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Detailed modeling of positive selection improves
detection of cancer driver genes
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Identifying driver genes from somatic mutations is a central problem in cancer biology.

Existing methods, however, either lack explicit statistical models, or use models based on

simplistic assumptions. Here, we present driverMAPS (Model-based Analysis of Positive

Selection), a model-based approach to driver gene identification. This method explicitly

models positive selection at the single-base level, as well as highly heterogeneous back-

ground mutational processes. In particular, the selection model captures elevated mutation

rates in functionally important sites using multiple external annotations, and spatial clustering

of mutations. Simulations under realistic evolutionary models demonstrate the increased

power of driverMAPS over current approaches. Applying driverMAPS to TCGA data of 20

tumor types, we identified 159 new potential driver genes, including the mRNA methyl-

transferase METTL3-METTL14. We experimentally validated METTL3 as a tumor suppressor

gene in bladder cancer, providing support to the important role mRNA modification plays in

tumorigenesis.
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Cancer is caused by somatic mutations that confer a selec-
tive advantage to cells. Analyses of somatic mutation data
from tumors can therefore help identify cancer-related

(“driver”) genes, and this is a major motivation for recent large-
scale cancer cohort sequencing projects1. Indeed, such analyses
have already identified hundreds of driver genes across many
cancer types1,2. Nonetheless, many important driver genes likely
remain undiscovered3, especially in cancers with low-sample
sizes. Here, we develop and apply new, more powerful, statistical
methods to address this problem.

The basic idea underlying somatic mutation analyses is that
genes exhibiting a high rate of somatic mutations are potential
driver genes. However, mutation and repair processes are often
significantly perturbed in cancer, so somatic mutations may also
occur at a high rate in non-driver genes. Furthermore, somatic
mutation rates vary substantially across genomic regions and
across tumors. The challenge is to accurately distinguish driver
genes against this complex background. Several main ideas have
been used to address this challenge. One idea is to carefully model
the background somatic mutation process, incorporating features
that correlate with somatic mutation rate, such as replication
timing4. Another idea is to exploit distinctive features of somatic
mutations in driver genes: notably, mutations in driver genes tend
to be more deleterious (“function bias”), and sometimes show a
distinctive spatial pattern, tending to cluster together (e.g., in
substrate-binding sites)5. Methods that leverage one or more of
these ideas include MuSiC6, MADGiC7, the Oncodrive suite8–10,
and TUSON11.

Despite this progress, most existing methods do not explicitly
model the process that generates the observed somatic mutations,
namely the interaction of mutational processes and selection12.
Since tumorigenesis is an evolutionary process13,14, explicit
modeling of mutation and selection should be highly beneficial
for analyzing somatic mutations in cancer12,15–17. Many methods
described above construct a null model for non-driver genes that
lacks selection, and derive test statistics to reject this null model,
without explicitly modeling the alternative. Even recent evolu-
tionarily motivated models16,17 capture only the most basic
impact of selection: differences in observed rates of non-
synonymous versus synonymous mutations. Our approach, dri-
verMAPS, is based on a much richer statistical model, which
captures selection at the base-pair level, and allows the strength of
selection to depend on measures of functional importance, such
as conservation scores, SiFT18, and PolyPhen19. In addition, we
use a Hidden Markov Model to capture potential spatial clus-
tering of somatic mutations into “hotspots”. Our approach also
introduces other innovative features: a detailed model of the
background mutation processes, which accounts for known
genomic features and variation across genes not captured by these
features; and the use of a Bayesian hierarchical model to combine
information across cancer types, and hence improve parameter
estimates.

We demonstrate the power of our approach using both
simulations and by applying it to TCGA data. Our explicit sta-
tistical models for mutation in both driver and non-driver genes
allow us to perform realistic simulations to assess methods, which
was largely impossible in the past. We found that current
methods often fail to properly control the false discovery rate
(FDR) for driver gene discovery, and among those with reason-
able FDR control, driverMAPS has substantially higher power.
We applied driverMAPS to TCGA exome sequencing data from
20 cancer types. The results suggest that driverMAPS is better
able to detect previously known driver genes than existing
methods, without excessive false positives. In addition, dri-
verMAPS identified 159 new potential driver genes not identified
by other methods. Both literature survey and extensive

computational validation suggest that many of these genes are
likely to be true driver genes. The novel potential driver genes
included both METTL3 and METTL14, which together form a
key enzyme for RNA methylation. We experimentally validated
the functional relevance of somatic mutations in METTL3, pro-
viding further support for both the effectiveness of our method,
and for the potential importance of RNA methylation in cancer.
We believe that our methods and results will facilitate the future
discovery and validation of many more driver genes from cancer
sequencing data.

Results
A probabilistic model of positive selection on somatic muta-
tions. Our approach is outlined in Fig. 1. In brief, we model
aggregated exonic somatic mutation counts from many tumor
samples (e.g., as obtained from a normal-tumor paired sequen-
cing cohort). Let Yg denotes the mutation count data in gene g.
We develop models for Yg under three different hypotheses: that
the gene is a “non-driver gene” (H0), an “oncogene” (HOG), or a
“tumor suppressor gene” (HTSG). Each model has two parts, a
background mutation model (BMM), which models the back-
ground mutation process, and a selection mutation model
(SMM), which models how selection acts on functional muta-
tions. The rate of observed mutation at a position is the product
of the background mutation rate (from BMM) and a coefficient
reflecting the effect of position-specific selection (from SMM).
This coefficient is related to the selection coefficient of the
mutation and effective population size under a simplified popu-
lation genetic model12: a coefficient >1 indicates positive selec-
tion, whereas <1 indicates negative selection. The BMM
parameters are shared by all three hypotheses, reflecting an
assumption that background mutation processes are the same for
cancer driver and non-driver genes. In contrast, the SMM para-
meters are hypothesis specific to capture the different selection
pressures in oncogenes versus tumor suppressor genes versus
non-driver genes.

To estimate the hypothesis-specific SMM parameters, we use
pan-cancer training sets of known oncogenes1 (HOG), known
TSGs1 (HTSG), and all other genes (H0). Most of the known OGs
and TSGs were discovered by direct investigation, and have
strong experimental support. To combine information across
tumor types, we first estimate parameters separately in each
tumor type, and then stabilize these estimates using Empirical
Bayes shrinkage20. The training sets will inevitably contain some
mis-classified genes. For example, the set of “all other genes” will
contain some–as yet unidentified–driver genes. Although the lists
of known OGs and TSGs are carefully curated, many of these
genes will act in a tumor-specific manner, so, for example, a
“known” TSG will not actually be a TSG in all tumor types. Such
training set errors will make our hypothesis-specific parameter
estimates more similar to one another than they should be, which
will in turn make our model-based approach conservative in
terms of identifying new driver genes. (While in principle one
could try to develop a less supervised approach to mitigate these
issues, this would be more complicated, and we have not
attempted this here.)

Having fit these models, we use them to identify genes whose
mutation data are most consistent with the driver genes models
(HOG and HTSG). Specifically, for each gene g, we measure the
overall evidence for g to be a driver gene by the Bayes factor
(likelihood ratio), BFg, defined as:

BFg :¼ 0:5 Pr Yg jHOG

� �
þ Pr Yg jHTSG

� �h i
=Pr Yg jH0

� �
:

Large values of BFg indicate strong evidence for g being a driver
gene, and at any given threshold we can estimate the Bayesian
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FDR. For the results reported here, we chose the threshold by
requiring FDR < 0.1.

driverMAPS captures factors influencing somatic mutations.
We used a total of 734,754 somatic mutations from 20 tumor
types in the TCGA project as our input data21. We focused on
single-nucleotide somatic variations, and extensively filtered
input mutation lists to ensure data quality (see the Methods
section). Supplementary Fig. 1 summarizes mutation counts and
cohort sizes.

The first step of our method estimates parameters of the BMM
using the data on synonymous mutations. These parameters
capture how mutation rates depend on various “background
features” (Supplementary Table 1), which include mutation type
(C > T, A > G, etc), CpG dinucleotide context, expression level,
replication timing, and chromatin conformation (HiC sequen-
cing)4. The signs and values of estimated parameters were
generally similar across tumor types, and consistent with previous

evidence for each feature’s effect on somatic mutation rate. For
example, the estimated effect of the feature “expression level” was
negative for almost all tumors, consistent with transcriptional
coupled repair mechanisms effectively reducing mutation rate
(Supplementary Fig. 2).

Our BMM also estimates gene-specific effects, using the
synonymous mutations in each gene, to allow for local variation
in somatic mutation rate not captured by measured features.
Intuitively, the gene-specific effect adjusts a gene’s estimated
mutation rate downward if the gene has fewer synonymous
mutations than expected based on its known features, and
upward if it has more synonymous mutations than expected. A
challenge here is that the small number of mutations per gene
(particularly in small genes) could make these estimates
inaccurate. Here, we address this using Empirical Bayes methods
to improve accuracy, and avoid outlying estimates at short genes
that have few potential synonymous mutations (Fig. 2a).
Effectively, this adjusts a gene’s rate only when the gene provides
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Fig. 1 Overview of the model-based framework driverMAPS for cancer driver gene discovery. a Base-level Bayesian statistical modeling of mutation count
data in driverMAPS. For positions without selection, the observed mutation rate is modeled by the background mutation model (BMM). Under BMM, the
background mutation rate (BMR) (μi) is determined by the log-linear model that takes into account known mutational features and further adjusted by
gene-specific effect (λg) to get gene-specific BMR (μiλg). For positions under selection, the observed mutation rate is modeled as gene-specific BMR
adjusted by selection effect (selection mutation model, SMM). The selection effect has two components: functional effect (γi) takes into account functional
features of the position by the log-linear model and spatial effect (θi) takes into account the spatial pattern of mutations by the Hidden Markov Model. For
both BMM and SMM, given the mutation rate, the observed mutation count data are modeled by a Poisson distribution. Note: to simplify presentation, the
model here only shows mutation rate only depending on position (i) and not type (t). See the Methods section for full parameterization. b Gene
classification workflow. Parameters in BMM are estimated using synonymous mutations from all genes. This set of parameters is fixed when inferring
parameters in SMM. To infer parameters in SMM, we use non-synonymous mutations from known OGs or TSGs. driverMAPS then performs model
selection by computing gene-level Bayes factors to prioritize cancer genes
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sufficient information to do so reliably (sufficiently many
potential synonymous mutations). To demonstrate the reliability
of the resulting estimates, we use a procedure similar to cross-
validation: we estimated each gene’s gene-specific effect using its
synonymous mutations, and then test the accuracy of the estimate
(compared with no gene-specific effect) in predicting the number
of non-synonymous mutations. (This assessment is based on an
assumption that for most genes non-synonymous mutation
counts will be dominated by background mutation processes
rather than selection.) Fig. 2b shows the results for SKCM tumors:
without the gene-specific effect, the correlation of observed and
expected number of non-synonymous mutations across genes
was 0.56; with gene-specific adjustment, the correlation increased
to 0.88. Similar improvements were seen for other tumors
(Supplementary Fig. 3).

The next step of our method estimates parameters of the SMM,
using data on non-synonymous mutations. These parameters
capture how the rate of non-synonymous somatic mutations
depend on various “functional features” (Supplementary Data 1),
including loss-of-function (LoF) status, conservation scores, etc.
For non-driver genes (H0), the effects of selection should be
minimal, and the non-synonymous mutations should behave
similarly to the BMM. This expectation is correctly reflected in
the SMM parameter estimates, all of which are close to 0 (Fig. 2c,
bottom panel). In contrast, under HOG and HTSG the effects of
selection should be much stronger, and indeed this is correctly
reflected in SMM parameter estimates that deviate substantially
from 0 (Fig. 2c, top and middle panel). The SMM parameter
estimates are also generally similar across tumor types, and their
signs are typically consistent with expectations based on known
cancer biology. For example, the estimated effect of the “LoF”
feature was positive for HTSG and negative for HOG, indicating
that LoF mutations are enriched in TSGs and depleted in OGs, as

expected from their respective roles in cancer. The intercept
terms for both TSG and OG are positive, reflecting that somatic
mutations are enriched in both types of driver gene.

Although here we chose to fit our models to TSGs and OGs
separately, many of the estimated effects of functional features in
our SMM do not differ greatly between the two models–the
primary exception is the “LoF” feature highlighted above. While
the difference in estimated LoF effect makes biological sense, it
also likely reflects the way that genes were assigned to be TSG
versus OG in the training data, and we would caution against
overinterpreting our model-based categorization of TSG versus
OG based on somatic mutation data alone. Indeed, the line
between TSG and OG can be blurred, with some genes acting as
both TSGs and OGs in different contexts22. These observations
raise the question of whether accuracy for detecting driver genes
might be improved by pooling TSGs and OGs into a single
model–instead of treating them separately as we do here–thereby
reducing the number of parameters to be estimated. In simulation
experiments, we found accuracy of the single-model approach to
be almost identical to that obtained by using separate models
(Supplementary Fig. 4). However, as training sets of TSGs and
OGs improve (e.g., larger and more tumor specific), and with the
incorporation of additional functional features, there may be
increased benefit to separately modeling TSGs versus OGs. We
therefore focus on the results from this approach for the
remainder of the paper.

driverMAPS improves detection of driver genes in simulations.
While many methods have been developed for driver gene
identification, it is difficult to compare them on real data where
the true status of each gene is often unknown. Simulations are
extremely valuable in such situations, and have been used in
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average increased mutation rate for TSGs (top), OGs (middle), and non-driver genes (bottom). After fitting the Background Mutation Model (BMM) using
synonymous mutations, we then fix BMM parameters and used non-synonymous mutations from TSGs, OGs, and non-driver genes to fit selection models.
Each dot represents an estimate from one tumor type. Horizontal bars represent mean values after shrinkage. All features are binarily coded. LoF, loss-of-
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spatial model selection procedure (see the Methods section, Supplementary Table 2). Inferred parameters related to the spatial model are shown on
the right
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many fields, including population genetics23, statistical genetics24,
and single-cell transcriptomics25. Here, we exploit our explicit
statistical model to perform realistic simulations based on para-
meters inferred from real data (here, the TCGA LUSC cohort).

We begin by using a simple simulation to briefly motivate why
a model-based approach to integrate multiple selection-related
features may be preferable to an alternative strategy that is
commonly used in the field: performing a hypothesis test for each
of several selection-related features and then combining their p-
values (e.g., using Fisher’s method26). Although combining p-
values is simple, and can be effective in some statistical settings, it
also has its limitations, and we believe it is not well suited to this
particular setting. To illustrate this, we simulated somatic
mutations in a positively selected gene with both increased
non-synonymous mutation rates and mutational hotspots. We
obtained p-values from two simple tests–a dN/dS test to detect
enrichment of functional mutations and another to detect spatial
clustering (see the Methods section)–and combine them using
Fisher’s method. Perhaps unexpectedly, the combined test has
lower power than the dN/dS test alone (Fig. 3a). We believe that
this is because spatial clustering is a relatively weak feature in our
simulations (as in real data), and so the spatial test has much less
power than the dN/dS test. Consequently, the spatial test adds
more noise than signal, decreasing power. This highlights a
general weakness of methods based on combining p-values, that it

is difficult to take account of differences in informativeness
among tests; in contrast model-based approaches like ours
automatically weight different features based on their
informativeness.

We next used more comprehensive simulations to compare
driverMAPS with six existing algorithms: MutSigCV, Oncodri-
veFML9, OncodriveFM10, OncodriveCLUST8, dNdScv16, and
CBaSE17. We simulate mutations in driver and non-driver genes
under models that are based on the driverMAPS modeling
approach, but with several modifications so that driverMAPS has
to deal with realistic levels of model misspecification. In particular
(i) we simulated background mutations under the mutation
model of dNdScv, which uses 192 mutation types considering tri-
nucleotide contexts (instead of the nine types we use in
driverMAPS); and (ii) we simulated additional variation in the
strength of selection at each position that is not explained by
observed functional features. In addition, to add further model
misspecification, when running driverMAPS, we provided it with
only a subset of functional features used in simulations (see the
Methods section). We simulated data for all genes in the genome,
with 324 genes randomly chosen to be oncogenes or tumor
suppressor genes. We found that, for distinguishing driver versus
non-driver genes, driverMAPS outperformed all other methods
(Fig. 3b). In terms of FDR control, only driverMAPS consistently
maintains proper FDR levels across all sample sizes, with dNdScv
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Fig. 3 driverMAPS predicts driver genes with high accuracy and increased power in simulations. a Combining p-values from methods that use only one
feature of positive selection at a time can lose power. We simulated mutations in a gene under positive selection at various sample sizes, and then
assessed the power to detect this gene as positively selected. “dN/dS” captures the excess of non-synonymous mutations, “cluster” captures spatial
clustering pattern of mutation, “combined” combines p-values from “dN/dS” and “cluster” using Fisher’s method. See the Methods section for details.
b Receiver-operating characteristic (ROC) curves of several methods applied to genome-wide simulation data. Overall, 324 genes are chosen to be
positively selected (191 TSGs and 133 OGs), and the rest of genes are neutral. We used 124 out of the 324 genes as training set for driverMAPS, and used
the remaining 200 genes as the test set to generate ROC curves. Area under the ROC Curve (AUROC) values are shown in parentheses. c False-positive
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being the second (Fig. 3c). Excluding two methods with obvious
problems of FDR control (OncodriveFM, OncodriveCLUST),
driverMAPS identifies the most driver genes at FDR < 0.1
(Fig. 3d). Overall, we found the power of driverMAPS to discover
novel driver genes can double that of other leading methods (and
even more in smaller samples).

Application of driverMAPS on TCGA data. We next compared
the results from driverMAPS and other algorithms for predicting
driver gene using the TCGA data (see Methods). Besides the full
implementation of driverMAPS, we also tried a “basic” version
that looks only for an excess of non-synonymous somatic
mutations (without any functional features or spatial model), and
a “+ feature” version with functional features, but not the spatial
model. We applied all methods to the same somatic mutation
data, and compared the genes they identified with a list of “known
driver genes” (713 genes) compiled as the union of COSMIC
CGC list (version 76)27, Pan-Cancer project driver gene list2, and
list from Vogelstein B (2013)1 (see Supplementary Note 6). To
avoid overfitting of driverMAPS to the training data, we trained

driverMAPS with a leave-one-gene-out strategy in these
assessments.

For each method, we computed both the total number of genes
detected (at FDR= 0.1) (Fig. 4a) and the “precision”–the fraction
that are on the list of known driver genes (Fig. 4b). All versions of
driverMAPS identified more driver genes than either MutSigCV,
dNdScv, or OncodriveFML, while maintaining a similarly high
precision. The full version of driverMAPS (with the spatial and
functional features) identified nearly twice as many genes as any
of these method. Furthermore, this higher detection rate of
driverMAPS was consistent across tumor types (Fig. 4c). CBaSE
identified the second most genes (excluding OncodriveFM and
OncodriveCLUST), but the fraction of known driver genes is
considerably lower than all other methods except OncodriveFM
and OncodrivCLUST (see below), suggesting higher false-positive
rates, as we observed in simulations (Fig. 3c). The other two
methods, OncodriveFM and OncodriveCLUST, behaved quite
differently, identifying thousands of driver genes but with much
lower precision, consistent with poor FDR control in simulations
(Fig. 3c). For OncodriveFM and OncodriveCLUST, the lowest
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precision was in the tumor types with the highest mutation rates
(e.g., BLCA, LUSC, LUAD), suggesting that these methods may
be adversely affected by mutation rate variation (Supplementary
Fig. 5). While the precision of OncodriveFM and Oncodrive-
CLUST were negatively correlated with mutation rate (Pearson r
=−0.44 and −0.56), the precision of driverMAPS showed
negligible correlation (Pearson r= 0.05).

Evaluation of potential novel drivers identified by driverMAPS.
Summing across all 20 tumor types, at FDR 0.1, driverMAPS
identified 255 known driver genes and 170 putatively novel driver
genes (159 unique genes across the 20 tumor types; 70 classified
as TSGs and 100 as OGs; Fig. 5a; Supplementary Table 3). Almost
half of these putative novel genes were not called by MutSigCV,

OncodriveFML, dNdScv, or CBaSE. Ten novel genes were found
independently in at least two tumor types (Table 1). This is
unlikely to happen by chance under the null (permutation test,
p < 1e−4), so these genes seem especially good candidates for
being genuine driver genes.

Since it is impractical to functionally validate all 170 putative
novel genes, we sought other data to support these genes likely
being involved in cancer. We first selected three common tumor
types–the breast, lung, and prostate–and conducted an extensive
literature survey for each novel gene identified in these tumor
types. Among a total of 22 novel genes, we found clear support in
the literature for 20 being involved with cancer biology, either
directly implicated as oncogenes or tumor suppressor genes (but
not in the list of “known driver genes”) or linked to well-
established cancer pathways (Supplementary Data 2).
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We next assessed whether the novel genes were enriched for
features often associated with driver genes. Previous studies
reported that driver genes tend to be highly expressed4 compared
with other genes, and indeed we found that, collectively, the novel
genes showed significantly higher expression than randomly
sampled genes in the corresponding tissues21 (permutation test, p
< 1e−4) (Fig. 5b).

Previous studies have also reported that driver genes tend to
show enrichment and depletion for different copy-number-
variation (CNV) events, depending on their role in cancer.
Specifically, OGs are enriched for CNV gains and depleted for
CNV loss, whereas TSGs show enrichment for loss and depletion
for gains. Consistent with this, we found novel genes identified as
OGs are enriched for CNV gain events (permutation test, p < 1e
−4), while novel TSGs are depleted (permutation test, p= 3e−3).
CNV loss events for novel OGs are depleted compared with novel
TSGs and to other genes (permutation test, p= 0.04) (Fig. 5c).

We also compared our novel genes with a “cancer dependency
map” of 769 genes identified from a large-scale RNAi screening
study across 501 human cancer cell lines28. These are genes
whose knockdown affects cell growth differently across cancer cell
lines, thus likely representing genes that are critical for
tumorigenesis, but not universally essential genes. We found 16
novel driver genes overlapped with this gene list, a significant
enrichment compared with random sampling (odds ratio 2.9, p=
3.7e−4) (Fig. 5d; Supplementary Data 3).

To test whether our novel genes are functionally related to
known cancer driver genes, we examined the connectivity of these
two sets of genes in the HumanNet29 gene network, which is built
from multiple data sources, including protein–protein interac-
tions and gene co-expression. On average, each novel gene is
connected to 3.8 known driver genes, significantly higher than
expected by chance (permutation test, p= 0.001). We obtained a
similarly significant result using a different gene network,
GeneMania30, which is constructed primarily from co-
expression (permutation test, p= 0.008) (Fig. 5e).

Finally, we identified enriched functional categories in our
novel genes using GO enrichment31,32 analysis (in geneSCF33).
Significant GO terms (FDR < 0.1, Fig. 5f) include many molecular
processes directly implicated in cancer, such as transcription

initiation and regulation. The significant terms also include
several that have not been previously implicated in cancer. Genes
NAA25, NAA16, and NAA30 (GO: 0004596) are peptide N-
terminal amino acid acetyltransferases34. NATs are dysregulated
in many types of cancer, and knockdown of the NatC complex
(NAA12-NAA30) leads to p53-dependent apoptosis in colon and
uterine cell lines35. OGDH and OGDHL (GO:0004591) have
oxoglutarate dehydrogenase activities and part of the tricarboxylic
acid (TCA) cycle36. METTL3 and METTL14 (GO: 0016422) form
the heterodimer N6-methyltransferase complex, and are respon-
sible for methylation of mRNA (m6A modification)37. This form
of RNA modification may influence RNA stability, export, and
translation, and has been shown to be important for important
biological processes, such as stem cell differentiation. Our results
suggest that this RNA methylation pathway may also play a key
role in tumorigenesis, and so we examined the results for these
genes in more detail.

METTL3 is a potential TSG in bladder cancer. driverMAPS
identified the genes METTL3 and METTL14 as driver genes in
the cohorts BLCA (bladder cancer) and UCEC (uterine cancer),
respectively. These two genes had relatively low mutation fre-
quencies (4 and 2%), and were not detected by MutSigCV,
dNdScv, OncodriveFML, or CBaSE (the methods with reasonable
FDR control). Inspecting the mutations in these two genes, we
found many to be “functional” as predicted by annotations, and
showed spatial clustering patterns in the MTase domain (Fig. 6a;
Supplementary Table 4). Furthermore, METTL3 contained a
single synonymous mutation, and METTL14 contained none,
suggesting low baseline mutation rates at the two genes. While
this paper was in preparation, METTL14 was independently
identified as a novel TSG in endometrial cancer38. We thus
focused on METTL3 in bladder cancer.

To gain further insights into the potential impact of the
somatic mutations in METTL3, we performed structural
analysis. By mapping mutations in the MTase domain of
METTL3 to its crystal structure39, we found them to be
concentrated in two regions: one close to the binding site of S-
adenosyl methionine (AdoMet, donor of the methyl group), and
the other in the putative RNA-binding groove at the interface

Table 1 Novel significant drivers found in at least two tissue types

Gene #Missense #LoF #Silent log10BF Tumor Function

C3orf70 14/3 1/1 0/0 9.3/3.8 BLCA/CESC Unknown
COL11A1 7/13 4/2 0/0 2.2/2.2 KIRC/PRAD Collagen formation, expression associated with colorectal, ovarian cancers,

etc. (23934190, 11375892)
CUL3 15/8/4 5/4/0 1/0/0 3.5/3.8/2.6 HNSC/KIRP/

PRAD
Core component of E3 ubiquitin ligase complex, with many downstream
targets affecting carcinogenesis, like NRF2 (24142871)

LZTR1 9/10 0/1 0/2 2.9/2.1 GBM/UCEC Adaptor of CUL3-containing E3 ligase complexes. Inactivation drives
glioma self renewal and growth (23917401)

MAPK1 9/7 0/1 0/0 15.1/ 12.8 CESC/HNSC MAP kinase. The MAPK/ERK cascade has well characterized and
important roles in cancer (17496922)

MGA 35/11 16/5 5/3 3.8/2.7 LUAD/UCEC Dual-specificity transcription factor, can inhibit MYC-dependent cell
transformation (10601024)

SOS1 12/7 1/0 3/0 3.5/7.0 LUAD/UCEC Guanine nucleotide exchange factor for RAS proteins, which are well-
known for roles in cell proliferation (17486115)

ZBTB7B 11/5 1/1 0/0 6.2/2.3 BLCA/UCS Transcriptional regulator of lineage commitment of immature T-cell
precursors (17878336)

ZFP36L1 12/11 4/3 1/0 3.4/5.2 BLCA/LUAD Involved in mRNA degradation. Deletion leads to T lymphoblastic leukemia
(20622884)

ZNF750 17/13 3/7 2/1 3.4/5.1 BLCA/HNSC An essential regulator of epidermal differentiation. Depletion promotes cell
proliferation in ESCA (24686850)

We use “/” to separate data obtained from different tumor types as indicated in the “Tumor” column. A brief description of the gene’s function and its known role in cancer is provided in the “Function”
column. Reference PMIDs are given in parentheses
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between METTL3 and METTL14 (Fig. 6b). The region close to
the AdoMet-binding site contains seven mutations: E532K,
E532Q, E516K, D515Y, P514T, H512Q, and E506K. Position
E532 has been reported to form direct water-mediated interac-
tions with AdoMet39. The other mutations map to gate loop 2
(E506K and E516K map to the start and end; the other three
mutations are inside the loop) which is known to undergo
significant conformational change before and after AdoMet
binding. Thus all these mutations are good candidates for
affecting adenosine recognition. The second region, in the
METTL3-METTL14 interface, contains mutations R471H,
R468Q, and E454K, and so these mutations are good candidates
for disrupting METTL3-METTL14 interaction. In further
support of this, the highly recurrent R298P mutation in
METTL14 lies in the binding groove of the METTL14 gene.

We performed functional experiments to test whether muta-
tions (n= 7) in the first region affect METTL3 function. In an
in vitro assay, most mutations reduced methyltransferase activity
of METTL3 (Supplementary Fig. 6, see the Methods section), and
we chose four mutations (at three positions) for further cell line
experiments. In two bladder cell lines (“5637” and “T24”),
knockdown of METTL3 by siRNA significantly reduced m6A
methyltransferase activity (Fig. 6c for “5637”; Supplementary
Fig. 7a for “T24”). When we tried to rescue this phenotype by
transfection of METTL3 mutants, all of the mutations, E532K/Q,
E516K, and P514T failed to restore methyltransferase activity to
original levels (Fig. 6c; Supplementary Fig. 7a), suggesting that
they are LoF mutations.

We next examined whether disruption of METTL3 is
associated with tumor progression. Indeed, knockdown of
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METTL3 significantly increased cell proliferation. Wild-type
METTL3 successfully restored the cells to their normal growth
rate, but none of the mutants could (Fig. 6d; Supplementary
Fig. 7b).

These results show that somatic mutations in METTL3 may
promote cancer cell growth by disrupting the RNA methylation
process, and invite further characterization of the role of
METTL3 and RNA methylation in tumorigenesis by in vivo
experiments.

Discussion
We have developed an integrated statistical model-based method,
driverMAPS, to identify driver genes from patterns of somatic
mutation. By applying this method to data from multiple tumor
types from TCGA, we detected 159 novel potential driver genes.
We experimentally validated the function of mutations in one
gene, METTL3. The remaining genes (Table 1; Supplementary
Data 2, 3) are enriched for many biological features relevant to
cancer, and appear promising candidates for further investigation.

Compared with previous methods for detecting driver genes, a
key feature of driverMAPS is that it models mutation rates at the
base-pair level. This allows us to explicitly model how selection
strength varies based on site-level functional annotations, e.g.,
conservation and LoF status. This model-based approach can be
thought of as a powerful extension of methods that detect driver
genes by testing for an excess of non-synonymous versus
synonymous somatic mutations (Nik-Zainal et al.40, Martincor-
ena et al.16), similar to the dN/dS test in comparative genomics.
Indeed, the stripped-down version of driverMAPS that uses no
functional annotation or spatial model is conceptually a dN/dS
test (driverMAPS-basic in Fig. 4). The full version of dri-
verMAPS, by incorporating additional functional annotations and
spatial modeling, allows that some non-synonymous mutations
may be more informative than others in identifying driver genes.
Furthermore, by estimating parameters in a single-integrated
model, our approach learns how to weigh and combine the many
different sources of information. The results in Figs 3 and 4
demonstrate the increased power that comes from these
extensions.

Our statistical and experimental results for the mRNA
methyltransferase METTL3 add to the growing evidence of links
between mRNA methylation and cancer. Indeed, a recent study,
in myeloid leukemia cell lines41, found that depletion of METTL3
also leads to a cancer-related phenotype. Extensive functional
studies of METTL14 in uterine cancer38 support a role for this
gene in cancer etiology. However, intriguingly, our results on
METTL3 in bladder cancer, and the METTL14 results in uterine
cancer suggest that they act as tumor suppressor genes, whereas
the data on METTL3 in myeloid leukemia cell lines are more
consistent with an oncogenic role, with depletion inducing cell
differentiation and apoptosis41. Further studies in multiple tumor
types therefore seem necessary to properly characterize the role of
mRNA methylation in cancer.

Although our model incorporates many features not con-
sidered by existing methods, it would likely benefit from incor-
porating still more features. For example, it may be useful to
incorporate data on protein structure, which affects the functional
importance of amino acid residues. Furthermore, whereas we
currently use the same mutation model for all individuals, it could
be helpful to incorporate individual-specific effects, such as
smoking-induced mutational signatures42. Finally, it could be
useful to extend the model to incorporate information on non-
coding variation, which has been shown to be important for many
human diseases, including cancer. Although identifying func-
tional non-coding variation remains a major general challenge,

extending our model to incorporate features from studies of
epigenetic factors, such as methylation or open chromatin, has
the potential to detect novel driver genes affected by non-coding
somatic mutations.

Methods
Data preparation. We downloaded somatic single-nucleotide mutations identified
in whole-exome sequencing (WES) studies for 20 tumor types from TCGA GDAC
Firehose (https://gdac.broadinstitute.org/). We obtained the MAF files using fire-
hose_get (version 0.4.6) (https://confluence.broadinstitute.org/display/GDAC/
Download) and extracted position and nucleotide change information for all
single-nucleotide somatic mutations. See Supplementary Note 1 for the 20 tumor
types and abbreviations.

We excluded mutations from hypermutated tumors, as they likely reflect
distinct underlying mutational processes. We also performed extensive filtering to
exclude likely false-positive mutations. For each tumor type, we then generated a
mutation count file that contains mutation counts (aggregated across all individuals
in the tumor cohort) of all possible mutations at all sufficiently sequenced positions
(see Supplementary Note 1). For a tumor type with 30 million bases sequenced, this
produces 90 million possible mutations in the mutation count file (since each
nucleotide can mutate to three other nucleotides). The majority of counts for these
possible mutations are 0 s.

For each possible mutation, we annotated it with type and gene information,
mutational features and functional features. We defined nine mutation types based
on nucleotide change type (such as A > T, G > A, etc.) and genomic context (such
as if inside CpG) (see Supplementary Note 2 for definitions). We categorized
mutations as synonymous (S) or non-synonymous (NS), as described in the
“Model description” section below. The mutational features we used include gene
expression, replication timing, and HiC sequencing downloaded from http://
archive.broadinstitute.org/cancer/cga/mutsig. We selected five functional features
describing mutation impact. See Supplementary Note 2 for feature details. The
features were added to the mutation count file by ANNOVAR43.

Model description. We model each tumor type separately, so here we describe the
model for a single tumor type. Let Yit denotes the number of mutations of type t
(defined by base substitution) at sequenced position i, across all samples in a
cohort. Let NS denotes the set of non-synonymous mutations. That is, NS is the set
of pairs (i,t) such that a mutation of type t at sequence position i would be non-
synonymous. (We also include synonymous mutation with a high splicing impact
score in NS; see Supplementary Note 3.) Similarly, let S denotes the remaining
(synonymous) (i,t) pairs.

BMM. For synonymous mutations, we assume the following “background
mutation model”:

Yit jHm � Poisson μitλg ið Þ
� �

for i; tð Þ 2 S½ �; ð1Þ
where μit represents a background mutation rate (BMR) for mutation type t at
position i, and λg(i) represents a gene-specific effect for the gene g(i) that contains
sequence position i. Note that the parameters of this BMM do not depend on the
model m, so PðYSg jHmÞ is the same for all m.

We allow the BMRs to depend on mutational features (e.g., the expression level
of the gene) using a log-linear model:

logμit ¼ βb0t þ
X
j

xbijβ
b
j ; ð2Þ

where xbij denotes the jth background feature of position i (not dependent on

mutation type), βb0t controls the baseline mutation rate of type t, and βbj is the

coefficient of the jth feature. The values xbij are observed, and the parameters βb are
to be estimated. To indicate the dependence of μit on parameters βb, we write
μit(βb).

We assume that the gene-specific effects λg have a Gamma distribution across
genes:

λg � Gamma α; αð Þ; ð3Þ
where α is a hyperparameter to be estimated.

SMM. For non-synonymous mutations, we introduce additional model-specific
parameters: γmit representing a selection effect (SE) for mutation type t at position i
under model m and θmi representing a spatial effect for position i under model m:

Yit jHm � Poisson μitλg ið Þγ
m
it θ

m
i

� �
for i; tð Þ 2 NS½ �: ð4Þ

For all models, m=OG, TSG, and the null model, we allow the selection effect
to depend on functional features (e.g., the assessed deleteriousness of the
mutation), using a log-linear model:

logγmit ¼ βf ;m0 þ
X
j

xfijtβ
f ;m
j ; ð5Þ

where xfijt denotes the jth functional feature of position i (this depends on mutation
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type; e.g., at the same position, some mutations may be more deleterious than

others), βf ;mj is the coefficient of the jth functional feature, and the intercept βf ;m0
captures the overall change of mutation rate at NS sites regardless of functional
impact. To indicate the dependence of γmit on parameters βf,m, we write γit(βf,m).

To model the spatial effects, we use a Hidden Markov Model (HMM) with
parameters Θm,

θm � fHMM �;Θmð Þ; ð6Þ
In brief, this HMM allows for the presence of mutation “hotspots”–contiguous

basepairs with a higher rate of mutation–and the parameters include the average
hotspot length and intensity ρ. See Supplementary Note 3 for details.

Parameter estimation. BMM. To simplify inference, we took a sequential
approach to parameter estimation. First, we infer parameters βb, α of the BMM
using the synonymous mutation data at all genes. Let Sg denotes the subset of
synonymous mutations S in gene g, and YSg denotes the corresponding observed
counts:

YSg ¼ Yit : i; tð Þ 2 Sg
n o

: ð7Þ
Based on the synonymous mutation data, the likelihood for gene g is:

PðYSg jβb; αÞ ¼
Z Y

i;t2Sg
PðYit jμit βb

� �
; λgÞPðλgjαÞdλg; ð8Þ

which has a closed form (see Supplementary Note 4). Assuming independence
across genes yields the likelihood for synonymous mutations:

LS βb; α
� �

:¼
Y
g

PðYSg jβb; αÞ: ð9Þ

We maximize this likelihood, using numerical optimization, to obtain estimatesbβb; α̂ for βb, α. By ignoring the non-synonymous mutation data when fitting the
BMM, we may lose some efficiency in principle, but we gain considerable
simplification in practice.

SMM. We next estimate the model-specific SMM parameters βf,m, with the
estimated BMM parameters fixed. During this step, we ignore the HMM model
(i.e., we set θmi ¼ 1), motivated by the fact that spatially clustered mutations are
relatively rare, and so should not significantly impact the estimates of βf,m.

For m=OG, we estimate βf,m using the non-synonymous mutation data from a
curated list GOG of 53 OGs. Estimation for βf,TSG is identical, except that we replace
this list with a curated list GTSG of 71 TSGs. We used the remaining genes to train
the model H0, as the vast majority of them should not be driver genes (the result
that estimated effect sizes for H0 shown in Fig. 2c, bottom panel are all close to 0 s,
is consistent with this claim). Let Gm denotes these sets of training genes. Let YNSg

denotes the counts of non-synonymous mutations in gene g.
Assuming independence across genes, the likelihood for βf,m is:

L βf ;m
� � ¼ Y

g2Gm

PðYNSg ;YSg jβf ;mÞ /
Y
g2Gm

PðYNSg jβf ;m;YSg Þ ð10Þ

where the second line follows because PðYSg jβf ;mÞ does not depend on βf,m. The
term in this likelihood for gene g is given by:

PðYNSg jβf ;m;YSg Þ ¼
Z Y

i;t2NSg
PðYit jμit bβb� �

; γit βf ;m
� �

; λgÞPðλg jYSg ; α̂Þdλg : ð11Þ

It can be shown that

λg jYSg ; α̂ � Gamma α̂þ y
Sg
þ ; α̂þ μSg

� �
; ð12Þ

where μSg and y
Sg
þ are, respectively, the expected (considering only mutational

features) and observed the number of synonymous mutations in gene g (see

Supplementary Note 4). The conditional mean of this distribution is
α̂þy

Sg
þ

α̂þμSg
, so if

y
Sg
þ > μSg , then Eðλg jYSg ; α̂Þ> 1.
We obtained the MLE of βf,m by maximizing the likelihood (Eq. (10))

numerically, and obtain the corresponding estimated standard errors using the
curvature of the likelihood (see Supplementary Note 4). In tumor types with low
mutation rates or sample sizes, these standard errors can be relatively large, so we
borrow information from other tumor types to “stabilize” these estimates.
Specifically, we use the adaptive shrinkage method20 to “shrink” estimated values of
βf,m in each tumor type toward the mean across all tumor types. This shrinkage
effect is strongest for tumor types with large standard errors (Supplementary
Fig. 8).

HMM parameters. Having estimated βb, α, and βf,m, we fix their values and
estimate the HMM parameters Θm. The likelihood function involves marginalization
of the hidden states of the Markov chain, which can be performed efficiently using
standard methods for HMMs. We estimate Θm by maximizing this likelihood
numerically. See Supplementary Note 4 for details.

Gene classification. Having estimated the model parameters as above, for each
gene g, we compute its Bayes factor (BF) for being a driver gene as:

BF :¼ 0:5PðYNSg ;YSg jHOGÞ þ 0:5PðYNSg ;YSg jHTSGÞ
PðYNSg ;YSg jH0Þ

: ð13Þ

The equal weights in the numerator of this BF assume that OGs and TSGs are
equally common.

This BF simplifies to

BF ¼ 0:5PðYNSg jYSg ;HOGÞ þ 0:5PðYNSg jYSg ;HTSGÞ
PðYNSg jYSg ;H0Þ

; ð14Þ

because PðYSg jHmÞ is the same for every m. Computing the terms PðYNSg jYSg ;HmÞ
is performed using (Eq. (11)) above, substituting the estimated model parameters
for each model m (see Supplementary Note 5).

After obtaining the BFs, we can compute the posterior probability of being a
driver gene (either OG or TSG) for every gene, and estimate the Bayesian FDR44

for any given BF threshold. This step requires estimation of the proportion of
driver genes, which we do by maximum likelihood (see Supplementary Note 5).

Simulations. For power analysis shown in Fig. 3a, we randomly picked a gene
(ERBB3) and for a given number of samples, we simulated mutations under
positive selection and assessed the power of detecting this gene as positively
selected using different methods. We simulate background mutations using the
BMM from dNdScv, which models mutation count data with negative binomial
distribution given mutation rates. To account for tri-nucleotide context and
nucleotide change type, dNdScv defined 192 mutation rate parameters. We use
parameters estimated by dNdScv when applied to the LUSC cohort from TCGA
and simulated background mutations according to their BMM. We generated
mutation hotspots using a Markov chain, with hotspot frequency 10−5, and average
length 5 bp. We then simulate positively selected non-synonymous mutations with
mutation rates three times higher than the background mutation rate in non-
hotspot sites, and 3000 times higher than the background rate in hotspot sites. This
simulation procedure was performed 3000 times, and each time we obtained a p-
value for each method. Power is defined as the fraction of simulations with sig-
nificant p-values (p < 0.05). For the “dN/dS” method, we implement a simple test
that resembles the dN/dS test. We compute the test statistics for this method,

T ¼ PoissonðyNS ;μNSγÞ
PoissonðyNS ;μNSÞ , where y

NS is the total number of non-synonymous mutations in

the gene, μNS is the total background mutation rate of non-synonymous mutations,
and we fix γ= 3 (the true value used in simulation). The test statistics for the
“cluster” method is the maximum number of mutations within 3 -bp windows
normalized by overall mutation rates. Null distributions of test statistics are
obtained by simulating 5000 null data sets with mutation rates for all sites equal to
the BMRs. The p-value for the “combined” method is obtained by using Fisher’s
method to combine the p-values from the “dN/dS” and “cluster” methods.

For the simulations performed in Fig. 3b–d, we selected 324 genes to be TSGs or
OGs. These 324 genes included the 71 “known” TSGs and 53 “known” OGs from
our training sets, plus 200 additional randomly selected genes (120 of which were
randomly designated as TSGs, leaving the other 80 as OGs). All remaining genes
were designated non-cancer related (H0). We used the BMM from dNdScv as for
the simulations for Fig. 3a (described above). For the SMM, we used the parameter
values obtained from applying driverMAPS to the LUSC cohort from TCGA, but to
incorporate model misspecification we added an independently simulated random
effect ϵit � Normalð0; :0:22Þ to the strength of selection at each position in each of
the 324 non-null genes. To further incorporate model misspecification, when
running driverMAPS we used only three of the five functional covariates (LoF,
conservation, MutationAssessor) included in the SMM. We ran driverMAPS with
the 71 known TSGs and 53 known OGs as the training set, and these genes were
excluded when computing the ROC curve to ensure fair comparisons.

Comparison of gene prediction results from different methods. When com-
paring methods, we used the same mutation data (after filtering) and the same
nominal FDR threshold (0.1) for each method. Because driverMAPS uses 124
known cancer genes as a training set, to avoid bias towards this subset of genes
when computing precision or power for driverMAPS, we ran driverMAPS using a
leave-one-gene-out strategy. We perform 124 runs, each time omitting one TSG/
OG from the training set and estimating model parameters from the remaining
genes, and then count the omitted gene as “significant” only if this gene is sig-
nificant (FDR < 0.1) in this run. We then calculate precision as the percentage of
significant known cancer genes of all significant genes. All results related to dri-
verMAPS (basic, + feature and full version) presented in Fig. 4 were obtained in
this way. (In fact, estimated model parameters are quite stable across runs, and so
the overall result is similar to a single run not using this “leave-one-gene-out”
strategy.)

Validation of novel significantly mutated genes using expression and copy
number variations data. We downloaded RNA sequencing and copy number
variations (CNV) data for the 20 tumor types from cBioPortal45,46 (date accessed:
2017 April). For each gene, we averaged RNA Seq V2 RSEM for all individuals in
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each cohort as the expression level. We also counted copy number gain and loss
frequency for each gene in each cohort. To test if the novel genes are more highly
expressed than non-cancer genes, we extracted the expression level of each novel
gene in the tumor type that it was identified from and took median of all novel
genes. Then, we randomly selected non-cancer genes matching the number of
novel genes identified in different tumor types took median of tumor type-specific
expression level. We repeated random selection 10,000 times, and assessed how
many of these selections had median expression more than the group of novel
genes to get a p-value. Similarly, we assessed if CNV gain and loss frequencies are
higher for novel genes and we get p-values for novel TSGs and OGs separately.

Gene-set enrichment analysis. We used geneSCF to perform GO-term enrich-
ment analysis for novel genes33. For GO-molecular function (MF) terms, we
identified 20 terms with FDR < 0.1. We presented the significant gene set in Fig. 5f.
There are a few gene set associated with multiple GO terms, and we selected one of
them. For GO-cellular component (CC) and GO-Biological process (BP) terms,
most significant gene set were also captured by GO-MF, so we did not show it in
main figures. For GO-BP, we identified one significant term:

● GO0017196~N-terminal peptidyl-methionine acetylation (genes: NAA30;
NAA25; NAA16).

For GO-CC, we identified five significant terms:

● GO:0005720~nuclear heterochromatin (genes: HIST1H1E; HIST1H1B; EME1)
● GO:0036396~RNA N6-methyladenosine methyltransferase complex (genes:

METTL3; METTL14)
● GO:0045252~oxoglutarate dehydrogenase complex (genes: OGDH; OGDHL)
● GO:0048476~Holliday junction resolvase complex (genes: RAD51C; EME1)
● GO:0030868~smooth endoplasmic reticulum membrane (genes: HSD3B2;

TTYH1).

Cell lines, siRNA knockdown, and plasmid transfection. The T24 cells used in
functional validation of METTL3 were purchased from ATCC (HTB-4) and grown
in McCoy’s 5A medium (Gibco, 16600) supplemented with 10% FBS (Gibco), and
1% penicillin–streptomycin (Gibco, 15140). The 5637 cells were purchased from
ATCC (HTB-9) and grown in the RPMI-1640 medium (Gibco, 11875) supple-
mented with 10% FBS and 1% penicillin–streptomycin. Both cell lines were not
tested for mycoplasma contamination and authenticated. Construction of the
pcDNA3 plasmids for the expression of mutated METTL3 in mammalian cells was
achieved by using a Q5® Site-Directed Mutagenesis Kit (NEB) following the
manufacturer’s protocols.

Sequencing primer used are provided in Supplementary Note 7. All siRNAs
were ordered from QIAGEN. All stars negative control siRNA (1027281) was used
as a siRNA control. Sequences for METTL3 is 5′-CGTCAGTATCTTGGGCAAG
TT-3′. Transfection was achieved by using Lipofectamine RNAiMAX (Invitrogen)
for siRNA, or Lipofectamine 2000 (Invitrogen) for the plasmids following
manufacturer’s protocols.

In vitro assay for m6A methyltransferase activity. The recombinant, His-tagged
proteins METTL14 with wild-type or mutant METTL3 were expressed in 1 LB E.
coli expression system, harvested, and sonicated in lysis buffer (50 mM Bis-Tris
[pH 7.0], 1 M NaCl, and 1 mM DTT, and supplemented with protease inhibitors).
The supernatant was loaded onto an Ni-NTA affinity column (QIAGEN), and the
beads were washed with wash buffer (50 mM Bis-Tris [pH 7.0], 1 M NaCl, 1 mM
DTT, and 20 mM Imidazole [pH 7.0]) and eluted with elution buffer (20 mM Bis-
Tris [pH 7.0], 1 M NaCl, 1 mM DTT, and 250 mM Imidazole [pH 7.0]). Target
proteins were further purified by ion-exchange chromatography. Protein purity
was assessed by SDS-PAGE, and protein concentration was determined by UV
absorbance at 280 nm. We performed an in vitro methyltransferase activity assay in
a 50 μL of reaction mixture containing the following components: 0.15 nmol RNA
probe, 0.15 nmol each fresh recombinant protein (METTL14 combination with an
equimolar ratio of METTL3 or mutant METTL3), 0.8 mM d3-SAM, 80 mM KCl,
1.5 mM MgCl2, 0.2 U μL-1 RNasin, 10 mM DTT, 4% glycerol, and 15 mM HEPES
(pH 7.9). The reaction was incubated for 12 h at 16 °C, RNA was recovered by
phenol/chloroform (low pH) extraction followed by ethanol precipitation, and was
digested by nuclease P1 and alkaline phosphatase for LC-MS/MS detection. The
nucleosides were quantified by using the nucleoside-to-base ion mass transitions of
285 to 153 (d3-m6A) and 284 to 152 (G).

RNA isolation. The total RNA was isolated with TRIZOL reagent (Invitrogen).
mRNA was extracted from the total RNA using the Dynabeads® mRNA Pur-
ification Kit (Invitrogen), followed by removal of contaminating rRNA with the
RiboMinus transcriptome isolation kit (Invitrogen). mRNA concentration was
measured by UV absorbance at 260 nm.

LC-MS/MS quantification of m6A in poly(A)-mRNA. In all, 100–200 ng of
mRNA was digested by nuclease P1 (2 U) in 25 μL of buffer containing 25 mM of
NaCl, and 2.5 mM of ZnCl2 at 42 °C for 2 h, followed by the addition of NH4HCO3

(1 M, 3 μL) and alkaline phosphatase (0.5 U) and incubation at 37 °C for 2 h. The
sample was then filtered (0.22 -m pore size, 4 -mm diameter, Millipore), and 5 μL
of the solution was injected into the LC-MS/MS. The nucleosides were separated by
reverse phase ultra-performance liquid chromatography on a C18 column with
online mass spectrometry detection using Agilent 6410 QQQ triple-quadrupole LC
mass spectrometer in positive electrospray ionization mode. The nucleosides were
quantified by using the nucleoside to base ion mass transitions of 282 to 150 (m6A),
and 268 to 136 (A). Quantification was performed by comparison with a standard
curve obtained from pure nucleoside standards run with the same batch of samples.
The ratio of m6A to A was calculated based on the calibrated concentrations.

Cell-proliferation assay. Five thousand cells were seeded per well in a 96-well
plate. The cell proliferation was assessed by assaying the cells at various time points
using the CellTiter 96® Aqueous One Solution Cell Proliferation Assay (Promega)
following the manufacturer’s protocols. For each cell line tested, the signal from the
MTS assay was normalized to the value observed ~24 h after seeding.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The simulated dataset may be downloaded from Zenodo [https://doi.org/10.5281/
zenodo.2932987], and the filtered somatic mutation lists from 20 tumor types that were
used as input files for driverMAPS may also be downloaded from Zenodo [https://doi.
org/10.5281/zenodo.1209412]. Original somatic mutation list files without filtering were
downloaded from TCGA GDAC website (version: analyses__2016_01_28) [https://gdac.
broadinstitute.org/]. RNA sequencing and CNVs data for the 20 tumor types were
downloaded from cBioPortal [https://www.cbioportal.org/]. Gene annotation data were
downloaded from GENCODE (version 19, Feb 2014) [https://www.gencodegenes.org/].
The source data underlying Figs. 6C, 6D, Supplementary Figs. 6 and 7 are provided as a
Source Data file.

Code availability
The driverMAPS software is available from the driverMAPS website [https://szhao06.
bitbucket.io/driverMAPS-documentation/docs/download.html]. The source code for
driverMAPS is available from the Bitbucket repository [https://bitbucket.org/szhao06/
maps]. Other software used in this study are TCGA GDAC firehose_get (version 0.4.6)
[http://gdac.broadinstitute.org/] and ANNOVAR (version 2016Feb01) [http://annovar.
openbioinformatics.org/en/latest/].
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