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Uncovering missed indels by 
leveraging unmapped reads
Mohammad Shabbir Hasan   1, Xiaowei Wu2 & Liqing Zhang1

In current practice, Next Generation Sequencing (NGS) applications start with mapping/aligning 
short reads to the reference genome, with the aim of identifying genetic variants. Although existing 
alignment tools have shown great accuracy in mapping short reads to the reference genome, a 
significant number of short reads still remain unmapped and are often excluded from downstream 
analyses thereby causing nonnegligible information loss in the subsequent variant calling procedure. 
This paper describes Genesis-indel, a computational pipeline that explores the unmapped reads to 
identify novel indels that are initially missed in the original procedure. Genesis-indel is applied to the 
unmapped reads of 30 breast cancer patients from TCGA. Results show that the unmapped reads are 
conserved between the two subtypes of breast cancer investigated in this study and might contribute 
to the divergence between the subtypes. Genesis-indel identifies 72,997 novel high-quality indels 
previously not found, among which 16,141 have not been annotated in the widely used mutation 
database. Statistical analysis of these indels shows significant enrichment of indels residing in 
oncogenes and tumour suppressor genes. Functional annotation further reveals that these indels 
are strongly correlated with pathways of cancer and can have high to moderate impact on protein 
functions. Additionally, some of the indels overlap with the genes that do not have any indel mutations 
called from the originally mapped reads but have been shown to contribute to the tumorigenesis in 
multiple carcinomas, further emphasizing the importance of rescuing indels hidden in the unmapped 
reads in cancer and disease studies.

Next Generation Sequencing (NGS) facilitates generation of an enormous number of short reads and allows the 
identification of genomic mutations that cause phenotype changes and genetic diseases such as Mendelian dis-
orders1, Acute Myeloid Leukaemia2, and Lung cancer3. Applications analysing the NGS reads typically start with 
mapping the short reads against a reference genome and then based on the mapped reads, determine the genetic 
mutations such as Single Nucleotide Polymorphism (SNP) and sequence variants such as Insertion and Deletion 
(indel) of bases. Many alignment algorithms have been developed to map the short reads to the reference genome, 
including MAQ4, SOAP5, BWA6, Bowtie7, Bowtie28, SNAP9, and SOAP210, to name a few. Although these align-
ment tools are very efficient in aligning the short reads, a nonnegligible fraction of reads are left unmapped due 
to (1) structural variants longer than the allowed number of gaps and mismatches by the mapper, (2) sequencing 
error, or (3) sample contamination11. In current practice, these unmapped reads are not used for variant calling 
and downstream analyses, and thus mutations harboured in these unmapped reads remain hidden from any 
inference on important phenotype and/or their associations with any disease such as cancer. However, as shown 
in Fig. 1, some of the “hidden” or “missing” mutations can contain the key for understanding the molecular mech-
anisms of genetic diseases or cancer and might be used as markers for disease/cancer diagnosis and prognosis.

The consequence of missing the mutations contained in the unmapped reads can lead to inaccurate down-
stream analyses such as characterizing the tumour evolution in a cancer patient. Some of these missed mutations 
can be the hallmark of tumours and can be useful for targeted therapy. Therefore, it is critical to identify the 
mutations in those regions for clinical decision-making as well as for guided personal treatment12,13. With this 
objective in mind, it is essential to inspect the unmapped reads previously excluded from analyses to ensure that 
none of these essential mutations are missed in those regions of interest.

This paper describes Genesis-indel, a computational pipeline to explore unmapped reads for the systematic 
identification of indels missed in the original alignments. Note that this pipeline focuses on indels only, the second 
most abundant form of genetic variation in human populations14–16. Despite being a common form of genetic var-
iation in humans, indels have not been studied as thoroughly as SNPs, though they have been identified playing 
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a key role in causing diseases such as Cystic fibrosis17, Fragile X Syndrome18, acute myeloid leukaemia2,19,20, and 
lung cancer3. In addition, insertion of transposable elements such as Alu can affect gene function and change gene 
expression21. Genesis-indel is applied to explore unmapped reads of 30 breast cancer patients from The Cancer 
Genome Atlas (TCGA)22 and identify indels hidden in the unmapped reads of these patient genomes. Results 
show that unmapped reads can be used to cluster samples to different cancer subtypes. In addition, Genesis-indel 
can successfully curate the unmapped reads and detect small to large novel high-quality indels that are missed 
previously and some of these indels are specific to a particular subtype of breast cancer. Functional annotation of 
the newly identified indels shows that the indels found from unmapped reads are strongly correlated with cancer 
pathways and may play an important role in cancer progression. Additionally, some of the indels overlap with the 
genes that do not have any indel mutations called from the originally mapped reads but have been shown to con-
tribute to the tumorigenesis in multiple carcinomas, further emphasizing the importance of rescuing indels from 
the unmapped reads in cancer and disease studies. Therefore, this study shows great promise in complementing 
the current procedure of read alignment and variant calling, shedding light on understanding the underlying 
mechanism of cancer progression and will be useful for clinical decision making.

Results and Discussion
Figure 2 shows a schematic representation of the Genesis-indel workflow (see Methods for detail). Genesis-indel 
is used to identify the novel high-quality indels from the alignment (BAM files) of 30 breast cancer patients 
deposited in TCGA. These BAM files were originally produced by mapping the raw sequencing reads of these 
patients to the human reference genome using BWA6.

Existence of a nonnegligible number of originally unmapped reads.  The alignment file of each 
patient sample is processed by SAMtools23 to extract the “Originally Unmapped” reads. For a given individual 
investigated here, the number of unmapped reads ranges from 6.6 to 74 million (average = 31.86 million). As 

Figure 1.  Limitation of current practice in cancer research which discards unmapped reads and therefore 
misses important mutations containing real biological signal.

Figure 2.  Genesis-indel workflow. The input to Genesis-indel is the alignment file (BAM file) and the reference 
genome (FASTA format). First, the unmapped reads are extracted from the input BAM and passed to the quality 
control module. After quality control, the reads are mapped to the reference genome using BWA-MEM. The 
reads that still remained unmapped are aligned using BLAT. In the merging step, the output of BWA-MEM and 
BLAT are merged and duplicates are marked using Picard. The merged alignment is then passed to the variant 
calling module followed by quality filtering of the indels. Finally, the output contains novel high-quality indels 
rescued from the originally unmapped reads.
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shown in Fig. 3, the unmapped reads constitute an average of 5% of the total reads (altogether there are more 
than 955 million reads unmapped for 30 patient samples) in the original alignment files provided by TCGA. 
Genesis-indel targets these discarded reads to rescue the indels missed in the original alignment.

Quality control of the unmapped reads.  The extracted unmapped reads are processed for quality con-
trol. First, the unmapped reads from all samples are combined and passed to FastQC24 to get various statistics of 
the reads. According to the report produced by FastQC, the originally unmapped reads have some quality issues 
such as (1) overall poor per base sequence quality, (2) a poor score for per sequence quality, (3) overrepresenta-
tion of “N” contents, (4) overrepresentation of Illumina Paired-End PCR Primer 2 due to PCR over-amplification, 
and (5) other adapter contents (Supplementary Figures 1(a), 2(a), and 3(a)). In most cases, reads that are con-
taminated with adapter sequences are simply not mapped because of sequencing errors in the adapter sequences. 
Therefore, removing these contaminated sequences is expected to improve the quality of the unmapped reads. 
For this reason, Trimmomatic25 is applied to the combined unmapped reads from all samples and then FastQC 
is used again to assess the quality of the reads. As shown in Supplementary Figures 1(b), 2(b), and 3(b), after 
trimming adapter sequences, many issues were fixed and the quality of the unmapped reads improved signif-
icantly. Although there is a low-quality issue with some k-mer noise at the 3′ end of the reads (Supplementary 
Fig. 4), the mapping is not affected by these k-mers as they are not mapped to the reference genome and hence get 
discarded during the alignment step. After the quality control by Trimmomatic, for the individuals investigated 
here, 29.29% to 89.5% of the originally unmapped reads are retained (average = 67.68%) constituting around 647 
million reads.

Mapping the quality controlled unmapped reads.  After quality control, the unmapped reads are 
mapped to the reference genome using a robust and variant sensitive mapper, BWA-MEM26. BWA-MEM can 
automatically choose between local and end-to-end alignments. It is applicable to map short as well as long 
reads, and is sensitive in mapping reads with indels. While mapping, unlike other short-read mappers, it allows 
big gaps potentially caused by structural variants and shows better or comparable performance than several 
state-of-the-art read mappers to date in terms of speed and accuracy26. This mapper is robust to sequencing errors 
as well. After the reads are aligned by BWA-MEM, some reads still remain unmapped. At this step, another local 
alignment tool, BLAT (BLAST-Like Alignment Tool)27 is used to align these reads. By merging the alignments 
from BWA-MEM and BLAT, 65.38% of the originally unmapped reads (624,892,089 out of 955,822,913) now 
get mapped to the reference genome. Out of these newly mapped reads, BWA-MEM mapped 479,064,451 reads 
and BLAT aligned 145,827,638 reads. As mentioned before, the mapper used by TCGA is BWA, which can map 
arbitrarily long reads theoretically, however, it has been observed in practice that, the performance in mapping 
long reads degraded with the increase of the sequencing error rate28. By removing the bases with sequencing 
error and coupling BWA-MEM with BLAT for re-alignment, Genesis-indel manages to map many of the initially 
unmapped reads. Figure 4 shows the average mapping quality of the newly mapped reads for all samples. For most 
of the samples, the mapping quality is higher than that of the originally mapped reads (Supplementary Fig. 5).

Identifying the novel high-quality indels from the newly mapped reads.  Genesis-indel uses 
Platypus29 to call indels from the newly mapped reads. Separately, indels are also called from the reads that are 
originally mapped. Platypus is chosen as it performed the best among other existing indel callers based on real 
data as reported in a recent review30. After variant calling, indels from the newly mapped reads are inspected for 
any match with the indels found in the originally mapped reads. An indel already in the originally mapped reads 
can be called again in the newly mapped reads. These “re-identified” indels are discarded to avoid indel redun-
dancy31 and the remaining are considered as “novel indels”.
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Figure 3.  Percentage of mapped and unmapped reads in the original alignment files of the 30 breast cancer 
patients collected from TCGA.
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Examination of the flags of the novel indels shows that for many of the indels, Platypus does not produce 
a high confidence value. Therefore, to consider only the high-quality indels for further analysis, novel indels 
are filtered again and only those with “PASS” flags are considered for the final result and are termed as “Novel 
High-Quality indel” (NHQ indel) in this paper. In total, Genesis-indel reports 31,924 NHQ insertions (43.73% 
of the total NHQ indels) and 41,073 NHQ deletions (56.27% of the total NHQ indels) from the 30 samples inves-
tigated here. The deletion to insertion ratio for the NHQ indels is 1.29:1, similar to the deletion to insertion ratio 
1.11:1 for the originally mapped reads (7,313,641 insertions and 8,082,055 deletions).

Figure 5 shows IGV32 snapshot of a novel 15-base deletion in Chromosome 1 that is identified in the newly 
mapped reads (lower panel) but missed in the original alignment (upper panel). Although this paper focuses 
on indels only, as shown in Fig. 5, new SNPs can also be identified by Genesis-indel in the originally unmapped 
reads.

Frameshift indels are more frequent than in-frame types in the NHQ indels.  NHQ indels iden-
tified here contain 53,623 frameshift and 19,374 in-frame indels, indicating a higher abundance of frameshift 
indels in the unmapped reads. Frameshift indels are also found more abundant than in-frame indels in the orig-
inally mapped reads (13,911,266 vs. 1,481,550). Particularly, frameshift indels of longer length (≥15 bases) are 
more frequent than in-frame indels of corresponding length (585 insertions, 1,479 deletions vs. 404 insertions, 
812 deletions). According to a study by Iengar et al.33, 75.7% of the COSMIC indels are frameshift indels while 
only 24.3% are in-frame indels, suggesting that unlike the distribution of coding indels in the genome of healthy 
people, frameshift indels dominate in cancer genomes. Because frameshift mutations are common in cancer 
patients and may increase the susceptibility to cancers and other diseases by causing loss of significant fractions 
of proteins33–36, the NHQ frameshift indels newly uncovered by Genesis-indel may harbour important signals for 
linking indels to cancer or diseases and provide researchers new insights into the underlying mechanisms.

NHQ indels have significantly different length distribution than indels in the originally mapped 
reads.  Figure 6 shows the distribution of the length of the NHQ indels analysed here. It is observed that 
both insertion and deletion frequencies decrease with the increase of indel size. The longest NHQ insertion and 
deletion are 28 and 45 bases, respectively (34 and 55 bases for the indels from the originally mapped reads). It is 
expected that the novel indels would be long as they might have been missed because the lengths might exceed 
the number of gaps and mismatches allowed by the mapper. Surprisingly, as shown in Fig. 6, most of the newly 
discovered indels (91% of insertion and 88.1% of deletion) are short (≤10 bases), indicating the limitation of the 
mapper used in the TCGA project. This figure also shows that NHQ indels have higher relative frequency than 
indels from the originally mapped reads for both insertion (3 to 28 base) and deletion (3 to 45 base). Nonetheless, 
a Pearson’s chi-square test (i.e., testing for homogeneity in contingency table) shows that the length distribution 
of the NHQ indels is significantly different than that of the indels identified from the originally mapped reads 
(p-value < 2.2e-16).

Newly mapped reads can add more support to indels not recognized in the originally mapped 
reads.  Most variant calling programs rely on hard evidence for indels marked in the alignment and therefore 
require a minimum number of reads to support an indel. This step is required to distinguish real variants from 
the artefacts of sequencing errors. As shown in Fig. 7 (upper panel), a 9-base deletion cannot be called from the 
original alignment due to lack of read support. After mapping the quality controlled originally unmapped reads 
through the Genesis-indel pipeline, such indels get enough read support and hence are called by the variant caller 
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Figure 4.  Average mapping quality of the newly mapped reads of all samples.
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(lower panel). This provides an example scenario for how these indels are missed initially but got rescued by lev-
eraging the unmapped reads.

Clustering of the samples based on quality-controlled unmapped reads.  The samples are com-
pared pairwise using the quality controlled unmapped reads in order to identify biologically relevant signals and 
to cluster the samples based on the number of similar reads. Pairwise distance is calculated for the unmapped 
reads from each sample using Mash, a distance estimator based on MinHash37. This pairwise distance is then 
used to cluster the samples. Figure 8 shows the hierarchical clustering of the samples based on Mash distance. 
The clustering results are then compared with the samples’ PAM50 subtypes collected from TCGA38. Out of the 
total 30 samples, 16 belong to the Basal subtype and the remaining 14 belong to LumA. As shown in Fig. 8, all but 
three samples (samples 12, 13, and 14) cluster with the samples of their respective subtype. These three samples 
belong to Basal subtype but clustered with the samples from LumA subtype. The result reveals that the unmapped 
reads are most commonly shared among the samples of the same subtype and suggests that these unmapped reads 
might contribute to the divergence between the two subtypes investigated here. This result also implies that per-
haps there is a subtype-specific common cause of mapping failure. These results show that the sets of unmapped 
reads contain sequence information specific to sample subtype and hence leveraging such information may help 
understand or interpret the related biological questions.

Figure 5.  A NHQ indel identified in the newly mapped read but missed in the original alignment. The upper 
panel shows the originally mapped reads and the lower shows the newly mapped reads.
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Subtype-specific indels from the NHQ indels.  All except three samples (samples 12, 13, and 14) of the 
Basal subtype contain 5,818 indels on average and LumA samples contain 473 indels on average. Samples 12, 
13, and 14 contain 484, 415, and 535 indels, respectively, i.e., similar to the number of indels found in the LumA 
samples. Similar phenomena are also observed for these three samples in the indels from the originally mapped 
reads, giving more evidence that these samples actually belong to LumA subtype but were mislabelled as Basal, 
consistent with the result of clustering based on unmapped reads. In addition, the number of newly mapped reads 
in Samples 12, 13, and 14 are 3.6, 2.5, and 3.5 million, respectively, which is closer to the number of newly mapped 
reads in LumA samples (average number of newly mapped reads = 3.3 million) than to the Basal samples (average 
number of newly mapped reads = 37.89 million). This suggests possible subtype mislabelling of these samples.

Figure 7.  An example of a 9-base deletion which is not initially called from the original alignment due to lack 
of read-support but later called after the mapping of originally unmapped reads. Here the upper panel shows the 
original alignment and lower panel shows the alignment of the newly mapped reads.

Figure 8.  (a) Hierarchical clustering of the samples based on the pairwise Mash distance of the unmapped 
reads from each sample. (b) PAM50 subtype of the samples from TCGA. Here, the red colour corresponds to 
Basal and green colour corresponds to LumA subtype. (c) The confusion matrix.
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NHQ indels are checked to see if they are specific to any of the two subtypes (Basal and LumA) investigated 
here. An indel is defined as specific to a subtype when it is found in the samples of one subtype and not in the 
samples of the other subtype. Among the 72,997 NHQ indels, 89 are found to be Basal specific indels and none is 
found to be LumA specific.

NHQ indels overlapped with the oncogenes and tumour suppressor genes.  To see which onco-
genes and tumour suppressor genes are frequently affected by the newly discovered indels, a list consisting of 142 
protein-coding genes (79 oncogenes and 63 tumour suppressor genes, see Methods) is overlapped with the NHQ 
indels using BEDtools39. In total, 62 out of these 142 genes overlapped with these indels. Among these 62 genes, 
32 are oncogenes and the remaining ones are tumour suppressor genes. Table 1 lists the top ten genes with the 
highest number of indels identified in them. RUNX1 (Runt Related Transcription Factor 1), a protein-coding 
tumour suppressor gene, has the highest number of indels (54) and thus likely contains important signature of 
breast cancer. RUNX1 has received attention as a gene fusion in acute myeloid leukaemia (AML)40,41. Although 
a putative link to breast cancer has recently emerged42, RUNX1 has not gained enough attention and its role in 
breast cancer still remains elusive43. One reason for the understudy of the RUNX1 gene is the underpowered 
expression profile studies as identified by Janes et al.44. Another reason, as the result shows here, could be because 
of not discovering the indels hidden in the unmapped reads. This study provides new evidences to re-examine the 
role of RUNX1 in breast cancer, as a complement to the study performed by Janes et al.44.

Frameshift indels are more abundant than in-frame indels in both oncogenes and tumour suppressor genes. 
Some genes contain only in-frame indel and some contain only frameshift indels. As shown in Table 2, out of 
the 62 genes overlapped with the NHQ indels, 46 contain either in-frame or frameshift indels. The remaining 
16 genes contain both in-frame and frameshift indels. As shown in the previous section, frameshift indels are 
the dominant type of indels and RUNX1 contains the maximum number of indels for both in-frame (12) and 
frameshift (42) among all genes investigated here, making it an important candidate for breast cancer marker.

NHQ indels mostly alter cancer-related genes than noncancer-related genes.  A list of whole 
genome protein-coding genes not containing the oncogene and tumour suppressor gene is generated from the 
whole genome gene list produced by GENCODE (version 28 lift37). This list contains 20,172 genes and among 
these, 6,829 genes are found overlapped with the NHQ indels. A hypothesis testing is done to compare the pro-
portion of NHQ indels appearing in cancer-related genes (oncogene and tumour suppressor gene) to that in 
noncancer genes. Statistically, the hypothesis being tested is as follows,

≤H p p:0 1 2

>H p p:1 1 2

where P1 denotes the proportion of oncogenes and tumor suppressor genes that overlapped with the NHQ indels 
and P2 denotes the proportion of noncancer genes that overlapped with the NHQ indels.

Gene Number of Indel

RUNX1 54

SYK 13

CBLB 11

ETV4 11

CCND3 10

ETV6 9

MAML2 7

PIK3CA 7

BMPR1A 6

EGFR 5

Table 1.  Top ten oncogene and tumour suppressor genes and the number of indels identified in these genes.

Indel Type Gene

In-frame
Oncogenes (5): HMGA2, TPR, RAF1, ROS1, FGFR2

Tumour suppressor genes (3): EXT1, CREB1, GPC3

Frameshift

Oncogenes (19): ATF1, CBLB, AKT2, LMO2, TET2, ETV4, BCR, MAF, SMO, PPARG, CARD11, 
DDX6, PLAG1, EGFR, ABL1, NTRK1, BCL11A, BCL2, FGFR1

Tumour suppressor genes (19): RB1, SMARCB1, FLT3, BRCA1, CDH1, SUFU, CHEK2, ARHGEF12, 
FBXW7, MSH2, NUP98, SUZ12, NPM1, BCL11B, IDH1, EXT2, NR4A3, ATM, BMPR1A

Table 2.  List of oncogenes and tumour suppressor genes containing either in-frame or frameshift NHQ indels.
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Given the data observed (62 out of the total 142 oncogenes and tumour suppressor genes are overlapped with 
the NHQ indels, and 6,829 out of the total 20,172 noncancer genes are overlapped with the NHQ indels), a z-test 
for testing the difference in two proportions reports an observed z value of 2.35, yielding a p-value of 0.0094. 
Equivalently, a chi-square test of homogeneity based on the 2 × 2 contingency table gives a p-value of 0.0177 with 
Yates’ continuity correction. Both results show that the null hypothesis, H0:P1 ≤ P2 can be rejected at nominal level 
α = 0.05. Therefore, the proportion of cancer genes overlapping with NHQ indels is significantly higher than that 
for noncancer genes.

An alternative approach by permutation test is also done to see if the NHQ indels have a higher enrichment 
in cancer genes (oncogenes and tumour suppressor genes) than in noncancer genes. For this test, from the list 
containing 20,172 genes (the whole genome gene list not containing the oncogene and tumour suppressor genes), 
142 genes (number of total oncogene and tumour suppressor genes) are sampled randomly and checked for the 
number of genes that overlap with the NHQ indels. Repeating the sampling 1,000 times yielding a distribution 
for the number of genes overlapping with the NHQ indels. Out of the 1,000 sets, the number of overlaps higher 
than 62 (the observed number of overlaps) only occurs 9 times and therefore, the permutation test p-value is 
9/1000 = 0.009 (which is also consistent with the p-value from the z-test above). Again, the null hypothesis can 
be rejected, and therefore, it can be concluded that there is a significant enrichment of the NHQ indels in cancer 
genes, further suggesting that the NHQ indels may harbour important genetic mechanisms for breast cancer.

Annotating the NHQ indels using Variant Effect Predictor (VEP).  For this analysis, the NHQ indels 
are annotated using Variant Effect Predictor (VEP)45. 16,141 of the indels are identified as novel, i.e., not anno-
tated in the Ensembl variation database consisting of dbSNP, Cancer Gene Census, ClinVar, COSMIC, dbGap, 
DGVa etc. This indicates the significance of this study in rescuing these indels from the discarded reads that can 
potentially be annotated.

The NHQ indels overlapped with 15,229 genes, 32,335 transcripts, and 2,136 regulatory features. As shown in 
Fig. 9(a), around 75% of the NHQ indels are in the non-coding regions located in the intron or intergenic region. 
Figure 9(b) shows that 72% of the indels in the coding regions are frameshift indels that cause a disruption of the 
translational reading frame and can have a disruptive impact in the protein by causing protein truncation and/or 
loss of function. In addition, a small amount of the indels are “Splice donor variants” changing the 2-base region 
at the 5’ end of an intron and can have a similar impact as frameshift indels. 25% of the indels are in-frame indels 
having a “moderate” impact in the protein by not disrupting the protein but changing the effectiveness of that pro-
tein. 70% of the NHQ indels having disruptive and moderate impact overlap with the protein-coding transcripts, 

Figure 9.  Analysis of the NHQ indels using Variant Effect Predictor (VEP). (a) All consequences, (b) coding 
consequences, (c) distribution of biotype of the features overlapped with the NHQ indels.
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the leading biotype of all features (Transcripts, Regulatory Features, and Motif Features) as shown in Fig. 9(c). 
Out of the remaining indels, 37.44% (12.48% of the total NHQ indels) have a “modifier” impact that overlap with 
long intergenic RNA transcripts (lincRNA). LincRNAs are noncoding transcripts with a length longer than 200 
nucleotides and are the largest class of noncoding RNA molecules in the human genome. There is an emerging 
evidence that noncoding RNAs regulate gene expression by influencing chromatin modification, mRNA splic-
ing, and protein translation46,47 as well as contribute to mammary tumour development48,49 and progression. 
Therefore, the NHQ indels overlapped with these transcripts deserve more attention and studying these indels 
has biological significance.

Functional annotation of the genes overlapping with the NHQ indels.  Functional annota-
tion of the genes overlapping with the NHQ indels using David50 (version 6.7) shows strong correlation with 
“Pathways in Cancer” (Fisher Exact p-value: 6.2 × 10−5), “PI3K-Akt signalling pathway” (Fisher Exact p-value: 
1.5 × 10−4), RAP1 signalling pathway (Fisher Exact p-value: 10−4), and RAS signalling pathway (Fisher Exact 
p-value: 4.7 × 10−3). A previous study shows that components of the PI3K-Akt signalling pathway are recurrently 
altered in cancers and the survival signals induced by several receptors are mediated mainly by this pathway51. 
Ras-associated protein-1 (RAP1) is an important regulator of cell functions and has been found playing a vital 
role in cell invasion and metastasis in cancers52. The signalling pathways involving RAS protein can contribute 
to tumour growth, survival, and spread, and play a crucial role in the pathogenesis of other hematologic malig-
nancies as well53,54. Therefore, these results suggest that the newly found indels interacting with these genes may 
participate in cancer-related biological processes and play an important role in cancer progression.

Genes missed in the original mapping but found in NHQ indels show association with cancer 
and other diseases.  There are 42 genes overlapping with the NHQ indels but not with the indels from the 
originally mapped reads. Table 3 lists the genes with their types. Functional annotation of the protein-coding 
genes shows that these genes are related to biological process such as immune response, protein localization, 
protein transport, regulation of transcription, and regulation of RNA metabolic process which can control 
molecular functions such as antigen binding, peptide binding, MHC protein binding, and peptide-antigen 
binding. In addition, these genes are associated with protein domain such as Immunoglobulin subtype and 
Krueppel-Associated Box (KRAB)–Zinc Finger Protein (ZFP). Immunoglobulin subtype is involved in cell-cell 
recognition, cell-surface receptors, muscle structure, and the immune system55 and therapy targeting this protein 
domain has been used for liver cancer56, breast cancer57, and Follicular Lymphoma58,59. Krueppel-Associated 
Box (KRAB)–Zinc Finger Protein (ZFP) is the largest class of transcription factors in the human genome60 and is 
largely involved in tumorigenesis61.

A PubMed search returned results for three genes namely KIF20A, BNIP3P1, and ZNF84.
Kinesin family member 20A (KIF20A), also known as RAB6KIFL, is a member of the kinesin superfamily 

of motor proteins, a conserved motor domain which binds to microtubules to generate the energy required for 
trafficking of proteins and organelles during the growth of numerous cancers62,63. KIF20A is found overexpressed 
at both the mRNA and protein levels than the normal counterparts in breast cancer64–66 and also in several other 
cancers including gastric cancer67, bladder cancer68,69, pancreatic cancer70–72, hepatocellular cancer73, lung can-
cer74, glioma75, and melanoma76. The overexpression of KIF20A is significantly associated with poor survival of 
breast cancer patient64,65 and drug resistance65,77. Similar phenomena are observed with other cancer patients as 
well67,69,70,72,74,78. Silencing or knockdown of KIF20A can significantly inhibit cell proliferation and cancer pro-
gression71,79. Therefore, KIF20A has been suggested as a direct therapeutic target71,80, and KIF20A-derived peptide 
has been used in immunotherapy in clinical trials to improve the prognosis of cancer patients62,75,81–84. Although 
KIF20A has a strong association with breast cancer, no mutation is found in this gene from the originally mapped 
reads which shows the limitation of the current approach. This limitation, however, can be alleviated by exploring 
the unmapped reads. Besides cancer, KIF20A is found associated with heart disease in infants. A recent study 
by Louw et al.85 identified an undescribed type of lethal congenital restrictive cardiomyopathy, a disease affect-
ing the right ventricle of two siblings. Exome sequencing analysis of these affected siblings and their unaffected 
sibling revealed two compound heterozygous variants in KIF20A; a maternal missense variant (c.544 C > T: p. 
R182W) changing an arginine to a tryptophan and a paternal frameshift deletion (c.1905delT: p. S635Tfs15, in 
exon 15) that introduces a premature stop codon 15 amino acids downstream. Louw et al.85 validated the variants 
by Sanger sequencing, found the presence of both variants in the affected siblings, and confirmed a heterozygous 

Gene Type Gene Name

Antisense RP11-534L20.5, JMJD1C-AS1, CTB-22K21.2, RP11-1079K10.4, RP11-16N11.2, RP11-26P13.2, RP11-
1299A16.3, RP1-16A9.1.

LincRNA RP5-1065P14.2, RP11-309G3.3, RP11-382D12.1, RP11-14C22.3, RP11-386I8.6, LINC00379, RP3-503A6.2, 
RP3-416J7.4, RP11-100L22.4.

miRNA MIR4477A.

Pseudogene RP5-857K21.7, RP11-428G5.7, BNIP3P1, RP11-713H12.2, VN1R90P, MLLT10P1, UNC93B3, TBCAP3, CTD-
2158P22.1, RP11-823P9.3, RP3-416J7.1, CYP4F44P, OR5BH1P, PABPC1P3, CASKP1, TRBV12-1, TRBV12-2.

Protein coding OR10G8, ZNF26, ZNF84, KIF20A.

snRNA RNU1-59P, RNU6-377P, RNU1-36P.

Table 3.  Name and type of the genes that overlap with the NHQ indels but not with the indels from the 
originally mapped reads.
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carrier status in both parents. In addition, both variants were absent in the unaffected sibling. The C > T missense 
SNP does not let KIF20A support efficient transport of Aurora B as part of the chromosomal passenger complex 
causing Aurora B trapped on chromatin during the cell division and hence it fails to translocate to the spindle 
midzone during cytokinesis. This claim is verified by Louw et al.85 in the zebrafish model where translational 
blocking of KIF20A resulted in a cardiomyopathy phenotype. A similar congenital restrictive cardiomyopathy is 
also identified to be caused by the deletion resulting in loss-of-function of KIF20A85. Despite such significance, 
these two variants that affect protein function were absent in the population control exome such as ExAC Browser 
database, a catalogue of genetic data of 60,706 humans of various ethnicities86. The missense variant was found in 
two individuals from South Asia and Europe and the frameshift deletion was present in 32 individuals of African 
descent85,87. This observation supports the claim that clinically important mutations can be missed and one of the 
reasons might be because of overlooking the unmapped reads. By exploring the unmapped read of 30 breast can-
cer patients, Genesis-indel finds a frameshift deletion of T (chr5:137520225 CT -> C) that overlaps with the exon 
of KIF20A gene (Fig. 10). Note that, in Fig. 10, only two out of four reads support the deletion where as in Fig. 7, a 
9 base deletion is not called from the originally mapped reads although 4 reads support that deletion. The reason 
is, the single base deletion is supported by 50% of the reads aligned in that region whereas the 9-base deletion in 
the originally mapped reads (Fig. 7 upper panel) is supported by 25% of the aligned reads which is possibly lower 
than the default threshold set by the variant caller.

Among the remaining genes, BCL2 interacting protein 3 pseudogene 1 (BNIP3P1) is found to be upregulated 
in patients with breast cancer Brain Metastases when compared to breast cancer (76% vs. 24%) or compared to 
Primary Brain Tumours (74% vs. 26%)88 and is suggested to be used as a molecular biomarker for breast cancer 
Brain Metastases. Zinc Finger Protein 84 (ZNF84) is found significantly associated with tumour size and TNM 
(Tumour, Node, Metastases) staging for cervical cancer and squamous cell carcinoma and in vitro validation 
shows that it promotes cell proliferation via AKT signalling pathway89. Although the literature does not show 
any association between these genes and breast cancer, it is worth exploring due to their association with other 
cancers.

Out of the 42 genes, two LincRNAs namely RP3-416J7.4 and RP11-386I8.6 contain the same number of 
indels as the protein-coding genes. Although little is known about their association with breast cancer, analy-
sis using TANRIC90 on TCGA-BRCA data reveals that these two LincRNAs are differentially expressed (t-test 
p-value = 0.000023337 and 0.003812, respectively) between the carriers and non-carriers of somatic mutations in 
the TP53 gene, a tumour suppressor gene spontaneously found altered in breast carcinomas91.

While this paper shows the significance of uncovering NHQ indels from the originally unmapped reads in 
patients with breast cancer, there are few limitations. Firstly, this study is conducted by using a computational 
pipeline. Though the pipeline is computationally feasible and results are convincing as well as supported by exper-
imentally validated literature, it lacks some validation experiments. Integrated Genome Viewer (IGV) clearly 
shows the novel high-quality indels discovered by Genesis-indel. Use of IGV is a well-accepted approach for com-
putational validation of variants like SNPs, indels, and SVs. Nonetheless, in vivo validation is essential to govern 
the clinical importance of the newly identified indels. Secondly, filtering indels solely based on the “PASS” flag 
may cause missing rare variants. Therefore, an algorithm such as ForestQC92 that combines traditional variant 
filtering approach with machine learning algorithm to determine the quality of the variant can be incorporated 
to the present pipeline to improve the quality control procedure and achieve better results. Thirdly, if the reads 
are initially quality controlled and mapped with BWA-MEM, in that case, Genesis-indel will not have many 
unmapped reads to analyse and will produce results solely based on the few reads aligned by BLAT.

Conclusion
This paper emphasizes the interest of studying unmapped reads to cope with potential loss of important infor-
mation and describes Genesis-indel, a computational pipeline to rescue novel high-quality indels by exploring 
unmapped reads that are normally discarded from the downstream analysis.

Figure 10.  A 1-base deletion in the exon of KIF20A gene which is not initially called from the original 
alignment but called after the mapping of originally unmapped reads. The upper panel shows the original 
alignment and lower panel shows the alignment of the newly mapped reads.
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Analysing the whole genome DNA alignment of 30 breast cancer patients from TCGA reveals a nonnegli-
gible number of unmapped reads that are overlooked earlier. After mapping the unmapped reads to the refer-
ence genome, Genesis-indel finds 72,997 novel high-quality indels of diverse lengths and 16,141 have not been 
annotated in any of the genetic variation database used by Ensembl. These novel high-quality indels are mainly 
enriched in frameshift indels and have high to moderate impact in the protein. These indels mostly alter the 
oncogenes and tumour suppressor genes and overlap with genes significantly related to different cancer pathways. 
Moreover, these indels overlap with genes not found in the indels from the originally mapped reads and func-
tional annotation shows that these genes contribute to the development and growth of tumour in multiple carci-
nomas. Therefore, these findings collectively suggest that complete characterization of these indels is essential for 
downstream cancer research. Genesis-indel is expected to be highly useful for uncovering the missed indels that 
can be further explored for clinical decision making.

Methods
The Genesis-indel pipeline.  Genesis-indel is designed to leverage unmapped reads from an alignment 
with the goal to rescue indels that are hidden in the discarded unmapped reads. Figure 2 shows a schematic 
representation of the Genesis-indel workflow. The input to Genesis-indel is the alignment file (BAM file) of the 
patient genome and the reference genome. In the pre-processing step, Genesis-indel extracts the unmapped 
alignment by checking the alignment flag using SAMtools (version 1.4)23. From this, it extracts the “Originally 
Unmapped” reads using SAMtools and stores the reads in a FASTQ file. This FASTQ file is then processed by 
Trimmomatic (version 0.36)25 to do the quality control of the unmapped reads by removing adapter sequences. 
In this experiment, the Illumina adapter, TruSeq2 for single-end reads are removed. Moreover, low quality or N 
bases where the base quality is below 3 are removed from both ends of the reads (LEADING:3, TRAILING:3). 
Reads are scanned with a 4-base wide sliding window and are cut when the average quality per base drops below 
15 (SLIDINGWINDOW: 4:15). Reads with length below 36 bases are dropped (MINLEN:36). These quality con-
trolled single-end reads are used as the input to the mapper in the next step.

The quality controlled unmapped reads are mapped to the reference genome using BWA-MEM (ver-
sion 0.7.15-r1140)26, a sensitive mapper to map reads with indels. After the reads are aligned by BWA-MEM, 
some reads still remain unmapped. These reads are aligned to the reference genome using BLAT (BLAST-Like 
Alignment Tool)27, another sensitive local alignment tool. At the end of this step, the alignments from BWA-MEM 
and BLAT are merged. The resultant alignment is sorted and indexed using SAMtools and duplicates are marked 
in the newly mapped reads using MarkDuplicates tool from Picard (version 1.65)93. After read alignment and 
marking duplicates, indels are called using Platypus (version 0.7.9.1). Separately, indels are also called from the 
original (input) BAM file. Indels found only in the newly mapped reads and not in the original alignment are 
reported as novel indels. After identifying the novel indels, another step of filtering is done to keep only the 
high-quality indels, i.e., the indels that are called with high confidence by Platypus. Therefore, only the indels with 
the “PASS” flags are reported at the final step. These are the Novel High-Quality indel (NHQ indels) reported in 
the final output and selected for downstream analysis.

Preparing a list of oncogene and tumour suppressor genes.  A list of oncogenes and tumour suppres-
sor genes is obtained from an online resource94, a list compiled from the CancerGenes95. While preparing the list, 
if a gene is marked as both an oncogene and a tumour suppressor gene in CancerGenes, a literature search is per-
formed to determine the gene’s role in tumour development. Any gene with an ambiguous role as an oncogene or 
tumour suppressor gene is excluded from the list. The final list contains 79 oncogenes and 63 tumour suppressor 
genes. The start and end positions of the genes are obtained from GENCODE (version 28 lift37). Supplementary 
Table S1 contains the list of the genes and their positions.

Software availability and system requirements.  Genesis-indel is implemented in C++ and can 
run on any operating systems that have a C++ compiler. The source code and the command line version of 
Genesis-indel are freely available at https://github.com/mshabbirhasan/Genesis-indel. Users are welcome to 
report bugs and provide comments through the issue tracker on GitHub. The README describes the command 
line options available in Genesis-indel with examples. Although Genesis-indel uses BWA-MEM as the mapper 
and Platypus as the default variant caller, future version will allow the user flexibility to customize the program 
and use the mapper and caller of their choice by making small modifications to the script.

Data Availability
No new data sample is generated for this study. The alignment file (BAM) for the 30 breast cancer patients are ob-
tained from The Cancer Genome Atlas (TCGA) project (https://portal.gdc.cancer.gov/). Supplementary Table S2 
lists the TCGA Sample Barcode and alignment filename for the patients. The reference genome used is Homo_sa-
piens_assembly19.fasta, the same reference used by TCGA to align the reads. The annotation of the genes is 
collected from GENCODE (version 28 lift37). All other data supporting the findings of this study are available 
in this article and in the supplementary materials. These data are also available from the authors upon request.
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