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Abstract

Since the 2014 Ebola virus (EBOV) outbreak in West Africa there has been considerable effort 

towards developing drugs to treat Ebola virus disease and yet to date there is no FDA approved 

treatment. This is important as at the time of writing there is an ongoing outbreak in the 

Democratic Republic of the Congo. We have evaluated a small number of natural products, some 

of which had shown antiviral activity against other pathogens. This is exemplified with eugenol, 

which is found in high concentrations in multiple essential oils, and has shown antiviral activity 

against feline calicivirus, tomato yellow leaf curl virus, Influenza A virus, Herpes Simplex virus 

type 1 and 2, and four airborne phages. Four compounds possessed EC50 values less than or equal 

to 11 μM. Of these, eugenol, had an EC50 of 1.3 μM against EBOV and is present in several plants 

including clove, cinnamon, basil and bay. Eugenol is much smaller and structurally unlike any 

compound that has been previously identified as an inhibitor of EBOV, therefore it may provide 

new mechanistic insights. This compound is readily accessible in bulk quantities, is inexpensive, 

and has a long history of human consumption, which endorses the idea for further assessment as 

an antiviral therapeutic. This work also suggests that a more exhaustive assessment of natural 

product libraries against EBOV and other viruses is warranted to improve our ability to identify 

compounds that are so distinct from FDA approved drugs.
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The history of natural products as therapeutics is long and varied going back a millennia (1). 

For example, 175 anticancer drugs were approved between the 1940’s and 2014 and 49% of 

these were natural products or derived from them (2). The anti-infective drug discovery area 

is still heavily dependent on natural products and their structures (2). Others have also 

suggested that approximately 50% of new chemical entities are based on natural products 

and derivatives. From 1981 to 2010, 64% of FDA approved drugs were natural products or 

analogs (3). For example, several natural product drugs have been important natural product 

drugs for decades (4, 5). Marine natural products alone have led to 8 drugs or 

cosmeceuticals (a product that is a drug, a cosmetic or both) approved by the FDA and 

EMA. These include FDA approved marine-derived drugs, namely cytarabine, depocyt, 

vidarabine and ziconotide and at least 10 candidates in clinical trials (6) as well as a large 

number of marine chemicals in the preclinical pipeline (7). Even scents represent a relatively 

untapped source of biologically active molecules (8) (e.g. menthol (9–16)).

Since the 2014 Ebola virus (EBOV) outbreak in West Africa responsible for over 11,000 

deaths in ten countries (17), no vaccine or drug has been approved. With the most effort 

applied to EBOV, four other families of filovirus exist (18) therefore this calls for a broad-

spectrum antiviral drug for such emerging viruses (19, 20). The 2018 EBOV outbreaks in the 

Democratic Republic of the Congo has to date led to over 500 deaths. It is likely, that 

sporadic outbreaks will continue to occur and treatments will be needed to prevent and stop 

the progression of the next pandemic even as vaccines continue to be tested during these 

outbreaks.

The search for small molecule drugs for the treatment of EBOV has involved multiple 

medium and high-throughput screens (HTS) which have identified hundreds of molecules 

potentially effective against EBOV in vitro. Some of the earliest drugs active against EBOV 

included clomiphene, toremifene, tamoxifen, and raloxifene and diethylstilbestrol (21). 

Many other research groups have performed HTS with varying success rates (22–32). The 

hits identified in these studies belong to several groups of drugs including GPCR antagonists 

(25), selective estrogen receptor modulators (21), antidepressants (33), L-type calcium 

channel inhibitors (34) and antimalarials (19, 20).

Our own previous effort in EBOV drug discovery used machine learning to identify three 

compounds; quinacrine, pyronaridine, and tilorone (35) with the latter showing 100% 

efficacy in a mouse model of EBOV infection at a dose of 30mg/kg/day (36). This work 

suggests that promising clinical stage compounds can be identified and progressed through 

preclinical disease models. A recent study has suggested there are at least 141 drugs with 

preliminary in vitro and / or in vivo data in animals, most of which are FDA approved drugs 

(37).

Relatively small molecules (MWT 100–200) and natural products have been tested as 

potential treatments for other viruses. For example nicotinamide (Vitamin B3) was evaluated 

for activity against HIV (38). Essential oils also have a rich history as potential antivirals and 

possess numerous pharmacological activities (8, 39).
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Our recent research suggests that plant derived natural products and structurally similar 

small molecules are worthy of closer inspection as a source of novel leads for EBOV drug 

discovery and will provide more molecular diversity. Seven small natural compounds (MWT 

range 122.1–164.2) were selected for testing against EBOV (Supplemental Methods) based 

on their commercial availability and previous testing for biological activity against viruses or 

bacteria. Eugenol (EC50 = 1.3 μM) and p-anisaldehyde (EC50 = 2.8 μM) were the two most 

potent of the 7 compounds tested (Table 1 and Figure 1A). Benzyl acetate (EC50 = 10 μM) 

and phenethyl acetate (EC50 = 10 μM) were less active and L-menthol, nicotinamide and 

nicotinic acid were inactive (Table 1). The most active compounds did not show appreciable 

cytotoxicity in HeLa cells, with CC50’s >50 μM (Figure 1B). No EBOV active compounds 

that were tested in this study had associated Pan Assay INterference compoundS (PAINS) or 

predicted promiscuity issues issues. p-anisaldehyde does however contain the potentially 

reactive (i.e., electrophilic) aldehyde (Table S1).

It is common for antivirals against one disease to be effective against another that may be 

closely related. Nicotinamide is active against HIV and HBV (40), but was found to be 

inactive against EBOV in this study, suggesting a potentially different mechanism for these 

other viruses. Extracts from plants have been found to contain varied pharmacological 

activities over the long history of medicine (41) and some suggest that the flora of various 

countries are still untapped sources for potential drugs or starting points for drug discovery 

(42). Surprisingly several of the very common essential oils are still finding new activities, 

such as acting as antimicrobials and antivirals, with the latter being demonstrated in this 

study.

Eugenol is one such essential oil commonly found in cloves, cinnamon, basil and Bay with 

diverse biological activities. Eugenol has shown promising activity against feline calicivirus 

(43), tomato yellow leaf curl virus (44, 45), Influenza A virus (46), Herpes Simplex virus 

type 1 (47), Herpes Simplex virus 2 (48, 49), four airborne phages (50) as well as larvicidal 

activity against Aedes Aegypti (51). Dai et al (46) showed that Eugenol inhibits autophagy 

and influenza A virus replication by interfering with the ERK, p38MAPK and IKK/NF-κB 

signal pathways. Eugenol also displays broad antimicrobial, antifungal and anti-

inflammatory activity (52). it has also been shown to be antiproliferative and have anti-

metastatic effects (53). It is likely bioactivated via O-dealkylation of the O-alkoxy group 

resulting in catechol which is further oxidized to o-quinone (54). To our knowledge this is 

the first time eugenol has been tested against EBOV, likely because it is very small, more 

like a drug-fragment (55–57) and therefore very structurally different to the many Ebola 

active compounds tested to date (22–32). Because it is so small, eugenol provides plenty of 

scope for medicinal chemistry optimization. It is also present in several foods and has a long 

history of use by humans, therefore it may represent a faster path to regulatory approval if it 

possesses in vivo activity in an animal model infected with EBOV.

A second promising compound we identified is p-anisaldehyde which is also present in 

fragrances and yet the literature is silent on its potential antiviral potential, although it has 

been used to deter pests (58, 59). Benzyl acetate is another essential oil widely used in 

perfumes and cosmetics as well as pesticide applications (60). Phenethyl acetate is a volatile 

flavor present in many fruits and other foods as well as in fungal infected honeybee larvae, 
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where it induces hygienic behavior (61). Menthol was the only scent or essential oil that we 

tested that had no appreciable activity against EBOV.

The current assessment is admittedly far from an exhaustive analysis of all natural products 

with inhibitory activity against EBOV. Interestingly when we used our previously successful 

Ebola machine learning models they scored these small molecules poorly to borderline 

active according to these Bayesian models (0.33–0.54, Table S2, Supplemental References) 

which may be representative of the fact that there are few compounds like these natural 

products in the models tested to date and further indicative of the need for model retraining 

with smaller compounds before future virtual screening of natural product libraries. 

Interestingly, menthol clearly scores the poorest of these compounds. Very few of these 

smaller sized molecules have previously been identified with activity against EBOV. For 

example, a recent screen of compounds inhibiting the VP35-nucleoprotein interface 

identified a small drug (MWT 273.2) tolcapone (IC50 = 2μM) which is a catechol-O-

methyltransferase inhibitor (62). It remains to be seen if eugenol and p-anisaldehyde are 

targeting VP35 as well.

Further efforts to characterize these natural product in vitro EBOV actives could include 

analyzing their effects on: virus and cellular protein levels, EBOV genomic RNA and 

mRNA, primary human cells like macrophages or dendritic cells. Time-course experiments 

to show at which stage of infection the two compounds are active as antivirals and 

assessment of their activity against other human pathogenic RNA viruses would also be of 

interest to discern their EBOV mechanism.

Serendipity has played an important role in drug discovery over its history (41, 63–70) but 

we cannot rely on this solely to discover drugs. We can utilize simple, abundant natural 

products, such as essential oils, as a starting point for new anti-EBOV drug discovery. While 

the discovery and development of new drugs and chemical probes from natural products is 

an active area (71), there are several well-known challenges, such as only small amounts of 

compound are available, analog development is difficult, complexity of synthesis, 

identification of potential targets/diseases, etc. (72) and avoiding re-isolating known 

compounds (73). Advantages of natural products include their high potency (74), 

predisposition to biological activity due to evolution and selection and history of therapeutic 

success. There has been much recent discussion of the importance of using natural products 

to increase the diversity of high throughput screens (71). Additionally, the need for further 

collaborations with chemists who focus on natural product isolation, characterization, and 

synthesis, cannot be underestimated in these efforts.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A. EBOV activity of various compounds using EBOV infected HeLa cells 24 hours post 

infection. Error bars represent the SD. B. Cytotoxicity of natural product compounds using 

HeLa cells. Error bars represent the SD.
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