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Human brain structure topography is thought to be related in part to functional specialization. However, the extent of such relationships
is unclear. Here, using a data-driven, multimodal approach for studying brain structure across the lifespan (N � 484, n � 260 females),
we demonstrate that numerous structural networks, covering the entire brain, follow a functionally meaningful architecture. These gray
matter networks (GMNs) emerge from the covariation of gray matter volume and cortical area at the population level. We further reveal
fine-grained anatomical signatures of functional connectivity. For example, within the cerebellum, a structural separation emerges
between lobules that are functionally connected to distinct, mainly sensorimotor, cognitive and limbic regions of the cerebral cortex and
subcortex. Structural modes of variation also replicate the fine-grained functional architecture seen in eight well defined visual areas in
both task and resting-state fMRI. Furthermore, our study shows a structural distinction corresponding to the established segregation
between anterior and posterior default-mode networks (DMNs). These fine-grained GMNs further cluster together to form functionally
meaningful larger-scale organization. In particular, we identify a structural architecture bringing together the functional posterior DMN
and its anticorrelated counterpart. In summary, our results demonstrate that the relationship between structural and functional connec-
tivity is fine-grained, widespread across the entire brain, and driven by covariation in cortical area, i.e. likely differences in shape, depth,
or number of foldings. These results suggest that neurotrophic events occur during development to dictate that the size and folding
pattern of distant, functionally connected brain regions should vary together across subjects.
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Introduction
A long-standing concept postulates that functional specializa-

tion of the cortex relates to the cytoarchitectony and pattern of

convolutions in the cortex of mammals with folded brains (Toro
and Burnod, 2005). However, the extent to which structural and
functional architectures in humans might map onto one another
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Significance Statement

Questions about the relationship between structure and function in the human brain have engaged neuroscientists for centuries in
a debate that continues to this day. Here, by investigating intersubject variation in brain structure across a large number of
individuals, we reveal modes of structural variation that map onto fine-grained functional organization across the entire brain,
and specifically in the cerebellum, visual areas, and default-mode network. This functionally meaningful structural architecture
emerges from the covariation of gray matter volume and cortical folding. These results suggest that the neurotrophic events at play
during development, and possibly evolution, which dictate that the size and folding pattern of distant brain regions should vary
together across subjects, might also play a role in functional cortical specialization.
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remains unclear. Recently, fMRI studies have shown that the
functional organization of the brain is shaped by an intrinsic
architecture that can be observed in the network patterns of both
task-related and resting fMRI (Smith et al., 2009; Finn et al.,
2015). Additional evidence has now begun to suggest that such
functional architecture topographically corresponds to an equiv-
alent network-based structural organization, with particular net-
works found to occur both in functional and structural imaging
(Greicius et al., 2009; Honey et al., 2009; Segall et al., 2012;
Alexander-Bloch et al., 2013; Sporns, 2014). For instance, “struc-
tural covariance” studies, in which maps of covariation in the size
of gray matter regions at a population level are created using
regions of interest, have revealed gray matter architectures partly
resembling intrinsic functional resting-state networks (RSNs)
(Chen et al., 2008; Seeley et al., 2009). In addition, identification
of patterns in healthy brain structure have recently provided in-
sights into the spread and selective targeting of disease processes,
making an understanding of these structural networks highly rel-
evant to the clinical field (Seeley et al., 2009; Raj et al., 2012;
Douaud et al., 2014; Zeighami et al., 2015).

However, fundamental questions remain unanswered on the
extent and nature of this structure–function correspondence. For
example, the following remain to be determined: (1) whether
gray matter volume structural covariance patterns reflect the en-
tire repertoire of canonical functional architecture; that is,
whether all of the brain regions present in canonical functional
networks also covary in size across the population; (2) if struc-
ture–function correspondence can be detected at a finer degree of
detail than those canonical functional networks; and (3) if such
volume variation across subjects is associated with variation in
the folds and thickness of the cortex.

To uncover the richness of structural patterns in the human
brain, we investigate here the gray matter structure of a large
healthy population covering most of the lifespan (8 – 85 years)
with a data-driven approach. Using one structural MRI scan per
subject, our multimodal approach (linked independent compo-
nent analysis) (Groves et al., 2011) makes it possible to co-model
three types of gray matter information to reveal maps of popula-
tion covariation in gray matter volume, as well as complementary
maps of covariation in cortical area and cortical thickness to help
disentangle the possible interpretations of gray matter volume
results. We decomposed the data into 70 modes of variation— or
independent components (ICs)—to allow further comparison
with the functional network decompositions presented in (Smith
et al., 2009) that showed good correspondence between resting
and task-related networks. Each of the spatial ICs obtained with
this method represents a mode of covariation of gray matter vol-
ume, area, and thickness across all 484 participants.

Materials and Methods
Participants and imaging protocol. A total of 484 right-handed healthy
volunteers (264 females) covering most of the lifespan (aged 8 to 85 years,
39 � 13 years) were included in this study from two separate research
projects run by the Research Group for Lifespan Changes in Brain and

Cognition at the University of Oslo (“Neurocognitive Development” and
“Cognition and Plasticity through the Life-Span”). The study was ap-
proved by the Regional Committee for Medical and Health Research
Ethics in Norway. More information about inclusion and exclusion cri-
teria can be found in Douaud et al. (2014).

All participants underwent the same imaging protocol on a 1.5 T Sie-
mens Avanto scanner at Oslo University Hospital, with no hardware
upgrades and only minor software upgrades performed during the
course of the acquisition period (2006 –2010). Whole-brain T1-weighted
images were acquired using a 12-channel head coil and magnetization
prepared rapid gradient echo (MPRAGE) with the following parameters:
TR/TE/TI � 2400/3.61/1000 ms, flip angle of 8°, matrix 192 � 192, FOV
240 mm, voxel size 1.25 � 1.25 � 1.2 mm 3, 160 sagittal slices. To increase
signal-to-noise ratio, the sequence was run twice within a single session.

Imaging processing. As we aim to further our understanding of what the
contributing factors to the gray matter volume networks might be, for
example, as described in Seeley et al. (2009), we assessed cortical thick-
ness and area in addition to volume, as these are the two modalities
typically used to disentangle the different contributions to, and possible
interpretations of, gray matter volume in numerous previous studies
(Douaud et al., 2007; Voets et al., 2008; Jalbrzikowski et al., 2013; Storsve
et al., 2014; Winkler et al., 2018).

T1-weighted images were processed using FSL-VBM (Douaud et al.,
2007), an optimized voxel-based morphometry analysis protocol (Ash-
burner and Friston, 2000) using FMRIB Software Library (FSL) tools
(fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM) (Smith et al., 2004). For each
subject, the input image for FSL-VBM was an average of the two
coaligned MPRAGE scans. The two runs were preprocessed using Free-
Surfer (http://surfer.nmr.mgh.harvard.edu/), including motion correc-
tion, averaging, and intensity nonuniformity correction. Before the
FSL-VBM processing, the volumes were masked by the full-brain seg-
mented volume output from FreeSurfer (Fischl et al., 2002), excluding
nonbrain compartments. A left–right symmetric, study-specific template
was created by: (1) registering the 484 brain-extracted, gray matter-
segmented images to the MNI 152 standard space “avg152T1_gray” tem-
plate using nonlinear registration and (2) averaging and flipping the
resulting images along the x-axis. After nonlinearly normalizing all the
gray matter images onto this symmetric study-specific gray matter tem-
plate, the modulated registered gray matter images were smoothed with
an isotropic Gaussian kernel with a � of 2 mm (�5 mm FWHM).

In addition, brain structural information was derived from two addi-
tional, complementary types of gray matter information: vertexwise cor-
tical thickness and surface area measures calculated using FreeSurfer by
means of an automated surface reconstruction scheme (Dale et al., 1999;
Fischl et al., 1999; Fischl and Dale, 2000). Cortical thickness measure-
ments were obtained by reconstructing representations of the gray/white
boundary and the pial surface and then by calculating the distance be-
tween the surfaces at each vertex across the cortical mantle. Surface area
was estimated by registering each subject’s reconstructed surfaces to a
common template (using folding information to drive the within-surface
warping) and the relative amount of expansion or compression at each
vertex was used as a proxy for regional area. These FreeSurfer maps
were resampled, mapped to a common coordinate system using a
nonrigid high-dimensional spherical averaging method to align cor-
tical folding patterns, and smoothed with a Gaussian kernel with an
FWHM of 10 mm.

Linked IC analysis (ICA). Linked ICA is a data-driven approach that
can co-model multiple imaging modalities. Its main goal is to model the
imaging data as a set of interpretable ICs, characterizing plausible modes
of variability across all subjects’ modalities. Multimodal and data-driven
aspects of such methods (linked ICA, but also joint ICA) have made these
tools increasingly popular, especially in mental health disorders (Sui et
al., 2011; Stephen et al., 2013; Francx et al., 2016; Doan et al., 2017b),
where there is a strong heterogeneity in symptoms, disease course, and
biological underpinnings (Marquand et al., 2016), but also recently with
Alzheimer’s disease and mild cognitive impairment (Doan et al., 2017a).
Linked ICA is part of FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLICA),
and was described in detail in earlier FLICA papers (Groves et al., 2011;
Douaud et al., 2014). Briefly, we ran the linked ICA decomposition on
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the 4D files obtained from our FSL-VBM and FreeSurfer processing
(GM_mod_merg_s2_4 mm.nii.gz, ?h.thick.fsaverage5.10.mgh, ?h.pial.
area.fsaverage5.10.mgh) with 70 ICs to make this comparable to the
decomposition of resting-state and task-based fMRI datasets used in
Smith et al. (2009) and n � 1000 maximum iterations. FLICA, which will
eliminate unneeded components using Bayesian model order selection,
kept all 70 ICs.

We identified all of the 70 ICs’ spatial distributions using, wherever
relevant, the Jülich atlas, based on probabilistic cytoarchitectonic seg-
mentations performed by the team of Professors Zilles and Amunts and
transformed into MNI space (Eickhoff et al., 2005), as well as a cerebel-
lum probabilistic atlas (Diedrichsen et al., 2009) devised using anatomi-
cal labels and boundaries defined postmortem (Schmahmann, 2000).

Post hoc association with age. The result of the linked ICA is blind to
the participants’ demographics and solely relies on the information of
the structural scans. We thus determined post hoc which ICs might show
association (linear, quadratic, and cubic) with age (MATLAB2012, using
glmfit). Results were corrected for multiple comparisons across all 70
ICs.

Spatial cross-correlation with resting-state and BrainMap networks.
Matching networks is a notoriously challenging task. Spatial correlation
can objectively quantify how similar the topographical distribution
across maps is (Smith et al., 2009; Douaud et al., 2014), but ultimately
manual inspection is needed to help identifying maps as corresponding
to the “canonical” DMN, executive, frontoparietal, visual, sensorimotor,
and auditory networks (Beckmann et al., 2005). The level of fragmenta-
tion can also vary across datasets. Here, to compare the spatial distribu-
tion of the gray matter networks (GMNs) with those of the canonical
functional networks, we adopted the approach of normalizing and aver-
aging across networks when the level of fragmentation was higher for one
dataset. We considered a whole gray matter mask and correlated all vox-
els of the FLICA relevant ICs with both resting-state fMRI (RSN) and the
BrainMap (BM) fMRI database (Fox and Lancaster, 2002) canonical
functional networks from Smith et al. (2009) using voxelwise spatial
cross-correlation. To assess the significance of the spatial cross-
correlations between the structural and functional ICs, we randomly
generated 1000 Gaussian noise images that we smoothed with the corre-
sponding estimated smoothness for each set of ICs. We then calculated
the 1000 cross-correlations between each pair of these ICs and compared
the strength of our observed correlations with this empirically generated
null distribution.

Hierarchical clustering between the structural components. We used hi-
erarchical clustering to investigate whether 36 of the most identifiable
structural network ICs would form together functionally meaningful
higher-order clusters. We used the correlation coefficient of the subject-
weight vectors between any two ICs as similarity measure, and complete
linkage as an algorithm to create the cluster tree in MATLAB version
7.14. In the hierarchical tree, the height of each inverted U links repre-
sents the distance (here 1 � r) between the two objects being connected.
Hierarchical clustering on the transposed matrix, that is, using the cor-
relation coefficient between the ICs distribution of subjects’ weights for
two given subjects, revealed no pattern in the grouping of the subjects
that could be associated with demographics or cognitive measures.

The sub-Gaussian nature of the more spatially extended (global) com-
ponents retained by FLICA and the rich complementarity between the
different measures derived from the T1 data (volume, area, thickness)
might explain why our linked ICA approach performed so well with
respect to identifying many—and functionally linked— distinct compo-
nents of covariation: for instance, in a previous study of just gray matter
“concentration,” six of 75 ICs were identified for network correlations to
be compared here with 36 of 70 ICs that were included in our hierarchical
clustering analysis (Segall et al., 2012). Although the multimodality of
gray matter information resulted in clearer, more spatially well defined
results and facilitated their interpretability, running FLICA (with the
same set of options) solely based on the gray matter volume information
yielded similar results (data not shown).

Replication. As an accessible replication sample covering this large age
range is not readily available, we empirically demonstrated the robust-
ness of our findings via a split-half procedure. We split the 484 subjects

into two groups of equal size (n � 242) perfectly age matched in mean
and in variance to the original population and to one another (to retain
what we believe is an important feature of our original population, mean:
39.4 � 22.6 years of age), and ran FLICA with the same options on these
two subgroups. We identified the two new sets of ICs by comparing them
with the original analysis using voxelwise spatial cross-correlation, fol-
lowing the same procedure described above, and then compared the two
new sets of ICs with one another.

The results and script are available at: http://www.fmrib.ox.ac.
uk/datasets/FLICA_ThickAreaVol/. This experiment has not been
preregistered.

Results
Global and age-related independent components
Of the 70 ICs, there were three global, spatially nonspecific com-
ponents accounting for most of the structural variance across all
the 484 healthy participants. IC1 was a multimodal component
made of 51% cortical thickness information (accounting, in this
specific IC, for 65% of the cortical thickness variance across all
the participants), 7% cortical area (accounting for 17% of the
cortical area variance), and 42% gray matter volume (accounting
for 49% of the gray matter volume variance) (Douaud et al.,
2014). IC2 was essentially composed of cortical area information
(89%, accounting for 27% of the variance) and IC3 of cortical
thickness (98%, accounting for 10%).

Overall, 13 ICs were statistically significantly associated with
age either quadratically (n � 6: IC4, 6, 9, 18, 19, 24), cubically
(n � 5: IC11, 49, 50, 52, 67), quadratically and cubically (n � 1:
IC5), or all three (n � 1: IC1), after correction for multiple com-
parisons. However, only two of these ICs showed also practical
significance for these associations, that is, significance measured
using effect magnitude, such as the variance explained by age, as
opposed to p-values (Kirk, 1996): IC1 and IC4, comprehensively
described previously (Douaud et al., 2014). Six ICs showed sig-
nificant sex-related differences after correction for multiple com-
parisons, although only three ICs remained associated with sex
after adjusting for intracranial volume and only one IC consider-
ing practical significance: IC4 (Douaud et al., 2014).

Four modes of structural variability were artifactual compo-
nents: IC6 related to the variable efficacy of the brain extraction
around the basal arteries and IC9, IC19, and IC63 were domi-
nated by only a few of the participants’ scans (between 1 and 3),
although such ICs might still represent an anatomically meaning-
ful mode of variability for the remaining participants. For in-
stance, one of them defined precisely the basal ganglia structures,
but seemed very strongly driven by one elderly subject exhibiting
numerous Virchow–Robin spaces in those structures. It is alto-
gether possible, however, that the remaining 483 participants’
contribution to this IC might have been valuable because, of the
70 ICs, no other one revealed mode of variation in the basal
ganglia. By contrast, another structural covariance study found
the strongest spatial cross-correlation with functional networks
in the basal ganglia (Segall et al., 2012).

GMNs
The vast majority of the remaining structural components (�40
of the 70 ICs) represented regional patterns of mostly spatially
covarying gray matter volume and cortical area recapitulating
functionally meaningful networks across the entire brain (see
Figs. 1 and 2 and for more details of these networks, see below).
These components describing localized, well defined modes of
variation showed no relationship with age (linear, quadratic, or
cubic), sex, intracranial volume, or education after correction for
multiple comparisons. Each of these “GMNs” explained a small
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amount of the structural variance (Table
1), as most of such variance (and age rela-
tionship) was accounted for in the first
three global components that together ex-
plained 76% of the variance in cortical
thickness, 44% in area and 50% in volume
(see above). Indeed, these GMNs inher-
ently described modes of variation over
and above variation associated with all
other components, including the strongly
age-related IC1 and IC3, which are wide-
spread components of gray matter vol-
ume and cortical thickness. These GMNs
covered the entire brain and offered a
fine-grained, winner-take-all parcellation
with almost 500 areas in total (using
spherical connectivity; �200 with � 20
voxels) (Fig. 2). These parcels revealed, for
instance, a clear separation between BA44
and BA45 (Amunts et al., 1999) or be-
tween PF and PG in the inferior parietal
cortex (Caspers et al., 2006) despite cyto-
architectonic borders between adjacent
association cortices (such as in these two

Figure 1. GMNs map onto canonical functional networks identified in Smith et al. (2009) in both rest and task fMRI. The GMNs (GMNs, left in each panel) spatially correspond to the previously
matched functional networks obtained using a data-driven approach (RSNs, middle of each panel; BrainMap task-related fMRI networks, obtained from nearly 30,000 subjects: BM, right in each
panel). Due to a higher degree of fragmentation in the structural data, we averaged the two structural DMNs, DMN 1 and DMN 2, and the three structural sensorimotor networks. The spatial
correlation coefficients obtained between GMNs and a given set of functional networks were mainly consistent with those observed between the two functional datasets (Table 2). By radiological
convention, left is right in all figures.

Figure 2. Parcellation across the entire brain based on the structural GMNs. Hard parcellation (winner-take-all) created using
the absolute z maps for the 36 structural GMNs used in the hierarchical clustering analysis, semitransparent and overlaid onto the
gray matter average across all 484 participants. Note the bilateral aspect of most networks, except in the frontoparietal networks
(top row, fourth right for parietal node; bottom row, second right for frontal node).
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cases) being considerably more subtle than in primary areas (Fis-
chl et al., 2008), as well as between crus I and II in the cerebellum
(see more details below) (Diedrichsen et al., 2009).

The average map across all these GMNs revealed that the most
shared brain regions were the dorsal lateral prefrontal cortex
(particularly on the right), Broca’s area (BA45, particularly on the
left), supplementary motor area, posterior intraparietal sulcus,
precuneus, Wernicke’s area (OP1, mainly on the left), angular
and midtemporal gyrus, temporal pole, fusiform gyrus, and
V5/MT (mainly on the left) (Fig. 3). These mostly associative,
transmodal regions (Mesulam, 1998) seem to spatially corre-
spond to those which have been consistently found to be the most
structurally connected nodes using white matter connectivity,
most particularly the precuneus and intraparietal sulcus (Sporns,
2014). In other words, the regions that emerged from the FLICA
decomposition the most often across all the GMNs in this healthy
population are also the regions that share the most white matter
connections to other parts of the brain (“hubs”) (Hagmann et al.,
2008; Gong et al., 2009; Nijhuis et al., 2013). A future approach to
directly test this hypothesis would be to concurrently run FLICA
on gray matter information and white matter connectivity, as op-
posed to voxelwise diffusion measures, which only reveal very local-
ized covarying effects in the subjacent white matter (Groves et al.,
2012). Although these most-shared gray matter nodes show some
similarities with the cortical hubs defined from “myelination” (T1w/
T2w) maps in the same subjects (Broca’s areas, angular gyrus, tem-
poral pole, V5/MT on the left), the absence of the precuneus in these
T1w/T2w images is conspicuous, demonstrating the complementa-
rity of gray matter and cortical myelination information (Grydeland
et al., 2019). These most-shared gray matter areas also display a very
different pattern from that found when looking at the main nodes of
structural differences between healthy subjects and those with a va-
riety of brain disorders (Cauda et al., 2018). This transdiagnostic
VBM meta-analysis obtained from BrainMap indeed revealed that
the main areas of structural alterations were located in subcortical
structures and the insula, as well as the anterior cingulate cortex.
These gray matter areas therefore mostly describe the salience net-
work, probably as a direct consequence of having a higher represen-
tation of schizophrenia and other mental health disorders in the
meta-analysis (Goodkind et al., 2015).

Structural networks arise from the
covariation of gray matter volume and
cortical area
One key advantage of our linked ICA ap-
proach was its multimodal aspect, inte-
grating gray matter volume, cortical area,
and cortical thickness information simul-
taneously. This multimodal feature re-
vealed that modes of variation in gray
matter volume across participants mainly
colocalized with modes of variation in
cortical area; that is, presumably differ-
ences in shape, depth or number of foldings
(Fig. 4). Gray matter volume networks in-
volving primary sensory and motor areas
such as V1, M1, S1, or A1 also partially co-
varied with local cortical thickness, perhaps
as a result of being highly myelinated corti-
cal regions (Fig. 5). Except in those primary
sensory regions, thickness contributed little
to those most interpretable GMNs and/or
was below threshold. As mentioned above,

Figure 3. Most shared gray matter regions across all structural GMNs. This shows that, on average, the most present brain
regions across all GMNs (present in � 10 ICs) are mainly the precuneus, the fusiform area (particularly on the right), the posterior
intraparietal sulcus, and the (right) DLPFC (in red). The average z map is semitransparent and overlaid onto the gray matter average
across all 484 healthy participants (�z� � 1.5).

Table 1. Variance explained by each of the GMNs (%)

IC number CT CA VOL GMNs

8 0.4 2.3 1.0 Visual 1
11 0.1 1.5 1.2 Executive
12 0.0 0.0 2.0 Cerebellum 3 (crus I versus crus II)
13 0.1 1.0 1.4 Visual 2
14 0.3 2.0 0.7 Auditory
15 0.5 1.2 0.9 Visual 3
17 0.1 1.1 1.3 DMN 1
18 2.6 0.0 0.0 Sensorimotor (M1, premotor), CT
20 0.4 0.8 1.1 Language
21 0.1 1.6 1.0 Other visual/motor (supplementary eye field)
22 0.0 1.8 0.8 Precentral versus inferior frontal gyrus
23 0.3 0.4 1.3 Visual 6
25 0.0 0.0 1.6 Cerebellum 1
28 0.2 0.2 1.1 Frontoparietal (parietal) R
29 0.6 0.8 0.3 Sensorimotor 1 (lateral: M1, premotor)
30 0.2 1.3 0.4 Sensorimotor 2 (lateral: sensory)
31 0.0 1.8 0.5 Frontoparietal (frontal) L
32 0.0 1.1 0.7 Visual 4
34 0.0 1.1 0.7 Oculomotor 1 (frontal/premotor/cingulate eye field)
35 0.1 0.8 0.8 Other visual (parieto-occipital fissure)
36 0.0 0.8 0.8 Sensorimotor 3 (medial)
40 0.1 0.8 0.8 Middle temporal sulcus
42 0.1 0.6 0.7 DMN 2
43 1.3 0.1 0.2 Auditory, CT
45 0.3 0.6 0.6 Olfactory (piriform)
46 0.2 0.8 0.5 Posterior superior temporal sulcus
47 0.1 0.9 0.5 Other visual (fusiform area: occipital)
48 0.0 0.0 1.0 Frontoparietal (parietal) L
49 0.0 0.0 1.0 Cerebellum 2
51 0.1 1.1 0.3 Visual 7
54 0.0 0.0 0.9 Visual 8
55 0.0 1.0 0.5 Frontoparietal (frontal 1) R
57 0.0 0.6 0.6 Visual 5
60 0.1 1.2 0.2 Frontoparietal (frontal 2) R
64 0.1 1.2 0.3 Oculomotor 2 (posterior supplementary eye field)
69 0.0 0.0 0.7 Cerebellum 4
Total variance 8.3 30.7 28.3

CT, Cortical thickness; CA, cortical area; VOL, grey matter volume. In total, the most identifiable networks explain
about 8% of the variance in CT, 31% of CA, and 28% of VOL, as most of the variance is captured in the first three
“global” ICs: 76% for CT, 44% for CA, and 50% for VOL.
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by construction, our data-driven approach reveals these GMNs as
modes of variation beyond age-related, more spatially widespread
ICs (the majority of which were driven by cortical thickness). This
likely explains differences with thickness studies (Chen et al., 2008),
where a seed-based approach showed correlations between cortical
regions that may have been age-mediated to some extent.

GMNs follow a functionally meaningful architecture
The functionally relevant level of detail described by these GMNs
actually extended beyond the coarse spatial organization de-
scribed by the canonical RSNs; that is, those most consistently
described in the literature and that are common to both rest and
task fMRI (Beckmann et al., 2005; Smith et al., 2009). By decom-

Figure 4. Gray matter volume networks covary with regional, colocalized cortical area. The vast majority of the well identified cerebral gray volume networks covaried with regional cortical area;
that is, both gray matter volume and colocalized cortical area variations appeared in the same IC. In this figure, we show the example of the executive GMN, DMN 1, and visual 4. For each example,
gray matter volume is on the left (red-yellow), and colocalized cortical area on the right (red-yellow) (z � 5, cortical thickness did not pass the threshold). The medial aspect of the GMNs in general
was not reproduced as well in the cortical area (often just below threshold), possibly suggesting that the reconstruction of the medial surface is more problematic than for the lateral hemisphere in
FreeSurfer. Cortical area is projected in volume (an approximation) and smoothed with a Gaussian kernel of 1.5 mm � for better visualization.

Figure 5. Gray matter volume networks covary with cortical area and cortical thickness in primary sensory areas. Although the majority of the cerebral gray matter volume networks mainly
covaried with cortical area, some ICs also showed a substantial contribution of cortical thickness in primary sensory areas. Here, we show the example of the auditory GMN and one of the sensorimotor
GMNs. For both examples, gray matter volume is on the left, colocalized cortical area in the middle, and colocalized cortical thickness on the right (z � 5). Cortical area and thickness are projected
in volume and smoothed with a Gaussian kernel of 1.5 mm � for better visualization.
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posing fMRI data into a higher number of dimensions or by using
very localized regions of interest, studies have demonstrated that
single RSNs can be consistently broken down into more detailed
functional subnetworks (Margulies et al., 2009; Smith et al.,
2009). Similarly, the GMNs in our study exhibited functionally
meaningful fragmented organization, supporting the idea of a
fine-grained correspondence between structural and functional
architectures.

A these GMNs covered all of the canonical RSNs, they showed
in most cases a higher degree of fragmentation. We identified for
instance: (1) four cerebellum networks (cerebellum 1– 4; Fig. 6);
(2) eight visual networks (visual 1– 8; Fig. 7); (3) two default-
mode networks (DMN 1 and DMN 2; Fig. 8); (4) an executive
network (Figs. 1 and 4); (5) three primary sensorimotor networks
split into lateral primary sensorimotor cortex centered around
BA3 and BA 4 (SMN 1), BA 1 and BA2 (SMN 2), as well as the
medial sensorimotor cortex (SMN 3) (Geyer et al., 1996, 2000)
(Figs. 1 and 5); (6) an auditory network (Figs. 1 and 5); (7) two
left frontoparietal networks split into frontal and parietal unilat-
eral networks (Fig. 9); and (8) two right frontoparietal networks,
similarly split (Fig. 9).

In particular, we found within the cerebellum a notable, func-
tionally meaningful separation between the mainly sensorimotor
lobules (I–VI), the cognitive lobules VII and VIIIa (with a clear
delineation of crus I and II) and lobules VIIIb and IX, including

the corresponding vermis (Fig. 6). In the visual cortex, we also
identified the same fine detailed architecture as seen in func-
tional data. Specifically, we identified in the GMNs the same
eight visual functional networks identified both at rest and
during task (Smith et al., 2009) (Fig. 7). We also replicated the
separation of the DMN into anterior and posterior subnet-
works that are well established in functional data (Uddin et al.,
2009; Leech et al., 2011) (Fig. 8).

Remarkably, the spatial distribution of these GMNs was quan-
titatively very comparable to their rest and task fMRI counter-
parts (Smith et al., 2009) (Fig. 1, Tables 2, 3). Due to the higher
degree of fragmentation in the structural data, we averaged the
two structural DMN 1 and DMN 2 to compare them with the
canonical functional DMN and averaged the three SMN 1–3 net-
works for comparison with the canonical functional sensorimo-
tor network. This yielded spatial correlation coefficients that were
mainly consistent with those observed between the two func-
tional datasets (Table 2). Next, we also compared the spatial dis-
tribution of the eight visual GMNs and the eight rest and task
functional networks that had been matched previously (Smith et
al., 2009). We found that there was in general a strong, and
sometimes indeed even stronger, spatial correspondence be-
tween structural networks and one set of functional networks
(mostly the task-derived networks) than between the two sets
of functional networks (Table 3).

GMNs cluster into functionally relevant
larger-scale networks
Finally, we investigated whether the fine-grained GMNs would
aggregate together to form functionally relevant larger-scale net-
works. For this, we used hierarchical clustering, a method that
iteratively pairs ICs and groups of ICs based on similarity of
associated subject–weight vectors (by analogy to associated fMRI
time series; see Materials and Methods).

The two strongest pairings brought together GMNs that are
functionally associated: (1) visual 1 clustered with visual 3
(within the yellow cluster; Fig. 9) and (2) the auditory GMN
clustered with a language-related network (within the red cluster;
Fig. 9). The left frontal and parietal networks were also explicitly
paired in this hierarchical analysis to make the lateralized left
frontoparietal network, and the same could be seen for the right
frontal and parietal ICs (blue cluster and within the light green
cluster; Fig. 9).

Cerebellum
The hierarchical clustering drew the cerebellum networks to-
gether in one cognitive cluster and a separate sensorimotor clus-
ter (green and dark blue, respectively; Fig. 9). In the cognitive
cluster, cerebellum 3 (crus I/II, and posterior part of lobules VIIb
and VIIIa) paired with a cerebral region centered around the
middle temporal sulcus, which precisely corresponds to the re-
gion identified in rest fMRI as connecting both cerebellar lobules
(Sang et al., 2012), as well as with cerebellum 4 (anterior part of
lobules VIIb and VIIIa). The other, more sensorimotor cluster
encompassed cerebellum 1 (sensorimotor lobules I–VI) and cer-
ebellum 2 (lobules VIIIb and IX).

Visual areas
The aforementioned, strongest cluster including early visual ar-
eas visual 1 (medial) and visual 3 (lateral) was in turn paired with
a cluster consisting of visual 2 and visual 7, which anatomically
matched regions of lower and higher-level object processing re-
spectively, to form the entire yellow cluster seen in Figure 9.

Figure 6. Fine-grained, functionally meaningful cerebellar gray matter architecture. a, The
four cerebellar GMNs correspond to functionally different parts of the cerebellum and have
distinct functional connectivity with the cerebral cortex (Sang et al., 2012) (z � 5). b, Left,
Magnification of cerebellum 3 showing a clear distinction between crus I (blue) and crus II and
VIIb (red-yellow); right, lobule VII from an anatomical cerebellar probabilistic atlas (Diedrichsen
et al., 2009): crus I (in green), crus II and VIIb (in red).
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Another two visual clusters recapitulated all brain areas whose
function specifically involves the perception of faces, places and
bodies (Kanwisher and Dilks, 2013): one cluster made of the
structural equivalent of the temporal fusiform face area (FFA)
(visual 6), the posterior superior temporal sulcus and parahip-
pocampal place area/retrosplenial complex (visual 5); and one
made of the extrastriate body area (visual 4) and the occipital

fusiform area (violet cluster; Fig. 9). The GMN corresponding to
the visual connections of the precuneus along the parieto-
occipital fissure (visual 8), which extended into primary visual
cortex as has been observed in macaques and humans previously
(Margulies et al., 2009), formed a cluster together with a struc-
tural network of regions centered around the supplementary eye
field (Sharika et al., 2013) (within the red cluster; Fig. 9). Finally,

Figure 7. Fine-grained visual gray matter architecture matches that of rest and task fMRI. The eight visual GMNs correspond to those functional visual networks common to both task and rest fMRI
presented in Smith et al. (2009) (z � 5, except in visual 7, in which z � 3). For each GMN, top right insert shows Smith et al. corresponding visual functional networks for the same coordinates: left,
from rest fMRI, right from task fMRI, z � 3. Each structural–functional correspondence p � 10 �3, see Table 3. For easier visualization, only the volume-based modality of the structural modes of
variation is overlaid onto the gray matter average across all 484 participants.
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a structural network composed of two nodes, the bilateral frontal
and premotor eye field and the cingulate eye field, was paired with
a GMN extending into the posterior part of the supplementary
eye field (magenta cluster; Fig. 9).

DMN
The posterior DMN clustered with a prefrontal GMN encom-
passing two distinct regions in the anterior precentral gyrus (peak
at the intersection with the middle frontal gyrus) extending into
the frontal operculum and one in the inferior frontal gyrus ante-
rior to the ascending ramus. These two networks (posterior
DMN and prefrontal) in turn clustered with a GMN following the
inferior parietal lobule/anterior intraparietal sulcus (purple clus-
ter; Figs. 9, 10). The anterior DMN clustered with the executive
GMN, and this cluster in turn paired with the structural equiva-
lent of the right frontoparietal network (light green cluster; Figs.
9, 10).

GMNs can be found in both half-split populations
We ran the linked ICA on our two subgroups of n � 242 subjects,
each age matched to the original sample. The Bayesian model
order selection retained 56 ICs in the first half-split and 54 ICs in
the second (less than the 70 ICs requested). We identified from
each run the ICs corresponding to our main GMN results (all
with p � 10�3, although with a rougher spatial aspect due to the
lower sample size; Table 4). Some of our GMNs were more readily
identified in one of the subgroups (r � 0.5) or were found merged
(e.g., visual 3 and 7, the two oculomotor networks). All of these
identified ICs were significantly replicated (in terms of spatial corre-
lation, p � 10�3) between the two half-split decompositions, except
for visual 5, cerebellum 4, and two of the three frontal unilateral
networks, the location of the latter two having been shown in the past
to be particularly difficult to predict based on folding patterns (Free-
Surfer cortical area) (Fischl et al., 2008).

Discussion
In this study, we demonstrate that human structural architecture
is functionally relevant across the entire brain. Modes of inter-
subject structural variability at a population level spatially corre-
spond to functional organization that can be observed using both
rest and task fMRI. Our analysis reveals fine-grained and highly
functionally relevant anatomical networks, in particular in the
cerebellum and visual cortex, and notably provides structural
correspondence for the anterior DMN, the posterior DMN, and
its anticorrelated functional network (Fox et al., 2009). As these
intersubject brain structure networks emerge at a population
level, this indicates that the trophic processes that render these
distant parts of the brain functionally connected at the single-
subject level may be developmental and evolutionary in nature.

Cerebellum
We identified four cerebellar GMNs with segregation that was
functionally relevant: the lobules present together in each net-
work are known to be functionally connected to the same regions
of the cerebral cortex and subcortex (Sang et al., 2012). Crus I and
II, the size of which is selectively expanded in humans (Balsters et
al., 2010), notably emerged together in one distinct network (cer-
ebellum 3). Consistent with the functional relevance of these seg-
regations, hierarchical clustering yielded two higher-level
clusters. The sensorimotor cluster (cerebellum 1 and 2), with a
distinctive symmetry around the horizontal fissure, spatially
matched the somatomotor map in the cerebellum obtained using
functional connectivity of the cerebral, task-based location of
movement (Buckner et al., 2011). Regions of the sensorimotor
cluster show stronger motor activation relative to cognitive task
(Stoodley et al., 2012), probably explaining the segregation ob-
served between the cognitive (including cerebellum 3 and 4) and
sensorimotor cerebellar clusters in our structural data.

Figure 8. Functionally meaningful separation between anterior and posterior DMNs in the
gray matter structure. These two DMN GMNs (left, z � 5) correspond to the well known func-
tional connectivity patterns of cognitive (posterior, DMN 1) and limbic (anterior, DMN 2) precu-
neus (Margulies et al., 2009). This segregation also corresponds to a natural division in the
BrainMap (BM, right z � 3) task-related fMRI database observed at higher dimension decom-
position (Smith et al., 2009). When combined, the two gray matter DMNs spatially match the
canonical functional DMN identified in both rest and task fMRI at lower dimensionality ( p �
10 �3, Table 2).
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Visual areas
We identified in the gray matter structure the same eight visual
networks (visual 1– 8) previously matched between rest and task
fMRI (Smith et al., 2009), five of which actually better corre-
sponded between structural and one functional dataset than be-
tween the two functional datasets (Table 3). Our hierarchical
clustering approach demonstrated further the functional rele-
vance of these subnetworks by creating, for instance, structural
clusters underpinning perception of faces, places, and bodies or

bringing together all cortical oculomotor control areas (magenta
cluster; Fig. 9) (Amiez and Petrides, 2009).

DMN
The well documented functional segregation of the DMN into
two anterior and posterior subnetworks was replicated by two
structural modes of variation at the population level. This segre-
gation not only corresponded to a natural division in the Brain-
Map fMRI database decomposed into higher dimensionality
(Fig. 8) (Smith et al., 2009), but also to that of the limbic and
cognitive connectivity patterns of the precuneus common to hu-
mans and macaques (whereby the more ventral region of the

Figure 9. Hierarchical clustering of GMNs reveals functionally meaningful higher-order organization. Left, Dendrogram representation of the clusters: the shorter the distance (1 � r) between
each mode of variation is, that is, the height of the inverted U-shaped colored lines linking each mode, the stronger and the more meaningful their connection (only clusters linked by a distance �1
were considered). Right, We included in this hierarchical clustering analysis 36 of the most identifiable GMNs and present here one modality (volume) and one view only for easier visualization
(except cortical thickness in M1, orange cluster; z � 5, except visual 7, yellow cluster, and the 2 ICs in M1, orange cluster, all at z � 3).

Table 2. Spatial correlation between structural and functional canonical networks
( p < 10 �3)

Canonical network

Spatial correlation (r)

GMN/BM GMN/RSN BM/RSN

Default-mode network 0.47 0.47 0.63
Cerebellum network 0.66 0.20* 0.50
Sensorimotor network 0.38 0.52 0.58
Auditory network 0.56 0.40 0.46
Executive network 0.44 0.40 0.27
Frontoparietal network (left) 0.26 0.22 0.58
Frontoparietal network (right) —** —** 0.40
Medial visual network (Smith’s visual 120 , 220 ) 0.67 0.71 0.75
Lateral visual network (Smith’s visual 320 ) 0.51 0.38 0.54

Spatial correlation was calculated in a whole-brain grey matter mask for the GMNs and the canonical networks
identified in Smith et al. (2009) (from rest fMRI, RSN; from task fMRI using BrainMap, BM). All p � 10 �3, except for
the right frontoparietal network, where the parietal node around the angular gyrus was located in PGp for the GMN,
whereas for the rest functional network, it was located in PGa, and in PFm for the task functional network. Bold
indicates stronger structural–functional correspondence than functional–functional correspondence.

*Partial coverage for the RSN dataset (cut FOV).

**p � 10 �3 (r � 0.13 for GMN/RSN, r � 0.18 for GMN/BM).

Table 3. Spatial correlation between structural and functional eight visual
networks ( p < 10 �3)

Spatial correlation (r)

GMN/BM GMN/RSN BM/RSN

Visual 1 0.58 0.39 0.53
Visual 2 0.70 0.48 0.49
Visual 3 0.23* 0.25* 0.68
Visual 4 0.42 0.33 0.32
Visual 5 0.18 0.31 0.38
Visual 6 0.46 0.32 0.39
Visual 7 0.37 0.33 0.56
Visual 8 0.63 0.47 0.63

Spatial correlation was calculated for the eight visual GMN and the eight visual networks identified and previously
matched in Smith et al. (2009) (from rest fMRI, RSN; from task fMRI using BrainMap, BM). Bold indicates stronger
structural–functional correspondence than functional–functional correspondence.

*r reduced for structural–functional correspondence by a negative node in dorsal visual stream only present in the
structural network
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precuneus is functionally connected to the medial orbitofrontal
regions) (Margulies et al., 2009). This segregation may also be
related to distinct connectivity of the two DMN subnetworks
with their respective anticorrelated network (Uddin et al., 2009).
Consistent with this, the posterior DMN was strongly paired with
a prefrontal GMN and in turn with a network centered around
the anterior intraparietal sulcus; together, these three networks
made up a structural equivalent for the functional posterior
DMN and its negatively correlated functional network (Fox et al.,
2009) (Fig. 10). This demonstrates that, whereas the two func-
tionally anticorrelated networks represent a natural dichotomy
between internally and externally directed cognitive processes
(Spreng, 2012), they are structurally correlated at the population
level. Furthermore, the anterior DMN paired with the executive
GMN to create a cluster similar to the limbic precuneus func-
tional network (Fig. 10) (Margulies et al., 2009), and this cluster
itself paired with the right frontoparietal network (light green

cluster; Fig. 9). The frontoparietal network is thought to mediate
the DMN and its anticorrelated network (Vincent et al., 2008;
Spreng, 2012). Our hierarchical clustering analysis thus shows
that the structure underlying anterior DMN and (right) fronto-
parietal network on the one hand, posterior DMN and dorsal
attention network on the other, varies together in size across the
human population.

A few GMN maps showed a positive/negative pattern suggest-
ing the expansion of one region at the expense of another at the
population level. This pattern was in some cases found within the
same brain region, pointing at known variability in the number of
cortical folds in the healthy human brain, but in the majority of
structural networks exhibiting this pattern, the positive and neg-
ative peaks were more distal. This was the case for crus I and crus
II, which exhibited this positive/negative pattern within their
structural network, as can be seen in Figure 6. Although the evo-
lutionary reason for this competition between the two regions is
unclear, it has been shown that crus I and II have in fact distinct
function and relative size in humans (Balsters et al., 2010; Stood-
ley et al., 2012). Visual 3 provided another example, with positive
contours broadly corresponding to V3 and V4 (Rottschy et al.,
2007), but with negative nodes in the dorsal visual stream (cen-

Figure 10. Two higher-level clusters involving DMN GMNs obtained using hierarchical clus-
tering. a, Left, structural DMN 1 clustered with prefrontal regions and the intraparietal sulcus
(�z�� 5), providing a structural underpinning for most of the functional DMN and its negatively
correlated network (right, DMN in red-yellow and its anticorrelated network in blue-light blue,
adapted from Fox et al., 2009). Two visual areas (middle temporal visual area/extrastriate body
area and posterior intraparietal sulcus) are noticeably absent from this cluster as these regions
clustered more strongly with other visual areas (an inherent limitation of hierarchical clustering
in that each GMN can only appear once, in a single given cluster). b, DMN 2 was paired with
executive (left, �z� � 5), the GMN resembling the executive control RSN, to create a cluster
comparable to the limbic precuneus functional network (right, adapted from Margulies et al.,
2009). The two structural clusters in a and b made up the entire DMN and its negatively corre-
lated network (top right).

Table 4. Spatial correlations between the GMNs obtained in the full sample
(N � 484) and in each of the two half-split samples (n � 242, matched for age to
the original sample, all p < 10 �3), as well as between the two half-split samples

GMNs Group 1 Group 2 Group 1–Group 2

Visual 1 0.90 0.80 0.66
Cerebellum 3 (crus I versus crus II) 0.91 0.71 0.55
Auditory 0.80 0.79 0.53
Middle temporal sulcus 0.76 0.78 0.52
Executive 0.71 0.71 0.50
Other visual/motor (supplementary eye field) 0.71 0.71 0.50
Visual 6 0.71 0.68 0.64
Precentral versus inferior frontal gyrus 0.76 0.57 0.45
Visual 8 0.54 0.71 0.38
DMN 1 0.66 0.56 0.35
Sensorimotor 2 (lateral: sensory) 0.75 0.46 0.32
Frontoparietal (frontal 1) R 0.64 0.56 0.37
Cerebellum 1 0.58 0.59 0.64
Sensorimotor 1 (lateral: M1, premotor) 0.64 0.50 0.14
Visual 4 0.60 0.53 0.25
Visual 2 0.66 0.46 0.35
Other visual (parieto-occipital fissure) 0.53 0.59 0.35
Cerebellum 2 0.65 0.43 0.19
Frontoparietal (parietal) L 0.76 0.32 0.22
Frontoparietal (parietal) R 0.64 0.41 0.28
Olfactory (piriform) 0.32 0.72 0.23
Language 0.44 0.54 0.15
Sensorimotor 3 (medial) 0.40 0.56 0.32
Other visual (fusiform area: occipital) 0.32 0.59 0.23
Visual 3 0.55 0.35 0.39
Visual 7 0.55 0.35 0.39
Cerebellum 4 0.55 0.35 NS
DMN 2 0.29 0.61 0.16
Oculomotor 2 (posterior supplementary eye field) 0.49 0.34 0.46
Posterior superior temporal sulcus 0.55 0.25 0.35
Oculomotor 1 (frontal/premotor/cingulate eye field) 0.47 0.30 0.25
Frontoparietal (frontal) L 0.44 0.28 NS
Visual 5 0.40 0.31 NS
Frontoparietal (frontal 2) R 0.28 0.31 NS

The two half-split sets of ICs were identified by their similarities (spatial correlation in a whole-brain GM mask) to the
full sample ICs and ranked according to their average across both subgroups. All spatial correlations between the two
half-split sets of ICs were significant ( p � 10 �3), except for cerebellum 4, visual 5, and two of the three unilateral
frontal networks.

NS, Not significant.
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tered exactly around the positive nodes of visual 7) in the poste-
rior intraparietal sulcus. This might reinforce the idea of a
dichotomy between dorsal and ventral V3 in humans that has
been previously observed in the macaque (Newsome et al., 1986).
A further way to witness competition between two regions of the
brain was to look directly at negative correlations across the entire
population. We found one correlation surviving Bonferroni cor-
rection between visual 1, centered around the calcarine fissure,
and visual 6, the temporal FFA. This possibly hints at a develop-
ment in humans of the latter, a cognitively highly specialized area,
at the expense of the former, a primary visual area (Kanwisher
and Yovel, 2006).

Previous studies have shown some degree of correspondence
between functional connectivity and white matter connectivity,
but have also found that strong functional connectivity can arise
in the absence of direct white matter connectivity (Greicius et al.,
2009; Honey et al., 2009; Alexander-Bloch et al., 2013). This pos-
sibly is in part due to limitation of the diffusion imaging tech-
nique itself in assessing long-range connections and in resolving
crossing pathways (Jbabdi et al., 2015). For example, in the DMN,
which has been arguably the most studied RSN for structural–
functional connectivity correspondence, one such example can
be seen in the medial orbitofrontal region. Although it is promi-
nent in the functional DMN and in our gray matter structural
connectivity network, it is absent from white matter structural
connectivity analysis findings (Greicius et al., 2009; Honey et al.,
2009). Another example can be seen in the prominence of the
fusiform gyrus in our FLICA decomposition, something clearly
reflected in the map showing the most shared gray matter regions
across all structural GMNs (Fig. 3). The fusiform gyrus is, how-
ever, essentially absent from maps drawn from white matter con-
nectivity (Hagmann et al., 2008; Gong et al., 2009; Nijhuis et al.,
2013). Again, this likely is a consequence of the difficulty in re-
constructing, both postmortem and in vivo, the white matter
tracts connecting this specific gray matter region, mainly the in-
ferior longitudinal fasciculus and the inferior frontooccipital fas-
ciculus (Martino et al., 2010; Latini et al., 2017; Panesar et al.,
2018). Conversely, one clear limitation of deriving structural net-
works from gray matter covariance, as opposed to white matter
tractograms, is that these can only be estimated at the population
level. However, our fine-grained, functionally meaningful results
underline the benefit of looking at “connectivity” information
obtained from simple, yet powerful T1-weighted imaging to effi-
ciently capture covariations between far- or indirectly connected
regions. Interestingly, those structural networks that can be
formed at the population level seem to also partially overlap with
the patterns of regions maturing together at the subject level
(Geng et al., 2017; Khundrakpam et al., 2019).

Our multimodal approach also revealed that, similar to what
is seen at the whole-brain level (Winkler et al., 2010), most of the
gray matter volume networks colocalized with variation in corti-
cal area and, importantly, that age and intracranial volume bore
no effect on the results (after overall scaling was removed in the
registration stage). As none of these GMNs was associated with
intracranial volume (with the exception of cerebellum 1 and 4),
this further reinforces the idea that cranial volume is not a deter-
minant factor in the formation of cortical foldings in humans
(Toro and Burnod, 2005; Bayly et al., 2014). The colocalization of
our GMNs with variation in cortical area suggests that neu-
rotrophic events occur during development, and possibly evolu-
tion, to dictate that the size and particularly the folding pattern of
distant brain regions should vary together across subjects. Such
trophic events, which might be reinforced by experience related

plasticity (Evans, 2013), are likely to be (epi)genetically guided
(Fjell et al., 2015; Toro et al., 2015) and be growth driven or due to
axonal tension (Bayly et al., 2014), although there is currently no
clear understanding of the cellular and molecular mechanisms
underlying the emergence of such structural covariance networks
(Alexander-Bloch et al., 2013). There are still some opposing
views on a “concerted” or “mosaic” evolution of the brain, i.e.,
whether evolutionary changes in the size of one part of the brain
can (“concerted”) or cannot (“mosaic”) co-occur with changes in
all other parts (Finlay and Darlington, 1995; Yopak et al., 2010;
Hager et al., 2012). What seems to emerge increasingly is concil-
iatory; however, although there is evidence for a mosaic evolution
of the brain with certain brain regions evolving independently
from others, functionally related parts of the brain seem to vary
together across species (Barton and Harvey, 2000; Moore and
DeVoogd, 2017). Our cortical folding results not only suggest this
is something that might also be reflected in human development,
but also support the concept that there might exist a close rela-
tionship between convolutional anatomy and the organization of
cortical function (Bayly et al., 2014).
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