out-of-bed time from hip-worn accelerometry rely on 

temporal patterns of whole-body activity while out of bed or in bed/asleep. The algorithms 

are heavily influenced by activity profiles during the waking period. For example, a person 

who is consistently active throughout their out-of-bed period will have cpm readings that are 

distinctly different than the cpm readings during their in-bed period, making the distinction 

between the two periods clear. For someone who spends the vast majority of their out-of-bed 

periods sedentary (e.g., watching television), distinctions between in-bed and out-of-bed 

periods would be more difficult to make. The Tracy and McVeigh algorithms were 

developed and validated using data from youth aged 10–18 and young adults aged ~22 

years, respectively. Since sleep patterns (Yoon et al 2003) and activity intensity profiles 

(Troiano et al 2008) are highly variable by age, there is good reason to believe that the 

algorithms developed for adolescents and young adults are not directly generalizable to older 

adults (McVeigh et al 2016). However, both the Tracy and McVeigh algorithms were 

originally designed with parameters that could be modified to fit different population 

subgroups.

The first objective of this study was to identify parameter values that optimized the Tracy 

and McVeigh algorithms for identifying waking wear time for older women. Waking wear 

time was defined as the daily out-of-bed time during accelerometer wear, and is the key 

variable used for adjustment in studies of physical activity and sedentary behavior that 

collect data over the 24-hour day. The second objective was to validate both algorithms in a 

separate sample of older women using the newly-identified optimal parameters. An 

algorithm parameterized for older adults, if sufficiently valid, could measurably reduce the 

resource burden of data processing, making it more feasible for large epidemiologic studies 

to include 24-hour accelerometry measures.

METHODS

Sample

Accelerometer and sleep log data from a subsample of Women’s Health Initiative (WHI) 

participants that enrolled in the ancillary Objective Physical Activity and Cardiovascular 

Health Study (OPACH) were used (LaCroix et al 2017). OPACH participants were recruited 

from 40 clinical centers around the US that were originally used for WHI recruitment. 

Participants were between 63 and 99 years old (average age 79 ± 7 years), community-

living, ambulatory, and cognitively able to provide consent. About half (49.4%) were non-

Hispanic white, 33.7% were non-Hispanic black, and 16.9% were Hispanic/Latina. 

ActiGraph GT3X+ accelerometers were worn over the right hip for 24 hours per day 

Bellettiere et al. Page 3

Physiol Meas. Author manuscript; available in PMC 2020 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(removed only when showering or swimming) over a 7-day measurement period. Sleep logs 

were concurrently distributed to collect in-bed and out-of-bed times during accelerometer 

wear; the sleep logs were published elsewhere (Rillamas-Sun et al 2015). Of the 6489 

women who wore accelerometers for at least one day, 6114 (94%) also completed sleep logs 

for at least one day.

The first 628 participants whose accelerometer data went through a validated sleep log-

assisted visual inspection (described below) were included in the present study. Participants 

were randomly assigned to either a “parameterization subsample” that was used to 

determine optimal parameters or a “validation subsample” that was a separate sample used 

only to evaluate the optimal parameters.

Parameters for the Tracy and the McVeigh algorithms were largely dependent on in-bed and 

out-of-bed body movement. Sleep duration (short <7 hr/night, average 7–9 hr/night, and 

long >9 hr/night) and total physical activity (high and low, determined by a median split to 

accelerometer cpm) were used as proxies for this movement. To ensure sufficient variation in 

sleep and physical activity patterns in the parameterization and validation subsamples, the 

628 women were stratified into the 6 mutually exclusive categories based on sleep duration 

and total physical activity. Then 50% of women from each category were randomly sampled 

without replacement for the parameterization subsample; the remaining women formed the 

validation subsample. The parameterization and validation subsamples each had 18 high 

activity short sleepers, 119 high activity average sleepers, 21 high activity long sleepers, 15 

low activity average sleepers, 96 low activity average sleepers, and 45 low activity long 

sleepers.

Accelerometer data processing

ActiGraph GT3X+ accelerometers measured acceleration at 30 Hz. Raw acceleration data 

were converted into counts per 15-second epoch using the low frequency filter in ActiLife 

v6.11. This filter was used by McVeigh and colleagues and is designed so that activity at the 

lower end of the activity intensity spectrum can be detected with similar consistency as older 

ActiGraph accelerometer models such as those used by Tracy and colleagues (Tracy et al 
2014, McVeigh et al 2016, ActiGraphcorp.com 2015). Data were then aggregated to 1-

minute epochs to represent cpm. Vector magnitude counts for each 1-minute epoch was 

computed as the square root of the sum of the vertical axis cpm squared, the horizontal axis 

cpm squared, and the perpendicular axis cpm squared. Non-wear time was identified by a 

commonly used automated algorithm which identified periods with ≥ 90 minutes of 

consecutive vector magnitude cpm of zero, allowing for up to 2 consecutive minutes of 

nonzero counts (to account for movement of the unworn device) conditional on there being 

30 minute windows of zero cpm before and after the device was moved (Choi et al 2011, 

2012).

Sleep log-assisted visual analysis

Similar to the procedures used by McVeigh et al., two raters were trained to visually identify 

in-bed periods by systematically observing cpm data in the context of self-reported in-bed 

periods. Using ActiLife V6.11.8, raters created 60-sec condensed AGD files and scored each 
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participant’s 24-hour accelerometer data using the software’s sleep analysis tab. Raters 

identified in-bed periods by inputting self-reported in-bed and out-of-bed times from 

completed sleep logs into the software and visually inspecting the accelerometer tracings (in 

cpm) for changes in activity levels that would indicate that the participant transitioned from 

in-bed to out-of-bed or vice versa. If the visually identified transition was different from the 

self-reported time by ≥ 15 minutes, then the self-reported sleep period was adjusted based on 

the observed accelerometer data. The 15-minute requirement was determined by raters and 

investigators during the protocol development process in part to give the self-reported times 

priority when raters’ and reporters’ times were ‘close’ and as pragmatic step to reduce coder 

burden. Raters identified the start of the in-bed period as the first zero count following a 

significant and persistent reduction in activity (<100 cpm) and defined the end of the in-bed 

period as a significant and persistent increase in activity (>100 cpm). The resulting in-bed 

periods were used as the criterion for algorithm parameterization and for validation. This 

protocol was developed based on a method used by sleep researchers shown previously to 

have high inter-rater reliability with mean absolute differences between raters and experts of 

3.4±5.4 minutes and interclass correlations ranging from 0.84 to 0.99 (Blackwell et al 2005).

For 20 participants, a second rater coded data for the same days. The double-coded data 

were used to assess the degree to which the criterion data was reliable by computing % 

agreement allowing for in-bed and out-of-bed times to differ by ±5 minutes. The inter-rater 

agreement was 88.2%.

The Tracy and McVeigh algorithms

Generally, both the Tracy and McVeigh algorithms work by first identifying long periods of 

relatively low intensity activity, to operationalize an in-bed period. The algorithms then 

search the beginning and end of each period for a more precise in-bed and out-of-bed time. 

Both steps rely on cpm cutpoints that were applied to data from the vertical axis only. Our 

study extends this by also using data from all three axes, summarized as the vector 

magnitude.

The Tracy and McVeigh algorithms were designed with modifiable parameters enabling 

them to be tuned to work in samples different from those used in their development and 

validation. Both algorithms are described in detail elsewhere (McVeigh et al 2016, Tracy et 
al 2014). The Tracy algorithm has three modifiable parameters (CP0, CP1, and CP2), with 

CP1 and CP2 having the largest influence on the accuracy of the algorithm. CP1 is the cpm 

cutpoint that differentiates high from low intensity activity and is used to identify what the 

authors call “bedtime rest periods”. CP2 is the cpm cutpoint used to find a more precise end 

time for the bed rest period. The validated cpm cutpoints supplied by the authors—

determined by examining receiver operation curves for different options and optimizing for 

sensitivity and specificity—for CP1 and CP2 were 20 cpm and 500 cpm, respectively (Tracy 

et al 2014). CP0 – a parameter to identify precise start times for the bedtime rest period – 

was fixed at 50 cpm. The McVeigh algorithm had five modifiable parameters (slthres, 

prslthresh1, prslthresh2, prwkthresh1, and prwkthresh2), with slthres and prwkthresh2 being 

central to its functioning. Slthres was used to define period of prolonged low activity that 

indicated participants were either in bed or the device was not being worn (called in-bed/
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non-wear [BNW] periods); McVeigh et al. set this equal to 88 cpm. Prslthresh1 and 

prslthresh2 are parameters used to identify the precise beginning time for a BNW, while 

prwkthresh1 and prwkthresh2 are parameters used to identify the precise ending time of a 

BNW. Parameter values were determined by repeatedly changing values, graphing the 

results, then visually inspecting the results in relation to their criterion. McVeigh et al. set 

the parameters as follows: prslthresh1=89, prslthresh2=50, prwkthresh1=91, 

prwkthresh2=200 (McVeigh et al 2016).

Selecting optimal parameters for each algorithm

For the Tracy and McVeigh algorithms, optimal parameters were selected separately using 

both the vertical axis (VA) and the vector magnitude (VM) data. A range of possible cpm 

cutpoints was prespecified for the two key modifiable parameters for each algorithm. We 

then choose 10 to 50 grid points within the plausible range for each parameter. The ranges of 

plausible values [low:high, by gridpoint] were [VA=10:120, by 10; VM=90:300, by 10] for 

CP1, [VA=60:200, by 20; VM=200:700, by 50] for CP2, [VA=50:150, by 10; VM=150:300, 

by 10] for slthres, and [VA=120:400, by 40; VM=300:700, by 50] for prwkthresh2, based on 

the literature (Evenson et al 2015, Tracy et al 2014) and our practical experiences.

Each combination of parameters was applied to data from participants in the 

parameterization subsample, one participant at a time, to implement the Tracy and McVeigh 

algorithms. One-minute epochs were classified as either out-of-bed or in-bed and/or non-

wear time. After each implementation, the newly classified minutes were compared with 

minutes classified using the criterion sleep-log guided visual inspection method by 

computing sensitivity and specificity. Sensitivity was defined as the proportion of algorithm-

identified out-of-bed minutes in agreement with out-of-bed minutes classified using the 

criterion method. Specificity was defined as the proportion of algorithm-identified in-bed 

minutes in agreement with in-bed minutes classified using the criterion method. The above 

procedures were repeated for all unique combinations of modifiable parameters. Sensitivity 

and specificity were computed for each participant first, and then the medians across all 

participants were calculated. The parameter combination with the highest median sensitivity 

plus specificity was selected.

To reduce the computational resources needed for the parameterization process, the 

following parameters, which based on our experience from systematically deconstructing 

both algorithms and on results from early exploratory sensitivity analyses we determined 

would be less influential for algorithm accuracy than the varied parameters, were fixed for 

all analytic steps: CP0=50 cpm; prslthresh2=50 cpm; prslthresh1=slthresh+1; and 

prwkthresh1=slthresh+10.

Validation

The parameterization process resulted in 4 optimal cpm cutpoint combinations: Tracy_VA; 

Tracy_VM; McVeigh_VA; and McVeigh_VM. The Tracy and McVeigh algorithms were then 

implemented on data from the validation sample using the 4 optimal cutpoint combinations 

and the two originally validated cutpoint combinations supplied by the authors 

(Tracy_original and McVeigh_original). Agreement in daily out-of-bed time between the 
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criterion measure and all 6 implementations of the algorithms was assessed using sensitivity, 

specificity, and Cohen’s kappa.

For each participant and each algorithm implementation, waking wear time was computed as 

the average number of out-of-bed minutes per day. Agreement in waking wear time was 

assessed by computing mean bias (i.e., the overall mean difference) and 95% limits of 

agreement. Bland-Altman plots displayed differences in waking wear time between the 

algorithm-identified measures and the criterion measure.

Each epoch of waking wear time was separated into “activity measure” categories identified 

as sedentary behavior, light intensity physical activity (light PA), and moderate-to-vigorous 

intensity physical activity (MVPA) using vector magnitude cutpoints previously established 

in the OPACH Calibration Study (sedentary time <39 counts/15-seconds, light PA 40–573 

counts/15-seconds, MVPA > 573 counts/15-seconds) (Evenson et al 2015). A confusion 

matrix comparing activity measures for data processed using the criterion method to data 

processed using all 6 algorithm implementations was then tabulated to identify where 

misclassification occurred.

Estimates of sedentary time, light PA, and MVPA were computed for the validation sample 

after adjusting for waking wear time, which is consistent with the analytic method used by 

many studies of accelerometer-measured physical activity and sedentary behavior. The 

residuals method was used to adjust the activity measures (Willett and Stampfer 1986) and 

differences were analyzed using generalized estimating equations.

Simple linear regression was used to assess how the waking wear time computation method 

influenced associations between waking wear time-adjusted activity measures and health-

related characteristics. The health-related characteristics at the time of accelerometry 

included age and measured body mass index (BMI), physical functioning assessed using the 

short physical performance battery (SPPB), and blood pressure. The SPPB is a series of 

three timed tests—balance in three standing position, one 4-meter usual gait speed test, and 

5 unassisted chair stands—that are each given a score from 0 to 4 based on previously 

validated thresholds and are summarized to a score ranging from 0 to 12 with 12 being 

highly functioning (Guralnik et al 1994). Beta coefficients from regression models were 

compared using the Horton method (Horton and Fitzmaurice 2004) with and without 

Bonforoni correction for multiple tests.

All analyses were conducted in R (R Foundation for Statistical Computing; Vienna, Austria) 

using two-tailed statistical tests with p<0.05 considered statistically significant.

RESULTS

The parameterization and validation subsamples had similar ages (mean=80±6 years; 

p=0.75) and similar racial-ethnic variation with the majority of each sample being White 

(60% and 57%; p=0.71). BMI was slightly higher in the parameterization subsample (29 vs 

27 kg/m2; p=0.01), while SPPB and blood pressure were slightly higher in the validation 

subsample (Table 1; p-values all > 0.05).
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For all analyses, only days with complete accelerometer data and self-reported sleep logs 

were used, resulting in 314 women with 1436 days in the parameterization subsample and 

307 women with 1402 days in the validation subsample. The ROC curves show joint 

distributions of sensitivity and (1-specificity) for each combination of algorithm parameters 

(Supplemental Figure 1). Optimal (CP1, CP2) cutpoints (cpm) maximizing the sum of 

sensitivity and specificity were (60, 100) for Tracy_VA and (210, 350) for Tracy_VM, and 

optimal McVeigh (slthres, prwkthresh2) cutpoints were (90, 280) for McVeigh_VA and (210, 

600) for McVeigh_VM.

Agreement in waking wear time comparing the criterion method to the Tracy and McVeigh 

algorithms implemented using the original, optimal VA and optimal VM thresholds for each 

calendar day in the validation subsample are in Table 2. In general, agreement was high with 

day-level agreements across all algorithm implementations ranging from 84 to 91 for percent 

agreement, 85 to 92 for sensitivity, 81 to 89 for specificity, and 67 to 80 for kappa. Between 

87 and 94 percent of all calendar days, on average, had moderate to excellent kappa values.

For nearly all agreement metrics, the McVeigh_VM performed best. Seventy-two percent of 

days had excellent kappa values. When average waking wear times were computed, the 

mean bias was near zero (−0.04 hours/day) with 95% levels of agreement ranging from −5.0 

hours/day to 4.9 hours/day. The Bland-Altman plot of waking wear time agreement between 

the McVeigh_VM and the visual analysis approach is show in Figure 1. Bland-Altman plots 

for all algorithm implementations are in Supplemental Figure 2.

The confusion matrix in Table 3 shows minute-level epoch classifications for the 

McVeigh_VM implementation and the criterion method. Matrices for all other algorithm 

implementations are in the Supplemental Tables 1–5. Cells on the downward-sloping 

diagonal indicate perfect agreement for 90.5% of all 1-minute epochs in the validation 

subsample. Nearly all misclassification occurs between the in-bed/non-wear classifications 

and sedentary time. For 4.3% of the 1-minute epochs, sedentary time was classified as in-

bed/non-wear by the McVeigh_VM. Similarly, 4.1% of the 1-minute epochs that were 

classified as in-bed/non-wear by the criterion method were classified as sedentary time by 

the McVeigh_VM. Few light intensity or moderate to vigorous intensity physical activity 1-

minute epochs were differentially classified, less than 2% of all epochs in total.

The average number of minutes per day spent in sedentary time, light PA, and MVPA were 

adjusted for waking wear time, as is typically done in studies of sedentary time and physical 

activity (Table 4). Women in the validation sample were sedentary for 574 minutes/day, in 

light PA for 286 minutes/day, and were in MVPA for 56 minutes/day. Across the 6 algorithm 

implementations, the magnitude of mean differences was highest for sedentary time and 

lowest for MVPA. Activity time estimates were most similar between the McVeigh_VM and 

the criterion method, with no significant differences for sedentary time (p=0.43), light PA 

(p=0.82), or MVPA (p=0.51). MVPA estimates adjusted for awake wear time computed 

using all 6 algorithms were not significantly different from MVPA adjusted using the 

criterion method (p >0.27 | all).
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Inferences about the statistical significance and, when significant, the direction of 

associations between sedentary time and age, BMI, SPPB, and diastolic blood pressure were 

similar when sedentary time was adjusted for waking wear time using the criterion method 

and all 6 implementations of the Tracy and McVeigh algorithms (Table 5). Qualitatively, the 

magnitude of associations with health-related characteristics were generally most similar 

when sedentary time was adjusted for the waking wear time computed using the criterion 

method and McVeigh_VM. Quantitatively, the beta coefficients for age estimated using all 

algorithm-derived waking wear times were different from the beta coefficients adjusted for 

waking wear time computed using the criterion method (p<0.05 | all) with and without 

Bonforoni correction. When using the Bonforoni method to correct for possible Type 1 error 

due to multiple testing, the beta coefficients for BMI, SPPB, and diastolic blood pressure 
estimated using all algorithm-derived waking wear times were not significantly different 

from the beta coefficients estimated using the criterion method (except Tracy_VM and BMI). 

Similar patterns were observed for associations with light PA and with MVPA 

(Supplemental Tables 6 and 7). Analyses were also run for systolic blood pressure and 

results were similar to those for diastolic blood pressure (data not shown).

DISCUSSION

This project intended to parameterize and validate two existing algorithms to identify in-bed 

time to accurately measure waking wear time using data from hip-worn accelerometers worn 

24 hours/day by older adults. Automation reduces errors from human visual inspection and 

drastically reduces the resources needed to process accelerometer data collected using a 24-

hour wear protocol, making these approaches more scalable. Our results showed an overall 

high agreement between the criterion method and all 6 implementations of the Tracy and 

McVeigh algorithms, with the highest agreement achieved by the McVeigh_VM with 

optimized parameters. The McVeigh_VM implementation provided unbiased estimates of 

average waking wear time though with high variation around the mean (±5 hours). Other 

implementations had mean biases ranging from −0.28 to −1.28 hours. Most often, sedentary 

time was the activity misclassified by the algorithms, with some instances of light PA and 

relatively little MVPA misclassification. After adjusting sedentary time, light PA, and 

MVPA for waking wear time, there were no differences in average estimates between the 

criterion method and McVeigh_VM, but other implementations including the 

McVeigh_original significantly underestimated sedentary time and in some instances light PA 

as well. Generally, similar overall inferences were made between health-related 

characteristics and sedentary time, light PA, and MVPA regardless of the method used to 

quantify awake wear time. In most tests, estimates based on McVeigh_VM were closest to 

those based on the criterion method than all other implementations, although there were few 

significant differences between algorithm implementations. Of particular note, the direction 

of associations were similar between the criterion method and McVeigh_VM for all health-

related variables, and there was statistically significant differences in the magnitude of 

associations of sedentary time, light PA, and MVPA only with age.

Similar to McVeigh and colleagues, our study objective was to advance methods to 

accurately and efficiently identify waking wear time. The objective of Tracy and colleagues 

was to identify bedrest time which they measured using both energy expenditure using a 
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whole-room calorimeter and movement-related mechanical work measured using a force 

plate in the floor of the whole room calorimeter. This focus on bedrest, which the authors 

note has also been referred to as sleep or sleep-period, could account for why the McVeigh 

algorithm outperformed the Tracy algorithm when compared to our criterion measure. Tracy 

et al. reported bedrest time sensitivity and specificity in their adolescent validation sample 

(n=40) of 0.97 and 0.97, respectively. The authors subsequently adapted their algorithm to 

function using data from adults (using a sample of 141 men and women aged 40±14) and 

achieved bedrest time sensitivity and specificity of 0.82 and 0.97, respectively (Tracy et al 
2018). McVeigh et al. reported waking wear time sensitivity and specificity in their 

validation sample (n=97) of 0.97 and 0.96, respectively. The mean bias and 95% limits of 

agreement reported in their study was (3.6 min/day and −2.3 to 2.5 h/day). The waking wear 

time sensitivity and specificity observed in our study for the best performing algorithm 

implementation (McVeigh_VM) was comparable, although lower, at 0.92 and 0.87, 

respectively, and McVeigh_VM mean bias and 95% limits of agreement were (0 min/day and 

−5 to 4.9 h/day). It is noteworthy that McVeigh_VM outperformed the McVeigh_original 

demonstrating that parameterizing for older adults and/or using signals from the vector 

magnitude instead of the vertical axis only was an improvement.

Our criterion method was similar to the one used to develop and validate the McVeigh 

algorithm and is the approach commonly used by researchers when processing sleep-related 

actigraphy data from wrist-worn devices. The protocol used was originally developed for 

systematic visual inspection of raw data from wrist-worn accelerometers to determine in-bed 

periods (Blackwell et al 2005) and was modified for use on hip-worn accelerometers; the 

full protocol is available upon request. While visual inspection is the standard method in the 

field of sleep research, it is resource intensive, taking approximately 15 minutes per 

participant in the present study, and can lead to error. In our analysis, the error was small 

with inter-rater agreement of 88%. Furthermore, in our sleep-log assisted visual analysis, 

when the in-bed and out-of-bed time appeared to be within 15 minutes of the participants’ 

self-reported in-bed or out-of-bed time, the in-bed period was defined by self-report. This 

protocol decision was made to reduce rater burden. The 15-minute buffer combined with the 

inter-rater error could account for some of the observed differences in waking wear time 

observed between the criterion method and all 6 algorithm implementations.

The use of automated algorithms can greatly reduce the resources needed to accomplish 

repetitive tasks in a large scale study setting, especially when set-up time, which sometimes 

can be long, is reduced by the availability of ready-to-use software. When working with 

intensive longitudinal data, it is always good practice to visually inspect how algorithms 

perform (Bolger and Laurenceau 2013). This can be accomplished for a randomly chosen 

subset of data and/or for the days with unusually long and unusually short waking wear 

times. In some instances, manually correcting the data following algorithm implementation 

may be needed. In the present study, we did not manually correct any data. However, we 

strongly recommend that all researchers implementing this algorithm visually inspect the 

results. In practice, an example workflow would be to implement the Choi algorithm, then 

McVeigh_VM, plot the results of both overlaid on the VM cpm data for each valid day, then 

make modifications to the McVeigh_VM results as needed. The McVeigh_VM algorithm can 

also be used to perform sensitivity analyses when other in-bed period imputation methods 

Bellettiere et al. Page 10

Physiol Meas. Author manuscript; available in PMC 2020 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are used such as mean imputation [eg, (Bellettiere et al 2019)]. If desired, the McVeigh_VM 

parameters can be further changed to improve the algorithms’ accuracy for different 

samples.

This study is not without limitations. Our focus was on identifying waking wear time and 

not sleep, primarily because sleep is a construct characterized by physiologic states that is 

difficult to proxy using only accelerometer data from hip-worn devices. In-bed time (a proxy 

for sleep duration) is output by the McVeigh algorithm, but this was not the focus of our 

parameterization or validation. The algorithms were originally designed then newly 

optimized and validated using data from ActiGraph accelerometers; caution should be taken 

when applying them to accelerometer data from other devices. New algorithms were 

published after the design and implementation of our study protocol and were therefore not 

evaluated [eg, (Tracy et al 2018)]. Our study was conducted among older community-living, 

ambulatory women and we are not sure whether the results can be generalized to the entire 

older adult population. Finally, we modified only two parameters for each algorithm to 

conserve computational resources. It is unlikely that this had an appreciable negative effect 

on parameterization, considering the overall waking wear time agreement was relatively 

high and that some optimal parameters (specifically the McVeigh_VM) tended to outperform 

the original parameters.

Strengths of our study include the sample size that was more than twice the size of other 

comparative studies. We had sufficient numbers to parameterize and validate the optimal 

parameters on two separate datasets, each with over 300 participants. We also parameterized 

and compared algorithm performance to data from a sleep-log assisted visualization process 

that is thought to be better than using un-augmented self-reported bed times (Lockley et al 
1999).

Using only hip-worn accelerometer data collected 24-hours/day from older women, the 

McVeigh algorithm with the optimal VM parameters provided unbiased estimates of waking 

wear time. Adjustment for waking wear time computed using McVeigh_VM can introduce 

error into measures of sedentary time, light PA, and MVPA, which could lead to biased 

associations with health indicators or other factors of interest. However, most of the 

associations tested in the validation subsample were not qualitatively different when 

adjusting for waking wear time computed using the criterion method or McVeigh_VM. We 

also observed unbiased estimates of wear time-adjusted sedentary time, light PA, and MVPA 

when the McVeigh_VM implementation was used. We therefore conclude that the 

McVeigh_VM implementation is suitable for identifying awake wear time among older 

adults. Caution should be used when implementing automated algorithms on intensive 

longitudinal data, and users of this algorithm should take appropriate precautions, such as 

visually inspecting the results as needed and manually making changes where appropriate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Agreement in average daily waking wear time for each participant in the validation 

subsample. The mean difference (solid line) was computed by subtracting the average daily 

waking wear time measured by criterion method from the average daily waking wear time 

measured by the McVeigh algorithm using the optimal vector magnitude (VM) cutpoints; 

upper and lower limits of agreement are shown with dotted lines. The x-axis is the average 

waking wear time between criterion method and McVeigh_VM.
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Table 1.

Participant characteristics by subsample

Parameterization subsample (n=314) Validation Subsample (n=314) p-value

Age (years) 80 ± 6 80 ± 6 0.75

 Race-ethnicity, % 0.71

  White 60% 57%

  Black 23% 24%

  Hispanic 17% 19%

BMI (kg/m2) 29 ± 6 27 ± 6 0.01

SPPB 8.0 ± 2.6 8.2 ± 2.5 0.37

Diastolic BP (mmHg) 71 ± 8 72 ± 9 0.38

Systolic BP (mmHg) 125 ± 14 127 ± 15 0.10

Abbreviations: BMI = body mass index; SPPB = short physical performance battery; BP = blood pressure

Data are mean ± sd for continuous variables, percentarges for categorical variables
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Table 2:

Agreement in awake wear time relative to sleep log-assisted visual analysis; validation subsample (1402 days 

from 307 women)

Tracy original Tracy VA Tracy VM McVeigh original McVeigh VA McVeigh VM

Day-level agreement

 Percent agreement, mean (sd) 84.8 (11.7) 85.3 (12.2) 87.0 (11.5) 86.3 (14.9) 86.0 (15.0) 90.5 (11.1)

 Sensitivity, mean (sd) 0.87 (0.2) 0.85 (0.2) 0.86 (0.2) 0.86 (0.2) 0.85 (0.2) 0.92 (0.2)

 Specificity, mean (sd) 0.81 (0.2) 0.86 (0.2) 0.89 (0.1) 0.87 (0.2) 0.87 (0.2) 0.87 (0.2)

 Kappa, mean (sd) 0.67 (0.2) 0.69 (0.2) 0.73 (0.2) 0.72 (0.3) 0.71 (0.3) 0.80 (0.2)

 Kappa category

  Poor (<0.4), n (%) 184 (13%) 169 (12%) 110 (8%) 179 (13%) 186 (13%) 86 (6%)

  Moderate (0.4–0.75), n (%) 590 (42%) 560 (40%) 517 (37%) 403 (29%) 400 (29%) 310 (22%)

  Excellent (>0.75), n (%) 626 (45%) 671 (48%) 773 (55%) 818 (58%) 814 (58%) 1004 (72%)

Person-level agreement

 Mean bias (hr/day), mean (sd) −0.28 (2.5) −1.06 (2.6) −1.28 (2.5) −1.00 (3.3) −1.20 (3.4) −0.04 (2.5)

 95% Limits of agreement −4.9, 4.8 −5.2, 5.1 −5.0, 4.9 −6.5, 6.5 −6.6, 6.5 −5.0, 4.9
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Table 3.

Confusion matrix for the McVeigh algorithm implemented using the optimal vector magnitude cutpoints 

showing activity measures and in-bed/non wear. Data are the number of 1-minute epochs (percentages) in the 

Validation subsample.

Sleep-log-assisted visual inspection (criterion method)

In-bed / non wear time Sedentary time Light PA MVPA

In-bed / non wear time 635540 (31.6) 85865 (4.3) 10738 (0.5) 967 (0.0)

Sedentary time 81812 (4.1) 716989 (35.6) 0 (0.0) 0 (0.0)

Light PA 10009 (0.5) 0 (0.0) 390413 (19.4) 0 (0.0)

MVPA 1754 (0.1) 0 (0.0) 0 (0.0) 77830 (3.9)

Abbreviations: PA = Physical activity, MVPA = Moderate-to-vigorous intensity physical activity
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Table 4:

Average minutes per day spent in sedentary time, light physical activity (PA), and moderate to vigorous 

physical activity (PA) after adjustment for awake wear time. Validation subsample (n=307).

Criterion method Tracy original Tracy VA Tracy VM McVeigh original McVeigh VA McVeigh VM

Sedentary time
a

574 (99) 559 (86) 513 (79) 499 (71) 529 (82) 519 (81) 572 (82)

 mean difference - −15.1 −61.2 −75.2 −45.6 −54.7 −2.3

 95% CI - (−20.5, −9.7) (−67.3, −55.0) (−82.5, −67.9) (−51.5, −39.7) (−60.8, −48.7) (−8.1, 3.4)

 p-value - <.001 <.001 <.001 <.001 <.001 0.428

light PA
a

286 (75) 283 (66) 282 (62) 283 (56) 271 (65) 269 (64) 285 (64)

 mean difference - −2.7 −3.2 −2.4 −14.2 −16.6 −0.5

 95% CI - (−6.6, 1.1) (−7.5, 1.1) (−7.7, 2.8) (−18.2, −10.3) (−20.7, −12.6) (−4.6, 3.6)

 p-value - 0.162 0.140 0.361 <.001 <.001 0.820

MVPA
a

56 (41) 56 (38) 57 (37) 56 (36) 55 (36) 55 (36) 56 (38)

 mean difference - 0.8 1.1 0.5 −0.3 −0.5 0.6

 95% CI - (−0.8, 2.4) (−0.8, 3.0) (−1.6, 2.6) (−2.3, 1.8) (−2.6, 1.6) (−1.1, 2.3)

 p-value - 0.347 0.275 0.612 0.808 0.638 0.508

a
Data are mean (sd)
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