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Abstract

Continued improvement in MRI acquisition technology has made functional MRI (fMRI) with 

small isotropic voxel sizes down to 1 mm and below more commonly available. Although many 

conventional fMRI studies seek to investigate regional patterns of cortical activation for which 

conventional voxel sizes of 3 mm and larger provide sufficient spatial resolution, smaller voxels 

can help avoid contamination from adjacent white matter (WM) and cerebrospinal fluid (CSF), 

and thereby increase the specificity of fMRI to signal changes within the gray matter. 

Unfortunately, temporal signal-to-noise ratio (tSNR), a metric of fMRI sensitivity, is reduced in 

high-resolution acquisitions, which offsets the benefits of small voxels. Here we introduce a 

framework that combines small, isotropic fMRI voxels acquired at 7 Tesla field strength with a 

novel anatomically-informed, surface mesh-navigated spatial smoothing that can provide both 

higher detection power and higher resolution than conventional voxel sizes. Our smoothing 

approach uses a family of intracortical surface meshes and allows for kernels of various shapes 

and sizes, including curved 3D kernels that adapt to and track the cortical folding pattern. Our goal 

is to restrict smoothing to the cortical gray matter ribbon and avoid noise contamination from CSF 

and signal dilution from WM via partial volume effects. We found that the intracortical kernel that 

maximizes tSNR does not maximize percent signal change (ΔS/S), and therefore the kernel 

configuration that optimizes detection power cannot be determined from tSNR considerations 

alone. However, several kernel configurations provided a favorable balance between boosting 

tSNR and ΔS/S, and allowed a 1.1-mm isotropic fMRI acquisition to have higher performance 

after smoothing (in terms of both detection power and spatial resolution) compared to an 

unsmoothed 3.0-mm isotropic fMRI acquisition. Overall, the results of this study support the 

strategy of acquiring voxels smaller than the cortical thickness, even for studies not requiring high 
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spatial resolution, and smoothing them down within the cortical ribbon with a kernel of an 

appropriate shape to achieve the best performance—thus decoupling the choice of fMRI voxel size 

from the spatial resolution requirements of the particular study. The improvement of this new 

intracortical smoothing approach over conventional surface-based smoothing is expected to be 

modest for conventional resolutions, however the improvement is expected to increase with higher 

resolutions. This framework can also be applied to anatomically-informed intracortical smoothing 

of higher-resolution data (e.g. along columns and layers) in studies with prior information about 

the spatial structure of activation.
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Introduction

Spatial smoothing of functional MRI (fMRI) data is a standard pre-processing step used to 

increase signal-to-noise ratio (SNR) through noise averaging, to assist with cross-subject 

registration, and to help ensure that statistical assumptions regarding the smoothness of the 

images are met. Typically, spatial smoothing is performed using a 3D smoothing kernel 

(such as a Gaussian function), which substitutes the image intensity of each voxel with a 

weighted average of the intensities of its neighbors. However, this standard volumetric 

smoothing of fMRI data has been shown to induce mislocalization errors such as cortical 

gray matter activation being incorrectly assigned to an adjacent gyral fold (Andrade et al., 

2001) or even to nearby white matter regions (Stelzer et al., 2014).

Anatomically-constrained smoothing can help contain detected activation within tissue 

boundaries to avoid these errors. This is specifically appropriate in those cases in which 

some prior information is available—e.g., when activation is expected only within the 

cortical gray matter. Cortical surface-based smoothing approaches, by respecting the 

anatomical boundary of the cortex, have been shown to achieve both higher sensitivity and 

higher specificity, including less crosstalk between adjacent gyri (Jo et al., 2009, 2007; 

Kiebel et al., 2000).

Many existing surface-based smoothing approaches approximate the cortical ribbon as a 2D 

sheet, and enact the smoothing by first generating a mesh reconstruction of the cortical 

surface, projecting the fMRI data onto this surface reconstruction, and then smoothing along 

the surface, to provide a convenient anatomically-constrained smoothing within and along 

the cortex. However, with the growing availability of receive coil arrays and high-magnetic-

field MRI scanners (3T and higher), fMRI voxel sizes well below 2 mm are increasingly 

available; with these smaller voxels, it becomes possible to treat the cortical gray matter as a 

3D volume rather than a simple 2D sheet. Not only does this enable intracortical analyses of 

the columnar and laminar architecture of the cortical gray matter (Polimeni et al., 2018), but, 

for studies investigating large-scale organization over the brain, the question arises of how to 

appropriately smooth fMRI data when there are multiple voxels spanning the cortical 

thickness. Furthermore, for conventional fMRI studies where the expected spatial scale of 
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activation is on the order of centimeters, it is unclear whether there would be any benefit to 

acquiring such small voxels because increased spatial resolution comes with the cost of 

decreased SNR, and hence decreased sensitivity to detecting functional activation. Taking 

into consideration the SNR efficiency, it is usually advantageous to acquire larger voxels 

than to smooth smaller voxels to the equivalent resolution (Buxton, 2009), however voxel 

volume is not the sole determinant of SNR in fMRI data.

It has been shown that fMRI data acquired at a higher spatial resolution than required and 

then spatially smoothed to a lower resolution are less affected by physiological noise than 

data natively acquired at the required resolution, and can provide higher temporal SNR 

(tSNR) (Triantafyllou et al., 2006). Smaller voxels combined with anatomically-informed 

sampling can also improve spatial accuracy and thereby improve spatial specificity. The 

spatial specificity of fMRI activation has been shown to increase in voxels sampled deep 

within the cortical gray matter (GM) ribbon away from the pial vasculature (Nasr et al., 

2016; Polimeni et al., 2010), and fMRI analysis approaches that exclude those voxels 

intersecting the pial surface (i.e., “no-pial” sampling) have been proposed to improve spatial 

fidelity within individual subjects as well as the agreement of spatial maps across subjects 

(Ahveninen et al., 2016). However, including deep cortical voxels that contain subjacent 

white matter (WM) through partial volume effects should also be avoided, because no fMRI 

activations are expected within the WM. Therefore, acquiring fMRI data with a resolution 

higher than what is seemingly required may be beneficial, as it allows to spatially 

redistribute the small voxels and perform smoothing restricted to the cortical ribbon to avoid 

both noise contamination from cerebrospinal fluid (CSF) and signal dilution from WM, 

shown diagrammatically in Fig. 1. This diagram illustrates conceptually how one can view a 

given 3-mm isotropic voxel as pooling or averaging signal across a fixed set of 1-mm 

isotropic sub-voxels contained within it (Fig. 1a), and how acquiring 1-mm voxels provides 

flexibility to pool signal from a collection of voxels that are spatially redistributed to better 

respect the curved boundaries of the folded gray matter tissue (Fig. 1b). In both cases, a set 

of weighted 1-mm voxels is averaged (shown in a 2D cross-section in Fig. 1), but by 

selecting only 1-mm voxels that are contained within the GM one can average groups of 

contiguous small voxels while avoiding signal contamination/dilution from surrounding CSF 

and WM. Furthermore, a weighted average of the smaller, 1-mm voxels can provide 

additional control over the shape and extent of the smoothing, which can be tailored based 

on prior information about the expected spatial pattern of activation.

In this study, we developed and applied a fully automated surface mesh-navigated smoothing 

framework using “steerable” smoothing kernels, of varying tangential and radial extent, 

adapted and restricted to the cortical ribbon. The combination of fMRI acquisitions with 

small isotropic voxels with our intracortical smoothing framework can help avoid noise 

contributions from superficial CSF to provide higher sensitivity (i.e., tSNR) as well as 

minimize partial volume effects from activation-free WM to provide higher GM-specificity 

and thus higher functional contrast (i.e., percent signal change). Different kernel designs can 

be employed to achieve a desired smoothing strategy aimed at maximizing either only tSNR 

or percent signal change, or a balance between the two. Both resting-state and task-driven 

fMRI data were acquired at 7T with different native voxel sizes to investigate the potential 

advantages of the proposed approach, and to test whether appropriately smoothed high-
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resolution data can substitute for data acquired natively at the required lower resolution. 

Multiple smoothing kernel shapes and sizes were analyzed to determine their effect on 

sensitivity and GM-specificity, i.e., tSNR and percent signal change, two determinants of 

fMRI detection power. Resting-state fMRI data were obtained to quantify tSNR and task-

driven data were used to quantify percent signal change as well as functional contrast-to-

noise ratio (fCNR). We demonstrate that intracortical surface-based smoothing kernels 

designed within the proposed framework and applied to small-voxel fMRI data yield two 

advantages: (i) higher sensitivity and GM-specificity than conventional 3D volume-based 

smoothing applied to the same small-voxel data, and (ii) higher sensitivity, GM-specificity, 

and resolution than native large-voxel fMRI data. The improvement of our 3D intracortical 

smoothing technique, which allows for smoothing both tangentially and radially to the 

cortical surface, is expected to increase with higher resolution fMRI data in which more 

voxels are contained within the gray matter ribbon, allowing for more noise cancelation by 

smoothing along the radial direction.

Methods

Subjects and data acquisition

Ten healthy volunteers (6F/4M, 28 ± 5 y.o. (mean ± S.D.)) participated in this study. Written 

informed consent was obtained from all participants, and the study protocol was approved 

by the Institutional Review Board of Massachusetts General Hospital.

Each subject was scanned on a whole-body 7T scanner (Siemens Healthineers, Erlangen, 

Germany) equipped with a home-built 32-channel receive array head coil and birdcage 

transmit coil system (Keil et al., 2010), and a body gradient coil (SC72) using four single-

shot gradient-echo EPI BOLD-weighted fMRI protocols with isotropic spatial resolutions 

1.1×1.1×1.1 mm3, 1.5×1.5×1.5 mm3, 2.0×2.0×2.0 mm3 and 3.0×3.0×3.0 mm3 (for details of 

the scanning parameters, see Table 1). The protocols were each separately optimized in 

order to represent realistic fMRI protocols used in fMRI studies at 7T, including high-(1.1 

mm isotropic) and low-resolution (3.0 mm isotropic), and two intermediate-resolution 

protocols. Resting-state fMRI data consisting of one run of each of these four protocols were 

acquired on five subjects (3F/2M, 27±6 y.o.) with eyes open or closed with no visual fixation 

task and used for tSNR analysis. Task-driven fMRI data also consisting of one run of each of 

the four protocols were acquired on the remaining five subjects (3F/2M, 28±5 y.o.), 

including breath-hold (BH) and visual stimulus (VIS) tasks. An additional run of high-

resolution 1.1 mm data was acquired to define the ROI functionally—i.e., a separate 

“functional localizer” was acquired, to avoid any potential circularity involved with defining 

the ROI using data to be analyzed within that ROI (Saxe et al., 2006)—for task-driven fMRI 

experiments with the VIS task (see fMRI analysis section below for details). Same-session 

structural data were acquired at 7T for each subject with a two-echo T1-weighted ME-

MPRAGE sequence equipped with a TR-FOCI inversion pulse (Hurley et al., 2010; van der 

Kouwe et al., 2008) at 0.75×0.75×0.75 mm3 isotropic resolution (Zaretskaya et al., 2018).
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Task-driven fMRI paradigms

Subjects viewed breath-hold cues and visual stimuli through a rear-projection screen 

mounted to the end of the magnet bore with a mirror mounted on the interior of the volume 

transmit coil. Each run of BH task experiment consisted of four 15-s long breath-holds 

preceded by paced breathing (three cycles of 3 s breathe-in followed by 3 s breathe-out) and 

expiration. The timed breathing cues were presented to ensure consistent timing across 

subjects, and subject compliance was monitored using respiration measurements recorded 

with respiratory bellows. The VIS task consisted of four 16-s long blocks of a full-field-of-

view black-and-white ‘scaled noise’ pattern counter phase flickering at 8 Hz, alternated with 

24-s long blocks of neutral gray as a baseline condition (whose duration was chosen to 

ensure BOLD signal recovery to baseline before the next stimulation). To ensure subject 

attention and accurate eye fixation, an additional fixation task was provided during both 

stimulation and baseline conditions, which consisted of a small red dot located in the center 

of the visual field that changed luminance between two states randomly over time (drawn 

from a uniform distribution between 0 and 3 s). Subjects were instructed to press a button on 

an MRI-compatible button box immediately after each occurrence of the luminance change, 

and their performance and reaction time were monitored on-line and recorded. Any runs 

where performance dropped below 60% accuracy were to be discarded, although this did not 

occur for any subjects in this study.

Pre-processing

For each subject, high-resolution structural data were bias corrected and used to generate 

cortical surface reconstructions with FreeSurfer (Fischl, 2012) (https://

surfer.nmr.mgh.harvard.edu/) automatically, with a submillimeter voxel size to provide 

increased accuracy of automatic WM/GM and GM/CSF surface placement without manual 

intervention (Zaretskaya et al., 2018). The accuracy of the reconstructed meshes was 

inspected visually. The “laminar” cortical depth analysis scheme was employed (Polimeni et 

al., 2018, 2010) to generate a family of 11 surfaces within the cortical gray matter spaced 

every 10% (0–100%) of the cortical thickness, where 0% corresponds to the WM-GM 

interface and 100% corresponds to the GM-CSF interface. All fMRI data were motion 

corrected using AFNI (https://afni.nimh.nih.gov/) to the middle frame of each run, then 

linearly detrended (higher-order temporal trends were not observed in our data). Each run of 

EPI data was registered to the anatomical reference data (the T1-weighted ME-MPRAGE 

volume) using Boundary-Based Registration (via the command bbregister from the 

FreeSurfer package), which aligns the WM-GM surface reconstruction with the WM-GM 

tissue boundary within the fMRI data (Greve and Fischl, 2009). Brain regions known to be 

affected by EPI geometric distortion (i.e., those cortical regions near to the frontal sinuses 

and ear canals) were identified using the automatic atlas-based cortical parcellation 

generated by FreeSurfer, similar to previous approaches (Greve and Fischl, 2009), then 

masked out and excluded from all further analysis. The resulting transformations were used 

to align the cortical surface reconstructions to the fMRI volumes, and, finally, the fMRI data 

were projected onto the cortical surface meshes by assigning to each vertex in the surface 

mesh the data of the nearest voxel, equivalent to nearest-neighbor interpolation. Because the 

spacing between adjacent surface vertices may vary with cortical depths and cortical 

curvature (Kay et al., 2018), which may lead to regional differences in the effective 
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smoothing levels in the data after performing surface-based smoothing, we measured the 

vertex spacing at the white matter surface and pial surface separately for vertices within 

sulci, gyri and banks of the cortex defined based on the local mean curvature as computed 

via FreeSurfer (i.e. sulci were defined as vertices where curvature was greater than 0.25, gryi 

as vertices where curvature was less than −0.25, and banks as vertices where curvature was 

between −0.25 and 0.25).

fMRI analysis

While tSNR provides a useful metric for assessing the sensitivity of a particular fMRI 

acquisition, both tSNR and percent signal change (∆S/S) are determinants of detection 

power and are components of fCNR. Because the fMRI signal may be diluted through 

partial volume effects with nearby WM or CSF, causing a reduction in task-driven percent 

signal change, here we quantified the effects of anatomically-constrained smoothing on both 

tSNR and fCNR. While tSNR values were calculated directly from the resting-state fMRI 

data, fCNR was quantified from the task-driven fMRI data using the z-statistic, which 

measures the contrast or signal difference between two conditions (task and baseline) 

compared against an estimate of noise (based on the temporal variance of the residuals).

To calculate tSNR for a given run, the resting-state fMRI data were first pre-processed as 

described above, then for each voxel the temporal mean was divided by the temporal 

standard deviation to produce a tSNR map. To ensure that the level of accuracy of the tSNR 

estimates across protocols with different repetition times (TRs) were not affected by varying 

amount of the subject motion occurring during the scans of different durations, the number 

of time points of resting-state data (NREST) used for the tSNR calculation was adjusted for 

each protocol such that a total time (TR × NREST) was equal to approximately 120 s (see 

Table 1). Since NREST for each protocol was equal or larger than 60, the differences in tSNR 

estimation accuracy due to the varying numbers of time points across the protocols were 

considered negligible.

General linear model (GLM) analyses of the task-driven fMRI data were performed using 

FSL Feat (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) (Woolrich et al., 2001) and the resulting z-

statistic, ∆S/S and noise standard deviation (i.e., the noise standard deviation of the contrast, 

stdcon, defined as √varcon) were calculated. Visual cues presented during the BH task in the 

form of small text shown in the center of the screen were not expected to cause activation 

synchronized with the activation induced by the task, nevertheless we conservatively 

excluded the primary visual cortex (V1) from the analysis using a V1 label generated 

automatically by FreeSurfer during the cortical surface reconstruction (Fischl et al., 2008; 

Hinds et al., 2008). A delay of the breath-hold response was assumed to be subject specific 

and was estimated directly from the time series of the non-smoothed 3.0-mm isotropic 

resolution data based on the timing of the observed change of the signal averaged across the 

cortex. For VIS task data, a region of interest (ROI) was created for each subject by 

intersecting the V1 label provided by FreeSurfer with a mask generated from the thresholded 

z-statistic map (after conventional volume-smoothing with a 5-mm FWHM kernel) obtained 

from the 1.1-mm functional localizer.
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Surface mesh-navigated smoothing

A new surface mesh-navigated smoothing framework was developed to define smoothing 

kernels of different radial and tangential extents, as illustrated in Fig. 2. Radial extent of the 

smoothing kernel is defined by the number of adjacent cortical depths included in the kernel; 

so, for example, a radial extent of 3 indicates that the smoothing kernel averages data across 

three neighboring surfaces. Because there is a natural vertex correspondence across the 

family of 11 intracortical surface meshes (Polimeni et al., 2010), radial smoothing simply 

averages fMRI data projected onto these corresponding vertices across the cortical depths, 

with a uniform (constant) weighting applied in the radial direction. Tangential extent is 

parameterized by a vertex neighborhood (NB), which indicates the radius of the smoothing 

along the surface, and values of the contributing neighbors are weighted by their 

neighborhood distance from the central vertex of the kernel (an approximation of the 

geodesic distance from the central vertex). Therefore, a NB=1 tangential extent indicates a 

given vertex and its first-order neighborhood, a NB=2 tangential extent indicates a given 

vertex plus its first- and second-order neighborhoods (i.e., the union of the vertex, its 

neighbors, and their neighbors), and so on. The average vertex spacing of the cortical 

meshes (measured to be 0.66 mm on average across all subjects) was used to convert vertex 

NB sizes to millimeters. We considered various kernel shapes and extents including: (i) 
radial kernels (which are 1D), extending across all cortical depths with NB=1; (ii) tangential 

kernels (which are 2D), each smoothing within one cortical depth, extending from NB=1 to 

NB=6, and applied separately to each of the 11 depths; (iii) intracortical (IC) kernels (which 

are 3D), which extend in both the radial and tangential directions. Here we explored two 

types of intracortical kernels: one type is anchored on the WM/GM boundary and extends 

towards the pial surface, called intracortical-WM or “IC-wm”, and the other type is anchored 

on the midgray depth (i.e., the 50% depth surface) and extends symmetrically both towards 

the WM and the pial surface, called intracortical-midgray or “IC-mid”. The IC-mid kernels 

are attractive because they allow for a 3D intracortical smoothing that removes voxels from 

the top and bottom boundaries of the GM (i.e., those that exhibit partial volume effects with 

the surrounding WM and CSF) to provide a smoothing that maximizes the contribution from 

voxels within the GM. Note that conventional surface-based smoothing is a special case of 

our framework: conventional surface-based smoothing of fMRI data is purely 2D tangential 

smoothing typically performed along the WM surface (recommended for lower-resolution 

fMRI data) and in our nomenclature is equivalent to smoothing with an IC-wm kernel, 

however we also consider purely 2D tangential smoothing along the midgray surface 

(recommended for moderate-resolution fMRI data) equivalent to smoothing with an IC-mid 

kernel. A third category, which can be considered to be anchored on the WM/GM boundary 

or on the midgray depth, includes all depths and is therefore called intracortical-all or “IC-

all”. For comparison, conventional isotropic volume-based smoothing using 3D Gaussian 

kernels were employed, and their smoothing extent was parameterized by the full-width-

half-maximum (FWHM) of the Gaussian, ranging from 1.5 to 5.0 mm in steps of 0.5 mm.

Evaluation of anatomically-informed surface smoothing

Because the spatial extents of the various surface-smoothing kernels are quantized in both 

the radial and tangential directions (based on the numbers of cortical depths and the numbers 

of neighboring vertices), the smoothing capacity, or the effective amount of smoothing 
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imparted by the kernel, was calculated for each kernel size and shape to enable comparison 

between surface-and volume-based smoothing. To estimate the smoothing capacity, each 

surface- and volume-smoothing kernel was applied to synthetic noise data consisting of 100 

time-frames of statistically independent (i.e., spatially and temporally uncorrelated, i.i.d.) 

zero-mean/unit-variance Gaussian white noise. The temporal standard deviations (tSTDEV) 

of the smoothed noise data were then calculated voxel-wise to estimate the effective 

smoothing capacity of each applied kernel. To identify the set of surface-smoothing kernel 

sizes and shapes applied to 1.1-mm isotropic resolution data that provided equivalent 

smoothing capacity to a volume-based kernel with 2.0-mm FWHM applied to the same data, 

we simply identified those surface-based kernels that when applied to the 1.1-mm synthetic 

noise data yielded a tSTDEV that was less than or equal to the tSTDEV value generated by 

this volume-based kernel, as illustrated in Supplementary Fig. 1. Because the synthetic noise 

has similar statistical characteristics to thermal noise, these surface-based kernels identified 

in this fashion are expected to have the same impact on tSNR for the thermal noise 

dominated data (such as 1.1-mm resolution), regardless of the kernel shape. This procedure 

was employed to provide a direct, easily interpretable measure of smoothing capacity, and 

was therefore favored over an analytic approach based on estimating kernel volume. Note 

that, because the sizes of the intracortical smoothing kernels are quantized by their 

tangential and radial neighborhoods, smoothing capacities were not exactly matched in all 

cases, but for each comparison the set of kernel sizes with as similar as possible smoothing 

capacities was chosen.

To evaluate the overall impact of smoothing on both tSNR and fCNR across our group of 

subjects, the group-level analysis had to account for cross-subject differences in tSNR and 

fCNR values. Therefore, for each group-level analysis the tSNR or z-statistic values for each 

subject were first normalized to the values of the reference 3.0-mm resolution dataset from 

that subject and then the resulting normalized tSNR or z-statistic values were averaged 

across subjects. The tSNR and z-statistic values (for BH and VIS) of smoothed and non-

smoothed data were plotted across cortical depth for all data resolutions to investigate a 

depth-dependence of the effect of smoothing on tSNR. The effect of the size of the radial, 

tangential and IC-all kernels on tSNR was also investigated across all data resolutions. A 

direct comparison of the effect of the kernel sizes for volume-based and tangential surface-

based smoothing on z-statistic values obtained for these kernels applied to 1.1 mm isotropic 

resolution data for all cortical depths was also analyzed. To visualize the effects of the 

anatomically-informed smoothing, and to assess the spatial distribution of tSNR over the 

brain, the tSNR maps across subjects were averaged together in a common atlas space. To 

achieve this, tSNR maps of both the original (non-smoothed) and smoothed data of each 

subject were first normalized using the average tSNR of the non-smoothed 3.0-mm isotropic 

resolution reference data (using the mean value of the tSNR sampled at midgray depth), then 

the normalized values were projected onto each subject’s native white matter surface 

reconstruction and aligned across subjects via surface-based atlasing (using the 

“CVS_avg35” atlas (Postelnicu et al., 2009) distributed with FreeSurfer), and finally 

averaged across all subjects in this common space. In addition to the tSNR maps, “tSNR 

gain maps”, defined as the ratio of tSNR between the smoothed and non-smoothed data, 
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were calculated for high-resolution (1.1 mm isotropic) data to assess the relative tSNR 

improvement provided by smoothing the high-resolution data.

Validation and application of the smoothing framework on ultra-high-resolution fMRI data

In order to demonstrate benefits of the proposed smoothing framework on submillimeter 

resolution data, two additional datasets were acquired on a whole-body 7T scanner (Siemens 

Healthineers, Erlangen, Germany) using a 2D single-shot gradient-echo EPI acquisition with 

0.8 mm isotropic resolution (see Table 1 for acquisition details). For one subject (M, 28 y.o.) 

BOLD-weighted resting-state fMRI data (80 time points) was acquired in an oblique-coronal 

slice orientation with acquisition centered on the occipital lobe. For the second subject (F, 40 

y.o.) BOLD-weighted task-driven fMRI data were acquired with similar oblique-coronal 

slice prescription and placement; here the subject was presented with a retinotopic “test 

pattern” visual stimulus consisting of two orthogonal stimulus conditions (A: ‘foreground’ 

and B: ‘background’) designed to elicit a desired spatial pattern of activation in the visual 

cortex, in this case ‘diamond-shaped’ spatial activation pattern within V1. To generate the 

stimulus pattern, the intended activation pattern was warped according to a standard 

visuotopic mapping model (shown in Supplementary Fig. 9a), following the procedure 

described previously (Polimeni et al., 2010). Fourteen runs (110 time-points each) were 

acquired, with two repetitions of 8-s stimulus blocks with 38–46-s inter-stimulus-intervals 

(ISI). Same-session structural data were also obtained for each of these two subjects with the 

protocol described above for FreeSurfer surface mesh reconstruction. Data preprocessing 

followed the steps of surface-based analysis described above. Resting-state data were 

smoothed with several intracortical surface-based smoothing kernels and tSNR values were 

calculated for each kernel. Task-driven data were smoothed with two example 3D 

intracortical smoothing kernels with equivalent smoothing capacity and with a narrow 

tangential extent (both with NB=1) and radial extent (either 00–04 or 03–07). A standard 

GLM analysis was applied to both the original unsmoothed and the smoothed data to detect 

activation in response to the stimulus, and resulting z-statistic values were projected onto the 

inflated representation of the cortical surface reconstruction for visual comparison. This 

provided means to test the ability of the method to improve fCNR while preserving spatial 

specificity, as assessed qualitatively here by how well the spatial pattern of activation 

resembled the intended “test pattern”.

Results

As it can be seen in Supplementary Fig. 2, while a handful of small, localized errors can be 

seen in the vicinity of the temporal pole and the orbitofrontal cortex, as previously reported 

for similar 7T MEMPRAGE data (Zaretskaya et al., 2018), overall the quality of these 

automatic reconstructions, generated without any manual corrections, was deemed to be 

sufficient. However, because the regions located near to susceptibility gradients and 

therefore affected by EPI geometric distortion are also prone to surface reconstruction 

errors, fMRI data from these regions of the brain were automatically masked out and 

excluded from all analyses as described above in the Methods section. To quantify potential 

differences in surface mesh vertex spacing that vary systematically with cortical depth and 

cortical curvature, we computed histograms of vertex spacing, equivalent to the length of the 
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edges in the surface mesh, separately for sulci, gyri and banks for white matter (WM/GM) 

and pial (GM/CSF) surface meshes, with the results shown in Supplementary Fig. 3. While 

the vertex spacing was not strongly dependent on cortical surface curvature within the white 

matter surface, within the pial surface vertices found within sulci exhibited an average vertex 

spacing that was approximately 20% lower than vertices within the gyri or banks, indicating 

that smoothing based on neighborhood distances alone will cause small differences in the 

degree of smoothing in units of mm for some locations along the pial surface (see 

Discussion), however there is a large degree of overlap seen in these distributions of vertex 

spacing.

Effects of anatomically-informed smoothing on tSNR

The tSNR maps of Fig. 3a demonstrate that the tSNR values calculated for resting-state 

fMRI data increased with increasing voxel size, as expected. These example tSNR maps 

corresponding to different spatial resolutions also qualitatively highlight varying levels of 

physiological noise contribution to the total fMRI time-series noise across voxel sizes. The 

tSNR maps at 1.1-mm resolution exhibit a spatial pattern that is expected for thermal noise 

dominated data, in which tSNR is the highest around the periphery of the brain, near the coil 

elements, and decreases steadily towards the center of the brain, whereas the tSNR maps at 

3.0-mm resolution exhibit a spatial pattern that is expected for physiological noise 

dominated data, based on the known difference in physiological noise levels across tissue 

types (Bodurka et al., 2007), in which tSNR is the highest in WM (where physiological 

noise is lowest), tSNR is the lowest in CSF (where physiological noise is highest), and tSNR 

is intermediate in GM (Wald and Polimeni, 2017).

The tSNR trends across cortical depth and their changes with spatial smoothing, shown in 

Fig. 3b, also reflect the varying levels of physiological noise contribution to each voxel size. 

In the unsmoothed data (represented by the blue traces), there is no discernable trend of 

tSNR across cortical depths in the small-voxel (1.1-mm and 1.5-mm) data, indicating that 

there is no systematic relationship between spatial gradients in tSNR and the radial direction 

of the cortex, as expected for thermal-noise-dominated data (provided that the tSNR trend 

across depth is plotted for a sufficiently large region of cortex). For the large-voxel (2.0-mm 

and 3.0-mm) data, a clear trend begins to emerge in which the tSNR of the unsmoothed data 

steadily decreases from the WM to the CSF.

As the data is smoothed tangentially within the cortex—which, unlike conventional 3D 

volumetric smoothing, minimizes contamination of signal originating in GM from signal 

originating in WM or CSF, and minimizes any signal mixing across cortical depths—the 

tSNR trends across depths seen in Fig. 3b become more pronounced, even in the small-voxel 

(1.1-mm) data. This is likely due to cancellation of the spatially uncorrelated thermal noise 

by spatial smoothing, as has been shown previously (Triantafyllou et al., 2006), and 

consequently the increased dominance of physiological noise, which is spatially correlated 

and therefore is not cancelled by moderate levels of spatial smoothing.

The effects of surface-smoothing on tSNR calculated from resting-state fMRI data using 

different kernel sizes and shapes are summarized in Fig. 4. For all analyzed kernels, 

smoothing improved tSNR values, and a trend can be observed where greater improvement 
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is seen for larger kernel sizes applied to higher-resolution data, with a consistently larger 

tSNR increase seen from data sampled at the midgray cortical depth than at the pial surface. 

As described in the Methods section, the tSNR values of each subject were normalized to a 

reference tSNR—taken as the mean tSNR of the non-smoothed 3.0-mm resting-state fMRI 

data sampled at the midgray surface (50% of cortical depth)—for each subject.

The effects of radial (1D) smoothing across all cortical depths (i.e., “columnar” smoothing) 

are shown in Fig. 4a. Radial smoothing of the 1.1-mm isotropic resolution data led to a 67% 

increase of the resulting tSNR compared to non-smoothed data, and reached the level of just 

over 50% of tSNR of non-smoothed 3.0-mm data. As expected, the effect of columnar 

smoothing on tSNR was less pronounced for lower-resolution data, with a 50% increase in 

tSNR seen in the 1.5-mm data, a 30% increase seen in the 2.0-mm data, and a 18% increase 

seen in the 3.0-mm data.

The effects of tangential (2D) smoothing for each cortical depth (i.e., “laminar” smoothing) 

are shown in Fig. 4b. For all resolutions, tangential smoothing resulted in a monotonic 

increase in tSNR with larger smoothing kernel radius, however the rate of tSNR increase 

was greater for data sampled from the midgray surface (50% depth) versus the pial surface 

(100% depth), which can be explained by the proximity and possible contamination of the 

pial surface signal by physiological noise from CSF through partial volume effects. 

Tangential smoothing of the 1.1-mm data using a 2D kernel with NB=5 corresponding to a 

tangential radius of approximately 3.0 mm (the equivalent smoothing capacity to a volume-

based 3D smoothing kernel with 1.88-mm FWHM, therefore yielding an effective resolution 

after smoothing of approximately 2.18 mm isotropic) at the midgray depth of the cortex 

increased tSNR to the level of non-smoothed 3.0 mm isotropic data. Note that, although 

smoothing the 1.1-mm isotropic data to an effective resolution of 2.18 mm isotropic yields a 

higher tSNR than non-smoothed 3.0-mm isotropic data, because the 1.1-mm isotropic 

acquisition and the 3.0-mm isotropic acquisition utilized differing levels of parallel imaging 

acceleration (R=4 vs. R=1, respectively) and have differing levels of physiological noise, it 

is difficult to assess the expected gains of tSNR achieved by increasing the effective voxel 

size (see Discussion).

The effects of intracortical (3D) smoothing across all cortical depths (00–10) are shown in 

Fig. 4c. The intracortical smoothing provided further increase of tSNR in the 1.1-mm data, 

allowing a smaller tangential radius of approximately 1.8 mm (the equivalent smoothing 

capacity to a volume-based 3D smoothing kernel with 1.93-mm FWHM, therefore yielding 

an effective resolution after smoothing of approximately 2.22 mm isotropic) to be used to 

reach the level of non-smoothed 3.0-mm data tSNR. This radius represents the minimal 

tangential extent needed for an intracortical smoothing kernel that is maximally extended in 

the radial direction (00–10) to achieve the tSNR of the original 3.0-mm data. The rate of 

tSNR increase with increasing tangential smoothing radius for this 3D intracortical 

smoothing was comparable to that observed for the purely 2D tangential smoothing.

The tSNR values of 1.1-mm resolution data smoothed with a selected set of kernels with 

different shapes but with equivalent smoothing capacity, including both strictly 2D 

tangential kernels and 3D intracortical kernels, are summarized in Fig. 5. To aid the 
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comparison, and to help remove the expected variation of tSNR across subjects and sessions, 

tSNR values for each subject were first normalized to the midgray tSNR resulting from the 

conventional volume-based 3D smoothing with the 2.0-mm FWHM kernel. Importantly, the 

normalized tSNR values resulting from surface-based smoothing across all of the kernels 

from this chosen set were higher than that of the volume-based kernel of the same 

smoothing capacity. The selected 3D intracortical kernels performed slightly better than the 

average across depths of the strictly 2D tangential kernels with radius NB=5. Note that the 

normalized tSNR values corresponding to the non-smoothed, volume-smoothed and 2D 

(tangential) surface-smoothed data were first calculated for each depth separately and then 

averaged across the depths, while the normalized tSNR values corresponding to smoothing 

with 3D (intracortical) kernels were not. Results from all smoothing kernels with equivalent 

smoothing capacity (including the subset presented in Fig. 5) are presented in 

Supplementary Fig. 4.

Comparing the tSNR resulting from the various kernels with similar smoothing capacity but 

different shapes and sizes suggests that some kernels may be more effective at avoiding 

physiological noise contamination. The normalized tSNR seen after smoothing with the 

intracortical kernel 00–10/NB=3 (extending across all 11 cortical depths) was comparable 

(111%) to that for the similar intracortical kernel 00–08/NB=3 (112%, extending across the 

lower 9 cortical depths), even though the latter kernel is smaller in size, suggesting that 

avoiding cortical depths close to the pial surface, where there is physiological noise from 

downstream BOLD signals pooled in the pial vessels and from nearby CSF, can improve 

tSNR. Avoiding cortical depths near the white matter appears to have the opposite effect, 

which can be seen in the reduced normalized tSNR after intracortical smoothing with the 

02–08/NB=3 kernel (104%, see Supplementary Fig. 4). In order to achieve the same tSNR 

level, the reduced radial extent is balanced by the increase of the tangential extent as it can 

be seen comparing the 00–08/NB=3 kernel with the 03–07/NB=4 kernel, which reached 

similar tSNR levels (112% and 113%). Also included in Supplementary Fig. 4 are the tSNR 

levels resulting from conventional 2D tangential smoothing (i.e., a special case equivalent to 

smoothing with the 00/NB=5 kernel) and from 2D tangential smoothing along the midgray 

surface (i.e., another special case, equivalent to smoothing with the 05/NB=5 kernel); here it 

can be seen that, by virtue of avoiding noise contributions from the pial surface, 

conventional 2D smoothing outperforms both 2D tangential midgray smoothing and 3D 

intracortical smoothing in terms of tSNR (by about 10%), however as is shown below this 

conventional 2D tangential smoothing dramatically underperforms in terms of fCNR.

Similar trends in tSNR values after smoothing can be seen in the results of applying this 

smoothing framework to our ultra-high-resolution 0.8 mm isotropic resting-state BOLD 

fMRI data, where the 3D intracortical smoothing with the 03–07/NB=4 kernel outperformed 

conventional 2D tangential smoothing (i.e., smoothing with the 00/NB=5 kernel) by 25% 

and mid-gray 2D tangential smoothing (i.e., smoothing with the 05/NB=5 kernel) by about 

10% (shown in Supplementary Fig. 8). This illustrates how, as expected, when going to 

smaller voxel sizes our 3D intracortical kernel can outperform conventional 2D smoothing in 

terms of tSNR because of the larger numbers of independent intracortical voxels available 

along the radial direction. As an aside, comparing the two purely 2D tangential smoothing 

methods—the conventional 2D tangential smoothing and midgray 2D tangential smoothing
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—we see that in these 0.8 mm iso. data the tSNR resulting from smoothing along the white 

matter surface is now lower than the tSNR resulting from smoothing along the midgray 

surface (cf. Fig. 3). This may be attributable to the thermal-noise dominance in these ultra-

high-resolution data even after spatial smoothing (see Discussion).

Fig. 6 presents the group-averaged tSNR maps generated from all subjects to assess both the 

spatial distribution of tSNR and the tSNR gain over the cortical hemispheres. Fig. 6a shows 

the normalized tSNR maps calculated from the original (non-smoothed) 3.0-mm isotropic 

resolution data and from the 1.1-mm data smoothed with the IC-mid 03–07/NB=4 kernel 

highlighted above, which demonstrates that the tSNR of the smoothed 1.1-mm isotropic data 

is higher than the tSNR of the unsmoothed 3.0-mm data in almost every cortical region, 

although the benefit of the smoothed high-resolution data varies spatially across the brain. In 

addition, the tSNR gain maps presented in Fig. 6b for the 1.1-mm isotropic resolution data 

better demonstrate the regional variation in tSNR gain due to the intracortical smoothing, 

showing that some brain regions naturally benefit more from this smoothing than others. 

Similar maps generated to assess the spatial distribution of fCNR before and after smoothing 

and the associated fCNR gain provided by smoothing are presented in Supplementary Fig. 7.

Effects of anatomically-informed smoothing on fCNR

Task-driven fMRI data were used to investigate the effects of different smoothing kernels on 

fCNR by potentially avoiding partial volume effects with WM voxels (where fMRI 

activation is not expected).

For each subject, ∆S/S, stdcon and z-statistic values were normalized using the 

corresponding values obtained for the reference non-smoothed 3.0-mm resolution data, in 

order to remove across-subject variations. To assess how the smoothing impacted fCNR as a 

function of cortical depth, the results for non-smoothed and surface-smoothed data with a 

single tangential (2D) kernel extending over a moderate radius, NB=3 (≈2.0 mm), across all 

five subjects are plotted against cortical depth in Fig. 7 for BH and VIS task conditions, and 

for all data resolutions (1.1, 1.5, 2.0, 3.0 mm).

While the normalized ∆S/S values were similar across the data resolutions, the decreases in 

normalized stdcon and corresponding increases in normalized z-statistic values with 

increasing voxel size were more pronounced, as expected. Trends for all three measures to 

increase across the cortical depth from WM boundary towards the pial surface were 

observed for both non-smoothed and smoothed data, and similar trends were seen for the BH 

and VIS task conditions. Smoothing decreased ∆S/S and stdcon, due to the expected 

averaging of both signal and noise across multiple vertices, but the slope of ∆S/S over depths 

was steeper than the slope of stdcon; and because, by definition, the z-statistic increases with 

∆S/S and decreases with stdcon, the relatively steeper increases of ∆S/S with depth caused 

both an overall increase of z-statistic and an increase of z-statistic with depth in the surface-

smoothed data. We observed less decrease of ∆S/S due to smoothing in the VIS data than the 

BH data, which may reflect both higher levels of spatial heterogeneity in the BH data over 

the whole-brain ROI and the use of a restricted ROI in the VIS data including only voxels 

with strong visual responses. In both the BH and the VIS data, tangential smoothing lead to 

a largely uniform increase in z-statistics across all voxel sizes. The roughly U-shaped curves 
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representing stdcon in both VIS and BH plots for 1.1-mm data show that variability of the 

BOLD signal was greater close to the WM surface and the pial surface than in the middle 

depths of the cortex.

Fig. 8 provides comparisons of normalized z-statistic values obtained for the task-driven 

fMRI data after volume-smoothing with kernels of FWHM ranging from 1.5 to 4 mm and 

after surface-smoothing with strictly tangential (2D) kernels of the extents ranging from 

NB=1 to 6, over 11 cortical depths for 1.1-mm isotropic resolution BH task data and across 

all five subjects. Indicated in these plots for reference are one volume-based kernel and one 

surface-based kernel with equivalent smoothing capacity: the volume-smoothing kernel with 

FWHM=2.0 mm and the surface-smoothing kernel with NB=5. For these two kernels, it is 

apparent that there is a broader range of z-statistic values across depths in the surface-

smoothed data compared to the volume-smoothed data, indicating that that tangential 

smoothing causes less mixing of the signals across the cortical depths than volume 

smoothing. Also, in both plots it appears that the z-statistic value reaches an asymptote with 

progressively larger kernel sizes; similar asymptotic behavior has been previously seen in 

tSNR with increased smoothing (Krüger et al., 2001; Triantafyllou et al., 2006). The 

asymptotic value seems to be reached sooner in the data sampled from the pial surface 

compared to the data sampled from the white matter surface, which suggests that data that is 

more physiological noise dominated achieves the maximal z-statistic value with a narrower 

smoothing kernel compared to data that is more thermal noise dominated.

The shape of the smoothing kernel had a strong effect not only on tSNR, as seen in Fig. 5, 

but also on fCNR quantified by the z-statistic. The same set of selected kernels shown in Fig. 

5, each having a different shape but with equivalent smoothing capacity, were applied to the 

BH task data. Shown for comparison are the z-statistics of unsmoothed 3.0-mm task-driven 

fMRI data and the z-statistics resulting from smoothing the 1.1-mm task-driven fMRI data 

with a conventional volume-based 3D smoothing kernel set to 2.0-mm FWHM to achieve 

equivalent smoothing capacity to the surface-based smoothing kernels. Again, to help 

remove the expected variation of fCNR across subjects and sessions, z-statistic values for 

each subject were first normalized to a fixed reference, the average value sampled at the 

mid-gray depth resulting from the conventional volume-based 3D smoothing with the 2.0-

mm FWHM kernel. The results are shown in Fig. 9. The z-statistic value obtained using the 

reference volume-smoothing kernel (98%) was slightly lower than the value obtained for 

non-smoothed 3.0-mm data, however the surface-smoothing kernels performed better than 

the reference kernel, with the IC-wm 00–10/NB=3 kernel (which included all cortical 

depths) producing the highest z-statistic value (109%), and the IC-mid 03–07/NB=4 kernel 

producing the next-highest value (105%). Notably, the only exception was the IC-wm 00/

NB=5 kernel (i.e., smoothing along at the WM/GM boundary), which produced the lowest 

fCNR of all kernels (72%), although this same kernel yielded the highest tSNR when 

applied to the resting-state fMRI data (118%, see Fig. 5). Comparison of Figs. 5 and 9 also 

shows that two particular kernels, IC-wm 00–10/NB=3 and IC-mid 03–07/NB=4, provided 

the best overall balance between tSNR and fCNR (109% and 11%, 105% and 113%, 

respectively) within this set of kernels, and achieved both improved sensitivity and GM-

specificity when applied to the 1.1-mm isotropic data compared to the unsmoothed 3.0-mm 

data. Bar plots presenting z-statistic for all kernels of equivalent smoothing capacity 
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(including a subset presented in Fig. 9) are shown in Supplementary Fig. 5. Again, included 

in Supplementary Fig. 5 are the fCNR levels resulting from conventional 2D tangential 

smoothing (i.e., 00/NB=5 kernel) and from 2D tangential smoothing along the midgray 

surface (i.e., 05/NB=5 kernel); in contrast to the results seen with respect to tSNR, here it 

can be seen that, conventional 2D smoothing dramatically underperforms both 2D tangential 

midgray smoothing and 3D intracortical smoothing in terms of fCNR.

To demonstrate the ability of our approach to preserve fine-scale details of fMRI activation 

patterns while smoothing in 3D within the cortex, an example of our smoothing applied to a 

retinotopic activation pattern measured at 0.8 mm isotropic resolution at 7T is shown in 

Supplementary Fig. 9. The original unsmoothed data as well as the data smoothed with the 

IC-mid 03–07/NB=1 or with the IC-mid 00–04/NB=1 smoothing kernels, which have 

equivalent smoothing capacities, are shown projected onto the inflated surface 

representation. While both 3D intracortical smoothing kernels succeed in increasing the 

fCNR of the “diamond-shaped” activation pattern as can be seen in the overall increase in z-

statistic values within the foreground and background regions of the activation pattern, in 

this case the spatial fidelity of the pattern is improved after smoothing with the IC-mid 03–

07/NB=1 kernel, presumably due to the reduced partial volume effects with subjacent white 

matter than may be present after smoothing with the IC-mid 00–04/NB=1 kernel. While the 

exact kernel size and shape that is appropriate for any given application will depend on the 

fMRI resolution and the optimal trade-off between sensitivity and spatial specificity for the 

question at hand, this example demonstrates how the 3D intracortical smoothing can 

preserve the spatial pattern of activation in 2D along the cortical surface while smoothing 

both within and across the cortex to improve fCNR.

Discussion

In this work, we have proposed a fully-automated framework for designing surface mesh-

navigated smoothing kernels with varying tangential and radial extents within the cortical 

ribbon. After evaluating these kernels on resting-state and task-driven fMRI data, we found 

that surface-smoothing kernels of particular shapes can provide both higher tSNR and higher 

fCNR than either the conventional volume-smoothing approach or natively lower resolution 

data, by avoiding noise contributions from CSF and signal dilution from WM via partial 

volume effects. Our comparison of the performance of various kernels of equivalent 

smoothing capacity, which therefore achieve similar final spatial resolution in the smoothed 

data, showed that surface-smoothing kernels of different shapes and sizes have different and 

potentially opposite impacts on tSNR and fCNR—a kernel that performs well with respect 

to tSNR may perform poorly with respect to fCNR. For example, based on tSNR 

considerations alone, when smoothing within GM it may be advantageous to utilize a kernel 

that includes a portion of WM into the voxel, since physiological noise is lower in the WM 

than in the GM; however, based on fCNR considerations, because functional activation is 

not expected from the WM, this same kernel would cause a reduction in detected activation. 

(While a small number of recent fMRI studies have reported subtle fMRI activation in WM, 

these activation levels are far smaller than activation in GM due to the relatively low blood 

volume in WM, and these studies used paradigms specifically designed to induce brain 

activity in WM (Courtemanche et al., 2018; Gawryluk et al., 2014); the tasks used in our 
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study (BH and VIS) are not expected to appreciably activate WM, and our results are 

consistent with low activation from the WM subjacent to GM.) Therefore, the specific kernel 

design to maximize sensitivity may not maximize fMRI detection power.

The patterns of tSNR changes with smoothing in the resting-state fMRI data (Fig. 3) were 

consistent with the known thermal noise dominance in high-resolution data and 

physiological noise dominance in low-resolution data (Krüger et al., 2001; Triantafyllou et 

al., 2005; Wald and Polimeni, 2017). The cancellation of spatially uncorrelated thermal 

noise via surface-based tangential smoothing led to an increase in tSNR for all cortical 

depths, causing the smoothed high-resolution data (1.1 mm and 1.5 mm) to be dominated by 

physiological noise. This manifested as a positive slope across depths and tSNR depth 

profiles with a maximum cancellation at the pial surface (Fig. 3b), as expected based on 

previous work (Triantafyllou et al., 2006). The same effect could also be seen in the faster 

increase in tSNR values with kernel size observed in data sampled from the midgray cortical 

depths compared to the slower increase in tSNR values in data sampled close to the pial 

surface (Fig. 4), indicating that the well-known spatial correlations in physiological noise 

resulted in a less pronounced tSNR increase for those fMRI data voxels with more 

physiological noise contribution via partial volume effects. It has been previously 

demonstrated that physiological noise levels are tissue specific, with the strongest 

physiological noise within the CSF and on the cortical surface due to the pulsatile flow 

effects and presence of large pial vessels (Bodurka et al., 2007; Polimeni et al., 2015; 

Triantafyllou et al., 2016). Therefore, voxels closer to the pial surface have far higher noise 

levels then those located deeper within the cortex, closer to the WM/GM interface.

While tSNR was observed to monotonically decrease from the WM/GM interface to the 

GM/CSF interface, the opposite trend was observed for ΔS/S in the task-driven fMRI data, 

in which ΔS/S was maximal at the pial surface (Fig. 7). This can be explained by the fact 

that the BOLD signal is dominated by changes in deoxyhemoglobin in the venous side of the 

vasculature and these signal changes increase within the downstream pooling of 

deoxygenated blood in the large draining vessels on the pial surface, which imposes a 

systematic increase of ΔS/S with proximity to the pial vasculature (Polimeni et al., 2010; 

Poplawsky et al., 2017; Uludağ and Blinder, 2016). In addition, similar partial volume 

effects can also reduce the measured signal change in voxels intersecting the WM/GM 

boundary, since little or no fMRI activation is expected in the WM. Therefore, due to these 

opposing effects of both low noise and low signal change originating from the WM, surface-

smoothing kernel including only voxels at the WM/GM boundary produced largest increase 

of tSNR and at the same time the largest decrease of fCNR values (seen in Fig. 5 for tSNR 

and in Fig. 9 for fCNR). However, a different trend across cortical depths can be seen in the 

results of smoothing applied to our ultra-high-resolution data. As noted above in the Results 

section, the trend in tSNR across depths after smoothing differs between the 1.1 mm iso. 

data and the 0.8 mm iso. data—after smoothing, the tSNR is higher near to the white matter 

than near to the midgray surface in the 1.1 mm data whereas the opposite is true and the 

tSNR is lower near to the white matter than near to the midgray surface in the 0.8 mm data. 

With these small 0.8 mm iso. voxels even after smoothing the data may be thermal-noise 

dominated. Therefore, in this case tSNR is highest around the periphery of the brain—near 

to the surface coil array detectors—and lowest in the center of the head (Wald and Polimeni, 
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2017), which explains why in this ultra-high-resolution data the tSNR after smoothing is 

lower near to the white matter surface.

Tangential smoothing of the fMRI data caused a small decrease in ΔS/S but a large decrease 

in stdcon, leading to an increase of z-statistic (Fig. 7). Tangential smoothing also resulted in 

a broader range of z-statistic values across depths, providing an indirect indication of better 

separability of the fMRI activation originating at different cortical depths (Fig. 8), which is 

relevant for laminar fMRI studies seeking to discriminate distinct activation across cortical 

depths or cortical layers. This observed broader range of z-statistic values across depths is 

consistent with the expected degree of spatial independence of the values across cortical 

depths. Similar intracortical tangential smoothing within cortical depths has recently been 

applied in this context and was shown to increase the visibility of intracortical functional 

activation in both standard EPI-based BOLD measurements and VASO-based CBV 

measurements (Huber et al., 2017; Polimeni et al., 2015).

The two smoothing kernels which provided the best overall performance in terms of both 

tSNR (Fig. 5) and fCNR (Fig. 9) were intracortical kernels IC-wm 00–10/NB=3 and IC-mid 

03–07/NB=4. The first of these kernels extends across all cortical depths including WM/GM 

interface and the GM/CSF interface, and produces the same tSNR level (Fig. 5) and about 

10% lower z-statistic (Fig. 9) than the somewhat smaller IC-wm 00–08/NB=3 kernel, which 

excludes 20% of the cortical depth adjacent to the GM/CSF interface. This illustrates that 

the “no-pial” smoothing approach leads to a loss of signal accompanied by a reduction of 

noise, ultimately resulting in a similar level of tSNR compared to the kernel that 

encompasses 100% of the cortical depth. This finding is consistent with a previous study 

recommending a “no pial” approach to decrease spatial variability of the fMRI activation 

while retaining tSNR (Ahveninen et al., 2016; Polimeni et al., 2010). Further reduction of 

the radial extent of smoothing was achieved in the IC-mid 03–07/NB=4 kernel that excluded 

30% of the cortical depth adjacent to the WM/GM interface as well as 30% of the cortical 

depth adjacent to the GM/CSF interface, and in this configuration a small increase in 

tangential smoothing radius (NB) was required to compensate for the decrease of the kernel 

size in the radial direction. This kernel provided increases in both tSNR and fCNR, and it 

represents a new “no-pial and no-wm” strategy to achieve the optimal tSNR/fCNR balance. 

Although spatial specificity was not investigated in this study, it is known to degrade at the 

pial surface due to similar downstream venous effects (Ahveninen et al., 2016; Nasr et al., 

2016; Polimeni et al., 2010). Therefore, studies seeking to simultaneously achieve high 

fCNR and high spatial specificity should take this prior knowledge into account and avoid 

kernels that intersect the pial surface.

Our resting-state and whole-brain task-driven fMRI data allowed us to quantify the impact 

of intracortical smoothing on both tSNR and fCNR over the entire cortex, which provide 

quantitative measures of detection sensitivity. These generic data and quantitative measures 

were utilized to obtain an account of the expected gains provided by our smoothing 

framework that would generalize to a wide range of fMRI experiments. Although tSNR is 

still the most commonly used metric to quantify sensitivity in a way that is agnostic to effect 

size, making it a useful metric to assess the acquisition that is independent of the details of 

any specific study, recent work has argued that the relationship between tSNR and detection 
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power may however be complicated in fast TR data due to potentially increased levels of 

temporal autocorrelations apparent in these data (Corbin et al., 2018). Nevertheless, here we 

use tSNR and fCNR as standard metrics, and, although the absolute tSNR and fCNR values 

will vary with the specifics of the acquisition, here we report the relative changes and trends 

in these metrics with different forms of intracortical smoothing.

Since the choice of the most appropriate kernel for a specific study would likely depend on 

the acquisition details, including not only the nominal voxel size but also other factors that 

impact SNR such as the amount of parallel imaging acceleration and the degree of T2* 

blurring in the EPI data, as well as temporal sampling rate and flip angle, the above 

recommendations for a specific kernel size and shape should be treated as a general 

guideline. In addition, studies focusing on specific brain areas should take into account that 

tSNR gain due to any form of smoothing, including the proposed intracortical smoothing, 

will not be spatially uniform across the cortex. An example of regional variability is 

provided for one kernel and one acquisition in Fig. 6b, but the details of this pattern will 

likely depend on several factors including the transmit and receive coil layout, the ratio of 

thermal to physiological noise for the particular fMRI protocol (which is also field strength-

dependent), and the spatially varying partial volume effects that depend both on fMRI voxel 

size and on cortical thickness.

As reported above, after applying two forms of anatomically-informed smoothing (both 2D 

tangential and 3D intracortical smoothing) to fMRI data acquired at 1.1-mm isotropic 

resolution to achieve an equivalent voxel size of approximately 2.2 mm isotropic, the 

resulting tSNR exceeded that of unsmoothed 3.0-mm isotropic data. Not only did the 1.1-

mm isotropic acquisition and the 3.0-mm isotropic acquisition differ in their voxel volumes, 

but to achieve proper BOLD weighting these acquisitions also differed in their parallel 

imaging acceleration as summarized in Table 1, e.g., the 1.1-mm isotropic protocol used a 

high level of acceleration (R=4), further increasing thermal noise dominance (Triantafyllou 

et al., 2011), whereas the 3.0-mm isotropic protocol used no acceleration (R=1). Therefore, 

the SNR in the 1.1-mm isotropic acquisition is expected to be far lower than that of the 3.0-

mm isotropic acquisition. Counteracting this large expected gap in tSNR is the clear 

physiological noise dominance of the 3.0-mm isotropic acquisition, seen in Fig. 3, which 

leads to a smaller tSNR in the 3.0-mm data than expected based on considerations of voxels 

size and acceleration alone (Krüger and Glover, 2001; Triantafyllou et al., 2005). 

Nevertheless, the observed gains in tSNR seen in the smoothed 1.1-mm isotropic data is a 

result of a smoothing operation that averages and cancels spatially uncorrelated thermal 

noise without adding physiological noise, as explained previously (Triantafyllou et al., 

2006). In general, the performance of smoothing high-resolution data will therefore depend 

on the ratio of thermal noise to physiological noise, i.e., the degree of physiological noise 

dominance, which will depend on the specifics of the data acquisition.

The framework that we have used to generate these surface mesh-guided kernels and to 

evaluate kernel performance can be repeated to determine the appropriate kernel size and 

shape for a given acquisition and a given spatial pattern of activation, which will affect tSNR 

and ΔS/S, respectively. In addition, local cortical anatomy of the region of interest (curvature 

and thickness of the surface) and local vascular anatomy (proximity of the pial vessels) may 
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also be taken into account while designing a smoothing kernel to optimize performance. 

Prior information about the expected pattern of underlying neuronal activity (e.g., uniform 

activation over the entire area versus columnar or laminar) could also be helpful to decide 

the smoothing kernel shape and size, as a kernel that is too large may suppress activation, 

according to the matched-filter theorem. It is also worth noting that in the case where the 

goal is to maximize tSNR, not only can the inadvertent decrease of fCNR arise, but naturally 

there is a risk of introducing smoothing artifacts and spatial bias (Stelzer et al., 2014).

Several surface-based smoothing methods have been proposed, including those based on the 

heat equation (Chung et al., 2005), on defining a coordinate system on the cortical surface 

(Joshi et al., 2009) or on applying sophisticated edge-preserving techniques (Grady and 

Polimeni, 2010). These methods usually require a surface mesh representation, project the 

fMRI time-series data onto the mesh vertices, and use the mesh to restrict smoothing to the 

cortex (Polimeni et al., 2018). These techniques all seek to smooth while avoiding mixing 

together signals originating from cortical regions which are nearby with respect to the 3D 

embedding space due to cortical folding but are far with respect to geodesic distance. 

Existing 2D surface-based smoothing methods typically project fMRI voxels onto a given 

cortical surface mesh (most often the WM/GM surface) and perform smoothing along this 

mesh allowing to avoid the signals originating from CSF, but may not remove the signal 

dilution due to the partial volume with WM; an example smoothing kernel from our study 

that represents the conventional surface-based smoothing approach is the 2D intracortical 

smoothing kernel 00/NB=5 which includes only voxels intersecting the WM/GM boundary. 

In our comparisons of smoothing performance (Figs. 5 and 9 and Supplementary Figs. 1 and 

2) the cyan bar represents the average results of this conventional 2D tangential smoothing 

but applied to each cortical depth and averaged across depths; it can be seen that this kernel 

performed relatively well in terms of tSNR values (Fig. 5 and Supplementary Fig. 4) due to 

the decreased noise contamination from CSF and in terms of fCNR (Fig. 9 and 

Supplementary Fig. 5) due to decreased signal dilution from WM, however in our data it did 

not outperform the non-smoothed low-resolution data or the 03–07/NB=4 intracortical 

kernel. These findings are expected because CSF exhibits stronger levels of physiological 

noise compared to GM and WM, and therefore the primary cause for this observation is 

likely noise contamination from CSF, whereas WM exhibits far weaker levels of 

physiological noise and very little BOLD fluctuations at all, so the primary cause is likely 

signal reduction from diluting the GM signal via partial volume effects with WM. Insofar as 

there is noise in the WM, sampling away from WM will also reduce that source of 

physiological noise but this is likely a secondary effect. Our results demonstrate that the 

performance of 2D tangential smoothing varies as a function of the cortical depth chosen 

and that smoothing both in the tangential and radial directions—i.e. in 3D but restricted to 

the cortical ribbon—can yield improved performance.

The novelty of the approach presented here is that, motivated by the availability of small 

fMRI voxels, we treat the cortical ribbon not as a 2D surface but as a 3D structure. 

Furthermore, our anatomically-informed smoothing kernels enabled by the cortical surface 

representation can be viewed as a form of 3D ‘steerable’ smoothing kernels, which are 

widely known in the image processing field (Freeman and Adelson, 1991). Unlike the 

existing approaches, this framework provides the capability to flexibly adjust the kernel size 
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and shape, taking into account considerations such as the voxel size used (and so the 

expected scale of partial volume effects), prior knowledge about the ‘shape’ of the activation 

pattern (e.g., columnar or laminar patterns), and the desired tradeoff between sensitivity and 

specificity. While the additional flexibility afforded by this framework has the potential 

downside of allowing for a more diverse set of possible smoothing approaches (in terms of 

kernel shapes and sizes) used across different laboratories and studies, which could lead to 

greater heterogeneity of preprocessing pipelines used in practice, here we demonstrate how 

these kernels can be evaluated and compared based on how different kernels affect tSNR and 

fCNR distributions across the cortex, informing the process of selecting the appropriate 

kernel and providing quantifiable justification for the kernel used for a particular study. 

Future studies using this framework should not only report the kernel size and shape used 

during the analysis but are also able to justify their choice through similar quantitative 

comparisons based on the specific acquisition and design used in their study, which can help 

to avoid erroneous/inappropriate kernel selections.

The framework was implemented as a part of the FreeSurfer software package and uses 11 

cortical surface meshes (one every 10% of cortical depth between WM/GM boundary and 

the pial surface) to allow for precise control of not only the tangential but also the radial 

extents of the smoothing kernels. Several improvements and extensions of this approach 

could be considered. The family of cortical surface meshes used as a basis to design the 

smoothing kernels could be extended above the current number of 11 to allow more precise 

definition of radial extent of the kernel, and the surface meshes could be refined or up-

sampled to allow more precise definition of tangential extent, however this would increase 

computational and storage cost. Different data interpolation schemes, such as nearest-

neighbor versus linear or higher-order interpolation, used to project the fMRI voxel data 

onto the surface mesh should also be compared and re-evaluated when the data is to be 

explicitly smoothed using our framework. Furthermore, in this study we adopted a simple 

weighting approach where the weights were set to the inverse of the vertex’s approximate 

geodesic distance from the central vertex of the kernel. Additional weighting shapes (e.g., a 

Gaussian function, etc.) could be added to allow more flexibility in kernel design to achieve 

a desired smoothing capacity. More sophisticated methods for defining the width of the 

smoothing kernel based on iteratively estimating the smoothness of the resulting data could 

also be incorporated (Hagler et al., 2006; Saad and Reynolds, 2012), as well as weighting 

strategies that take into account spatially-varying vertex density and spacing seen in 

Supplementary Fig. 3 to reduce the dependence of the smoothing on the surface mesh 

topology to yield a more “mesh-independent” solution (Balasubramanian et al., 2010). 

Identifying kernels with equivalent smoothing capacity in this study was somewhat 

challenging due to the simple weighting scheme we employed, which quantizes the 

tangential extent of the kernel due to our parameterization of the width by the integer 

number of vertex neighborhoods. As an additional feature of our framework, it may also be 

possible to develop an automatic kernel shape/size optimization procedure which would be 

able to determine a kernel (or a set of kernels) providing the most favorable trade-off 

between tSNR, fCNR and resolution for a given dataset. Also, our kernel size 

parameterization along the radial direction is currently in terms of relative cortical thickness, 

which means that even with a fixed kernel extent in the radial direction, regions with thicker 
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cortex will be smoothed to a coarser resolution than regions with thinner cortex; to 

demonstrate this effect, we computed a 2D histogram of the normalized tSNR gain between 

the non-smoothed and smoothed 1.1 mm data shown in Fig. 6 as a function of cortical 

thickness (see Supplementary Fig. 6), and while no strict relationship was found indeed 

trend can be seen in which thicker cortex results in a larger tSNR can through 3D 

intracortical smoothing, as expected. This can be addressed in the future by appropriately 

weighting the kernel in the radial direction by distance, . An option to assign different 

tangential extents and/or weightings to different cortical depths (to impose e.g. cone-shaped 

kernels or hourglass-shaped kernels) could allow incorporating additional prior knowledge 

about the expected spatial pattern of the activation (smaller/larger on specific depths), 

correction for partial volume fraction of different tissue types (Shafee et al., 2015) or even 

partial volume fractions of different cortical depths or layers (Polimeni et al., 2018) into the 

kernel design. Care must be taken in including this prior information, as it has the potential 

to bias results, nevertheless our framework provides this additional flexibility. This also 

highlights how the performance of our 3D intracortical smoothing technique, compared to 

conventional 2D tangential smoothing, is expected to increase with higher resolution, since 

smaller fMRI voxels will allow for more independent voxels contained within the cortical 

gray matter thickness providing more flexibility in smoothing along the radial direction. 

Indeed, for the results presented in Supplementary Fig. 8 we see that for ultra-high-

resolution 0.8 mm isotropic fMRI data the tSNR from 3D intracortical smoothing is about 

10% higher than the mid-gray 2D tangential smoothing, whereas the same two kernels 

yielded almost the same tSNR when applied to 1.1 mm isotropic data. Therefore, as spatial 

resolutions continue to increase, more benefits from this approach based on treating the 

cortical ribbon as a 3D structure is expected, while for moderate resolutions the 

improvement compared to conventional 2D tangential smoothing.

The intracortical coordinate system created by the cortical meshes could be easily adjusted 

for the specific applications to become “anatomically inspired” (Polimeni et al., 2018). The 

proposed framework extends the commonly employed concept of anatomically-informed 

smoothing that respects the boundaries of the cortical gray matter to finer-scale 

anatomically-informed smoothing that respects intracortical features such as cortical 

columns and cortical layers. Cortical columns run roughly perpendicularly to the cortical 

boundary surfaces, and cortical layers run roughly parallel to the cortical boundary surfaces, 

therefore given a cortical reconstruction the anatomical configuration of these intracortical 

features can be estimated. The surfaces could then be placed along the expected laminar 

boundaries for the particular cortical regions (Hinds et al., 2015; Waehnert et al., 2014) and 

vertices along expected columnar structures (Leprince et al., 2015). Since the 

microanatomical geometry of cortical columns and layers changes systematically across the 

cortex and can change abruptly at cortical area boundaries (Bok, 1959; Nieuwenhuys, 2013), 

validity of smoothing across the area boundaries could be questionable and care must be 

taken. However, new tools are becoming available that provide a more accurate prediction of 

the locations and geometry of these features within cortical areas (Kleinnijenhuis et al., 

2015; Leprince et al., 2015; Waehnert et al., 2014) and with some additional information, a 

curvilinear anatomy-matched intracortical coordinate system could possibly be established. 

The proposed smoothing framework could also be potentially useful for studies of the 
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subcortical gray matter structures, where precisely shaped and weighed anatomically-

informed smoothing kernels can also provide some advantage.

One limitation of the presented work is not accounting for the possible changes in temporal 

autocorrelation of the BOLD signal as a function of cortical depth and physiological noise 

contribution, which could affect the effective degrees of freedom (DOFs) at each depth and 

thus influence the z-statistic values (as discussed previously (Blazejewska et al., 2017)). 

Since estimating DOFs is non-trivial, for the purpose of this work, we adopted a common 

assumption that DOFs were the same over the entire brain, but this assumption should be 

revisited (Eklund et al., 2016; Wald and Polimeni, 2017).

Another potential limitation of the presented framework is its strong dependence on the 

accuracy of the surface reconstruction and on the alignment of the functional data onto the 

surface meshes given the differing levels of geometric distortion between conventional 

functional and anatomical data. Recent improvements in surface reconstruction accuracy 

have been provided by increasing resolution and quality of anatomical data (see 

Supplementary Fig. 2), which partially addresses this limitation (Bazin et al., 2014; Glasser 

et al., 2013; Zaretskaya et al., 2018). The concern related to the well-known geometric 

distortion in EPI data impacting the alignment can also be mitigated through a recently 

proposed strategy of using EPI data themselves as the anatomical reference and generating 

cortical surface reconstructions directly from EPI data that are distortion-matched to the 

functional data (Huber et al., 2017; Kashyap et al., 2017; Renvall et al., 2016).

Our results show that the strategy of acquiring small, isotropic voxels that can adequately 

sample the cortex might be preferable to the common strategies of using either large voxels 

or anisotropic voxels with high in-plane resolution and thicker slices tailored to one small 

cortical region. In our approach, the same high-resolution acquisition could be used in 

multiple studies across multiple brain regions, since many spatial scales of interest could be 

investigated through different smoothing kernel sizes and shapes. This strategy, as 

previously proposed (Triantafyllou et al., 2006), nicely decouples the details of the 

acquisition from the anatomical region of interest and the spatial scale of the expected 

activation. A potential drawback of acquiring whole-brain coverage fMRI with small voxels 

is loss of the temporal resolution, however newly available techniques such as SMS-EPI 

(Barth et al., 2016) used in this study help to compensate for this, making our recommended 

strategy more practically feasible even on clinical MRI scanners.

Conclusions

Here we propose a new framework for surface mesh-navigated smoothing of the cortical 

ribbon viewed as a 3D structure with the use of small isotropic voxels, which allows 

smoothing within the folded cortical gray matter while avoiding noise contamination and 

signal dilution from surrounding CSF and WM, resulting in activation that is specific to GM. 

This framework can be applied in both high-resolution fMRI studies investigating 

intracortical features aligned relative to the cortical GM boundaries, such as cortical 

columns and layers, as well as in conventional fMRI studies investigating regional patterns 

of activation. Appropriately smoothed small voxels achieved higher tSNR and fCNR than 
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conventional large voxels while also avoiding contamination from pial vasculature known to 

reduce spatial specificity. Voxels smaller than the cortical thickness, such as 1 mm isotropic 

voxels, should therefore be collected to adequately sample cortical gray matter, and 

subsequently smoothed with a kernel specifically designed for the particular study to 

maximize fMRI detection power while preserving spatial resolution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• We introduce an anatomically-informed intracortical spatial smoothing 

method

• Smoothing fMRI data while avoiding white matter and CSF has advantages

• Different smoothing kernels maximize SNR and percent signal change

• Smoothing small-voxel data can provide improved detection and comparable 

resolution

• This smoothing framework can also benefit laminar and columnar activation 

patterns
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Fig. 1. 
A diagram demonstrating the redistribution of small voxels and the weighting of their 

signals in the process of surface mesh-navigated anatomically-informed smoothing, which 

allows avoiding CSF and WM influences that commonly affect the signal within large 

voxels. (a) A large 3×3×3 mm3 voxel effectively smooths (averages) signal from 27 small 

1×1×1 mm3 voxels contained within it, using an equal weight of 1.0 for each; here we show 

the 2D cross-section only, which includes 9 small 1×1×1 mm3 voxels. (b) With smaller 

voxels, the same volume can be achieved while distributing the voxels such that they are 

restricted to the cortical ribbon and conform to its shape. Furthermore, the weights can be 

adapted to provide more flexibility in defining the shape and extent of the kernel.
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Fig. 2. 
(a) A diagram presenting a family of intracortical surface meshes, where the heat scale 

represents the cortical depth; the mesh topology (i.e., both the numbers of vertices and edges 

and the connections between the vertices) is the same for all depths, so that a given vertex 

index in one mesh corresponds to the same vertex index across all the meshes. (b) A 

schematic illustration of steerable smoothing kernels tracking the cortical GM folds: 1D 

radial or “columnar”, 2D tangential or “laminar”, and 3D or “intracortical” (IC) extending 

from WM surface (IC-wm) and from midgray depth (IC-mid), and over all cortical depths 

(IC-all); columnar smoothing is enacted by an average of the data across the corresponding 

vertices.
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Fig. 3. 
(a) Example axial slices and sagittal reformats of tSNR maps calculated for all four spatial 

resolutions (1.1, 1.5, 2.0, 3.0 mm isotropic) of resting-state fMRI data for a representative 

subject. (Note that different color scales were used across resolutions to better visualize 

spatial distribution of tSNR.) (b) The effect of tangential smoothing on tSNR values across 

cortical surfaces, normalized to tSNR of 3.0-mm isotropic resolution non-smoothed data 

(represented by the black horizontal line), for all four spatial resolutions, averaged across 

five subjects. Error bars indicate standard error across subjects.
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Fig. 4. 
The effect of radial (columnar), tangential (laminar), and intracortical smoothing on tSNR 

values of resting-state fMRI data. For comparison, tSNR values were normalized to a 

reference tSNR of non-smoothed 3.0-mm isotropic resolution data sampled at midgray depth 

(represented by the black horizontal line), then averaged across five subjects. (a) The results 

of radial smoothing (dashed bars) are compared with the tSNR of the original data (solid 

bars) for all four spatial resolutions (1.1, 1.5, 2.0 and 3.0 mm isotropic) and averaged across 

all cortical depths. (b) The results of tangential smoothing plotted as a function of tangential 

smoothing radius, for all four spatial resolutions; line colors indicate different spatial 

resolutions (as in panel a). (c) The results of intracortical smoothing across all depths (IC-

all: 00– 10, extending from WM to pial surface) plotted as a function of tangential 

smoothing radius, for 1.1-mm isotropic resolution data only. For comparison, the tSNR plot 

of tangential smoothing (blue curve) is reproduced from panel b. In (b) and (c), dashed lines 

represent data at 100% depth (i.e., at the pial surface), and solid lines represent data at 50% 

depth (i.e., at the midgray surface); see legend below panel. Red arrows indicate transitions 

where smoothing of 1.1-mm data produces tSNR that exceeds the tSNR level of the 

reference non-smoothed 3.0-mm data. Error bars indicate standard error across subjects.
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Fig. 5. 
tSNR values (averaged across 5 subjects) calculated for 1.1-mm isotropic resting-state fMRI 

data after smoothing with a set of kernels with equivalent smoothing capacities. For 

comparison, the resulting tSNR was normalized to the reference tSNR of conventional 

volume-based smoothed data using a 3D kernel with FWHM=2.0 mm sampled at midgray 

depth. The reference tSNR of the volume-smoothed data, represented by the gray bar, is 

compared with the tSNR after applying a set of surface-based smoothing kernels with 

smoothing capacity matched to the FWHM=2.0 mm volume-smoothing kernel: a purely 

tangential kernel with NB=5 (radius≈3.3 mm, cyan bar) where the resulting tSNR values 

were averaged across depths, and with intracortical kernels with varying tangential 

neighborhoods (red-scale bars) including: one extending across all depths (IC-all: 00–10), 

one extending from the WM to an intermediate depth (IC-wm: 00–08), one centered at 

midgray depth and extending symmetrically in both directions (IC-mid: 03–07), and one 

consisting only of the WM surface (IC-wm: 00). Normalized tSNR of non-smoothed 3.0-

mm isotropic data was plotted for comparison (white bar). Error bars indicate standard error 

across subjects.
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Fig. 6. 
Visualization of the spatial distribution of tSNR averaged across subjects using the 

FreeSurfer CVS avg35 atlas space, shown on the inflated surface representation. (a) 
Normalized tSNR of the non-smoothed 3.0-mm isotropic resolution data and the 1.1-mm 

isotropic resolution data after smoothing with surface-based kernel IC-mid 03–07 NB=4. 

Regional differences in the tSNR maps are seen, however the tSNR of the smoothed 1.1 mm 

isotropic data is higher than the unsmoothed 3.0-mm isotropic data in nearly every region of 

the cortical hemispheres. (b) tSNR gain maps showing the tSNR increase, the ratio of 1.1-

mm isotropic resolution data smoothed using the kernel from panel (a) by the same non-

smoothed 1.1-mm data. For this example acquisition and this example kernel, some brain 

regions naturally benefit more from smoothing than others.
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Fig. 7. 
Normalized percent signal change (ΔS/S), contrast standard deviation (stdcon), and z-

statistic values, averaged across 5 subjects and plotted as a function of cortical depth, for 

breath-hold (BH, top) and visual task (VIS, bottom), for all spatial resolutions: 1.1, 1.5, 2.0 

and 3.0 mm isotropic. Blue-to-cyan lines represent original, non-smoothed data at 1.1, 1.5, 

and 2.0-mm isotropic resolution, while red-to-yellow lines correspond to data smoothed 

tangentially with radius of about 2.0 mm (NB=3) at 1.1, 1.5, and 2.0-mm isotropic 

resolution. Black line represents the values of the non-smoothed 3.0-mm isotropic data for 

comparison. Error bars indicate standard error across subjects.
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Fig. 8. 
Normalized z-statistic values, averaged across 5 subjects, calculated for 1.1-mm isotropic 

breath-hold fMRI data, plotted as a function of smoothing kernel size, for all cortical depths 

(red to green, with red representing data sampled at the WM surface, and green representing 

data sampled at the pial surface). (a) Conventional 3D volume-based smoothing with various 

kernel sizes up to 4-mm FWHM. The yellow oval highlights the spread of z-statistic values 

for a specific kernel size (2-mm FWHM). (b) Proposed 2D tangential surface-based 

smoothing with radius up to 4 mm. The yellow oval from panel (a) is reproduced here, and is 

placed at the surface-smoothing radius corresponding to the kernel with smoothing capacity 

equivalent to the 2.0-mm FWHM 3D volume-smoothing kernel, with the blue oval outlining 

spread of the z-statistic values across cortical depths (NB=5, radius≈3.3 mm). The blue oval 

highlights how, at this same smoothing capacity, the surface-based tangential smoothing 

achieves a broader range of resulting z-statistic values across depths. In both panels the 

black line represents the reference non-smoothed 3.0-mm isotropic data, and error bars 

represent standard error across subjects.
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Fig. 9. 
Normalized z-statistic values (averaged across 5 subjects) calculated for 1.1-mm isotropic 

BH task fMRI data after smoothing with a set of kernels with equivalent smoothing 

capacities, just as in Fig. 5. The z-statistic values in each subject were first normalized to the 

z-statistic resulting from conventional volume-based smoothed data using a 3D kernel with 

FWHM=2.0 mm sampled at midgray depth, then averaged across subjects. The z-statistic of 

the reference volume-smoothed data, represented by the gray bar, is compared with the z-

statistic after applying a set of surface-based smoothing kernels with equivalent smoothing 

capacity including: a purely tangential kernel with NB=5 (radius≈3.3 mm, cyan bar) where 

the resulting z-statistic values were averaged across depths, and with intracortical kernels 

with varying tangential neighborhoods (red-scale bars) including: one extending across all 

depths (IC-all: 00–10), one extending from the WM to an intermediate depth (IC-wm: 00–

08), one centered at midgray depth and extending symmetrically in both directions (IC-mid: 

03–07), and one consisting only of the WM surface (IC-wm: 00). Normalized z-statistic of 

non-smoothed 3.0-mm isotropic data was plotted for comparison (white bar). Error bars 

indicate standard error across subjects. Unlike the tSNR results shown in Fig. 5, here the 

normalized z-statistic value of the NB=5 smoothed data at the WM surface is the lowest 

value of all cases shown.
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Table 1.

Summary of the scanning parameters: matrix size = image encoding matrix (number of readout lines × number 

of phase encoding lines × number of slices), R = acceleration factor, MB = multi-band factor, TR = repetition 

time, TE = echo time, TI = inversion time, α = flip angle, ESP = nominal EPI echo spacing, BW = bandwidth. 

NREST represents the number of time points used in the tSNR analysis of resting-state data; NBH, and NVIS 

correspond to the numbers of time points acquired in breath-hold and visual task runs, respectively.

pulse sequence

resolution
[mm3]

matrix size
[Px]

R MB TR
[ms]

TE
[ms]

TI
[ms]

α
[°]

ESP
[ms]

BW
[Hz/Px]

BW number of 
timepoints

NREST NBH NVIS

EPI 1.10 × 1.10 
× 1.10

174 × 174 × 
99

4 3 2000 26 -- 74 0.79 1512 60 122 96

EPI 1.50 × 1.50 
× 1.50

128 × 128 × 
75

3 3 1500 26 -- 68 0.80 1446 80 162 128

EPI 2.00 × 2.00 
× 2.00

96 × 96 × 57 2 3 1040 26 -- 60 0.57 2170 115 234 184

EPI 3.00 × 3.00 
× 3.00

64 × 64 × 39 1 3 745 26 -- 52 0.53 2368 161 326 257

EPI 0.80 × 0.80 
× 0.80

200 × 200 × 
32

5 -- 2000 28 -- 74 1.00 1190 80 -- 110

ME-MPRAGE 0.75 × 0.75 
× 0.75

320 × 320 × 
224

2 -- 2530 1.76, 3.7 1100 7 6.2 615 -- -- --
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