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Mechanical unfolding of spectrin 
reveals a super-exponential 
dependence of unfolding rate on 
force
J. P. Renn1, S. Bhattacharyya1, H. Bai1,2, C. He3, H. Li3, A. F. Oberhauser4, J. F. Marko1,2, 
D. E. Makarov   5,6 & A. Matouschek   1,7

We investigated the mechanical unfolding of single spectrin molecules over a broad range of loading 
rates and thus unfolding forces by combining magnetic tweezers with atomic force microscopy. We find 
that the mean unfolding force increases logarithmically with loading rate at low loading rates, but the 
increase slows at loading rates above 1pN/s. This behavior indicates an unfolding rate that increases 
exponentially with the applied force at low forces, as expected on the basis of one-dimensional models 
of protein unfolding. At higher forces, however, the increase of the unfolding rate with the force 
becomes faster than exponential, which may indicate anti-Hammond behavior where the structures of 
the folded and transition states become more different as their free energies become more similar. Such 
behavior is rarely observed and can be explained by either a change in the unfolding pathway or as a 
reflection of a multidimensional energy landscape of proteins under force.

Single molecule force spectroscopy is a well-established approach to probing force-induced protein denatura-
tion1–3. Atomic force microscopy (AFM) is well suited for studying the mechanical unfolding of proteins such as 
I27, which display high mechanical stability requiring forces in the 100–300 pN range to unfold on typical exper-
imental timescales4–8. Other proteins exhibit much lower mechanical stability and can be unfolded by forces in 
the range of 10 pN, which is arguably more typical of mechanochemical processes in vivo. Spectrin, which was the 
subject of recent AFM pulling studies9–11, is a case in point. Spectrin is part of the cytoskeletal scaffolding network 
that gives eukaryotic cells their shape12. Each spectrin protein consists of multiple repeats of an α-helical 3-helix 
bundle domain, and each repeat is connected to the next by an α-helical linker12. Spectrin unfolds at much lower 
forces than I27, and the mean unfolding force of spectrin is either independent10 or weakly dependent9,11 on the 
pulling speed, in contrast to the much stronger dependence found for I274,13. More precise quantification of the 
pulling speed dependence of the unfolding force for spectrin was, however, impeded by the fact that low forces, 
and correspondingly low pulling rates, are difficult to explore with most current AFM instruments. Exploration 
of the low force/low loading rate regime is valuable because the loading rates in vivo are thought to be slower than 
those used in AFM unfolding experiments14,15.

Here, we combined magnetic tweezers with AFM to characterize how spectrin unfolds over a wide range 
of loading rates, including low loading rates not usually accessible by AFM. In the low loading rate regime, we 
find a stronger dependence of the unfolding force on loading rate than observed in the AFM unfolding assays 
employing high loading rates. This behavior can be indicative of an “anti-Hammond” effect where the unfold-
ing transition state moves away from the folded state as the force is increased16–18. The rate at which the mean 
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unfolding force increases with the loading rate r (i.e., the increase in the applied force per unit time) is related 
to the activation length Δx (i.e., the distance between the folded state and the transition state along the pulling 
coordinate x) through the relation19,20:

≈ Δ .d F d r k T x/ ln /B

Consequently, weaker pulling speed dependence at higher forces suggests that the activation length increases 
with the increasing force, meaning that the transition state moves further away from the folded state. This obser-
vation is interesting because it cannot be captured by simple one-dimensional models; indeed, most common 
theories of force-induced unfolding view it as diffusive dynamics in a one-dimensional potential and predict the 
activation length to decrease with increasing force. Anti-Hammond behavior is a signature of multidimensional-
ity of the underlying free energy landscape17,18,21,22.

Results
Measuring spectrin unfolding and refolding at low loading rate.  We used a previously developed 
magnetic tweezers setup23,24 to investigate the unfolding behavior of repeats 12 to 16 of the human β-spectrin 
protein12, following the methodology established to investigate the unfolding of filamin A and vinculin proteins 
at loading rates varying from 0.16 pN/s to 16 pN/s14,23,25,26.

To attach the protein to two surfaces, we fused a SNAP domain (New England Biolabs) to the N-terminus 
of the spectrin fragment and a 23 amino acid long biotinylation peptide27 to its C-terminus. The protein was 
expressed in E. coli, purified and biotinylated. The N-terminal SNAP domain allowed us to attach the protein to a 
glass slide modified with benzylguanine, and the biotinylated C-terminus could be picked up with a streptavidin 
coated magnetic bead (Figs SI 1–3; see Methods for details). We generated forces on the protein-bead complex by 
a magnet below the stage holding the glass slide. The magnet was under the control of a stepper motor that could 
move it toward or away from the stage to increase or decrease the force acting on the bead. The position and the 
fluctuations of the beads were monitored using a light microscope connected to a CCD camera (for details of the 
setup see28). The distance of the tethered bead from the surface was calculated by comparing the height of the 
bead to a reference bead on the glass surface and the force exerted on the bead was calculated from the thermal 
fluctuations of the bead as described previously23,24,29,30.

In our initial experiments, we unfolded the spectrin protein by moving the magnet towards the surface such 
that the force exerted on the protein increased at a constant rate of r = 0.5 pN/s (Fig. 1A). As the force was 
increased, the protein was extended gradually, but the extension was interrupted by sharp step-like increases 
in its length. The gradually changing segments of the protein’s force-extension curve were well described by the 
wormlike chain (WLC) model14 suggesting that they resulted from the entropic elasticity of the unfolded parts 
of the polypeptide chain. We interpreted the sharp steps in the extension as the sudden unfolding of spectrin 
domains (Fig. 1).

This conclusion was supported by the calculation of the contour length released in each step (performed as 
described in ref.14), which matched the contour length of one or two spectrin domains (Fig. 1b). The total contour 
length released in an entire pulling cycle added up to that of five unfolded spectrin domains, which is the total 
number of spectrin domains in the construct (Fig. SI 4).

To characterize the refolding process, we unfolded a spectrin construct as described above, paused at a high 
force to allow the protein to reach equilibrium, and then retracted the magnet at the same speed as during unfold-
ing but in the opposite direction until it returned to the starting position (Fig. 1a). The return trace did not overlay 
with the unfolding trace and lacked its distinct extension steps (Fig. 1b).

The hysteresis exhibited by the unfolding and refolding curves suggests that the extension/retraction cycle 
is a nonequilibrium process. To test whether the retraction arm of the experiment returns the protein to the 
native state, we unfolded the same tether a second time at the same loading rate. The second force vs. extension 
profile superimposed well with the profile from the first extension (Fig. 1c), although the individual transitions 
occurred at different positions as expected for stochastic events in a single molecule. We conclude that spectrin 
was unfolded reproducibly in the experiment. Generally, more than five unfolding and refolding cycles could be 
performed on a single protein before the protein no longer refolded and failed to return to its original extension.

Measuring spectrin unfolding at different loading rates.  For most proteins that have been character-
ized by single molecule force spectroscopy, the mean unfolding force increases logarithmically with the loading 
rate, which is consistent with theoretical expectations31. Spectrin appeared to be an exception with its mean 
unfolding force either weakly dependent on or independent of the loading rate9–11. To test whether this behavior 
is a manifestation of a fundamental difference between spectrin and other proteins, we studied spectrin unfolding 
at five different loading rates r: 0.05, 0.1, 0.5, 1, and 2 pN/s. For each of these, we performed at least 13 pulls on 
three different tethers to analyze at least 37 transitions per loading rate (see supplementary methods for details). 
The histograms of the unfolding forces observed at each loading rate are shown in Fig. 2.

Our analysis only included the unfolding traces in which the total contour length released upon a complete 
extension added up to the unfolding of five spectrin domains. The remaining curves presumably originated from 
beads that were tethered to the glass surface by misfolded spectrin proteins or by several spectrin molecules 
simultaneously and were not included in the analysis.

To interpret the measured distributions of the unfolding force (Fig. 2) and their dependence on the loading 
rate, we adopted the common model that views protein unfolding as a first-order kinetic process with a rate 
coefficient k(F) that increases as the pulling force F applied to the protein’s termini is increased. The physical rea-
son for this acceleration in the unfolding kinetics is that the force lowers the barrier to unfolding by performing 
mechanical work on the protein32. If the force dependence of the unfolding rate coefficient k(F) is known, then the 
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mean unfolding force as a function of the loading rate r can be estimated33; moreover, the probability distribution 
of the force at which unfolding occurs P(F) can also be calculated. Specifically, the probability density P(t) of an 
unfolding step occurring at time t and thus having the magnitude F = rt (where r = dF/dt is the constant loading 
rate) is described by the equation32

∫=





−







P t k rt k rt dt( ) ( )exp ( )
t

0

Or, equivalently, the probability distribution P(F) of the unfolding force is given by
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In principle, Eq. 1 can be inverted to obtain k(F) from a distribution P(F) obtained at any specified value of the 
loading rate r using the formula33:

Figure 1.  Force extension curves for spectrin unfolding by magnetic tweezers. (a) A representative trace of the 
extension (z-position of the beads) and force vs. time data for a typical spectrin pulling experiment. The data 
were smoothed using a sliding average of window of 10 ms. The magnet is moved relative to the microscope 
slide at a preprogrammed pattern to exert the desired linear force loading rate on a magnetic bead and the 
bead position is monitored. After the desired maximum force was reached to unfold the protein, the magnet 
was retracted at the desired rate and refolding was monitored. (b) Hysteresis is observed between unfolding 
(blue) and refolding (red). To construct the force vs. extension curve of the unfolding and refolding process the 
position at each force is averaged and plotted against the force. (c) Force vs. extension data for 2 subsequent 
unfolding cycles (dark blue first, light blue second) overlay suggesting that the tethered protein refolds properly, 
and attachment is specific.
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∫= ′ ′
∞

k F rP F dF P F( ) ( )/ ( )
F

Unfortunately, incomplete sampling and the noise in the experimentally determined distributions P(F) renders 
this procedure inapplicable to our data. For this reason, we use an approximation to Eq. (1′) proposed by Dudko 
et al.33, which only requires the first and the second moments of the distribution rather than P(F) itself. This 
approximation is obtained by replacing P(F) with a Gaussian distribution and leads to the following result:

π
≈


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−
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k F r F F( )
2 ( ) ,

(2)
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where ∫=
∞F FP F dF( )

0
 and ∫=

∞F F P F dF( )2
0

2  are the first and the second moments of the force distribu-
tion. The approximation states that the unfolding rate measured at the mean value of the force at which unfolding 
occurs at each loading rate is related to the variance of the force distribution. Applying Eq. 2 to the distribution of 
unfolding forces observed at each of the loading rates (Fig. 2) allowed us to estimate k(F) for different unfolding 
forces (F) (Fig. 3). Note, however, that the statistics of the measured unfolding forces did not appear to be very 
well described by Gaussian distributions, especially at the lowest loading rates (Fig. 2), making the assumptions 
underlying Eq. 2 questionable in our case. We will discuss this discrepancy further below.
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Figure 2.  Experimental distributions of the unfolding force at different loading rates. Graphs plot the 
normalized number of unfolding events observed at the indicated force range at each loading rate = 0.05 pN s−1 
(n = 41), 0.1 pN s−1 (n = 77), 0.5 pN s−1 (n = 49), 1 pN s−1 (n = 47) and 2 pN s−1 (n = 38). Blue and red lines 
are the distributions predicted by Eqs 1 and 3 with the parameters estimated from Eq. 2 (blue) and from the 
positions of the distribution peaks (red) as described in the text. The units of the force are pN and those of p(F) 
are 1/pN.
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As seen from Fig. 3, the logarithm of k(F) is well approximated as a linear function of the force F, or, equiva-
lently, the force dependence of the unfolding rate is exponential,

=k F k e( ) (3)aF
0

This formula has a simple physical interpretation as the Arrhenius law,

=
− Δ

k F Ae( )
G F
k T

( )
B

written in terms of a force-dependent free energy barrier for unfolding ΔG(F).
The simplest model for this force dependence assumes that force lowers the barrier by the amount of work 

exerted on the molecule when it moves from the initial (i.e., native) state to the transition state. This work equals 
FΔx, where Δx is the activation length equal to the change in the protein extension between the folded and the 
transition states. Thus, the free energy barrier depends on the force according to the linear relationship:

Δ Δ − ΔG F G F x( ) (0) , (4)

leading to an exponential force dependence, =
Δ

k F k e( ) (0)
F x
kBT , which was originally proposed by Eyring to 

develop a molecular model of viscous friction34, used extensively to explain kinetic phenomena in fracture 
mechanics35, and later introduced by Bell into the field of biophysics36. We will be referring to this result as the 
Eyring-Zhurkov-Bell (EZB or simply Bell) formula. Comparing (4) and (3) one finds

=
Δa x
k T (5)B

Linear fit of force dependence lnk(F) estimated from Eqs 2 and 4, we estimate the activation length to be 
Δx ≈ 0.84 nm, and = ≈ . × − −k k s(0) 2 5 100

4 1 (blue line in Fig. 3). We will refer to this set of parameters collec-
tively as Model A.

At the same time, the shapes of the measured unfolding force distributions disagree significantly with the 
expected distributions calculated using these parameters for k0 and Δx and Eqs 1 and 3 (Blue lines in Fig. 2). Since 
both the predicted and the experimental force distributions are significantly asymmetric, the assumption of a 
Gaussian distribution underlying Eq. 2 is violated. It is then instructive to fit the same data to the model described 
by Eq. 3 in a different way, namely by relating the maximum Fm of the distribution P(F), instead of the mean force 
〈F〉, to the loading rate r. This relationship can be obtained by setting the derivative of Eq. 1 with respect to the 
force to zero, yielding the equation

=
=
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Substituting Eq. 3 into Eq. 6 and using Eq. (5) leads to
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In other words, the peak force depends on the loading rate logarithmically. To estimate the peak force Fm from the 
measured force distributions at the different loading rates (Fig. 2), we applied a Gaussian kernel to smooth the raw 
data. Fitting the resulting relationship between Fm and the loading rate r with Eq. 7 (Fig. 4), one obtains somewhat 

Figure 3.  Estimated unfolding rate constants at different forces. The graph plots the unfolding rates estimated 
from Eq. 2 (blue circles) at the different unfolding forces. The lines show fits of the data to different models 
relating the unfolding rate of a protein to the applied force as described in Eq. 3 (blue line, parameters of Model 
A). Red line shows a different fit of k(F) using the same functional dependence (Eq. 3) but based on the position 
of the peaks of the distributions (Model B – see text for details.)
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different values for the model parameters: Δx ≈ 0.67 nm, and k0 ≈ 1.6 × 10−3 s−1. As seen from Fig. 4, indeed, the 
dependence of the mean unfolding force on the loading rate is close to logarithmic, as predicted by Eq. 7. This set 
of parameters (which we will be referring to as Model B) provides a better fit for the shapes and the peak locations 
of the force distributions (Fig. 2, compare model B fit represented by red line to model A represented by blue line). 
However, model B predicts the mean unfolding force somewhat less accurately than Model A (Fig. 3, compare 
model B shown as the red line and model A shown as the blue line). Despite the discrepancy between the two 
models, both predict similar values of the activation length Δx.

Although the EZB theory provides a reasonably good description of our magnetic tweezers data, the loga-
rithmic loading rate dependence of the mean unfolding force we observe here is at odds with the much weaker 
dependence observed in earlier AFM studies of spectrin10,11, which were performed at much higher loading 
rates. Since those studies used somewhat different spectrin variants, we have carried out our own AFM measure-
ments to investigate how mechanical response of spectrin depends on the loading rate and/or the experimental 
technique.

AFM unfolding of spectrin at high loading rates.  To investigate spectrin unfolding at high loading 
rates we employed single-molecule AFM in a manner similar to the earlier studies of human β-spectrin repeats 
1–49 and of chicken brain α-spectrin repeats 15–1710 and 13–1811. Since all of these studies observed compara-
ble unfolding forces for individual spectrin domains, we expected the AFM unfolding of the human β- spectrin 
repeats 12–16 studied here to yield similar results. We performed AFM unfolding experiments with the same pro-
tein as prepared for the magnetic tweezers experiments above, but now in PBS buffer. The protein was adsorbed 
nonspecifically to a gold surface and another part of the protein was picked up with the AFM cantilever tip, also 
via nonspecific adsorption. We then retracted the cantilever at a pulling speeds of 40, 150, or 400 nm/s and meas-
ured the force exerted on the cantilever as a function of its distance from the surface. The collected traces showed 
the sawtooth pattern expected when individual domains unfold stochastically, suggesting that several spectrin 
repeats were enclosed between the cantilever and the surface (Fig. 5). We then estimated the forces at the moment 
of unfolding as the distance of the sawtooth maximum to a baseline by fitting the traces to the Wormlike Chain 
(WLC) model (Fig. 5). We derived the loading rate at each unfolding event using the WLC equation assuming 
that the elastic behavior observed was due to extension of previously unfolded protein14,23. At a pulling speed of 
40 nm/s, the mean (+/− standard error) of the unfolding force distribution was 32 +/− 1 pN and the mean of the 
of the loading rate distribution was 145 +/− 11 pN/s. The corresponding values were 34 +/− 3 pN and 720 +/− 
70 pN/s for pulling speeds of 150 nm/s and 38 +/− 2 pN and 2698 +/− 242 pN/s for pulling speeds of 400 nm/s. 
The measured unfolding forces are well within the range of the unfolding forces of 30 to 50 pN observed in the 
other AFM studies of spectrin unfolding9–11. The variation in the loading rates comes from the fact that they are 
estimated from the raw data in the force extension curve at each individual unfolding event, which in turn occurs 
stochastically. The variation is increased by the fact that the spectrin molecules attached through nonspecific 
interactions with the surfaces of cover slip and cantilever at either end so that (partially) denatured regions add 
extra spacers that change the protein spring constant and hence the estimated loading rate. The instrumentation 
itself adds to the variation only in a minor way so that the puling speeds, in contrast to the loading rates, show 
little variation.

Loading rate dependence is different in magnetic tweezers and AFM measurements.  The 
range of the loading rates for which the AFM measurements were made was estimated to be 145–2,700 pN/s. 
Extrapolation of the magnetic tweezers data from the preceding section to these loading rates using the EZB fit 
yields a logarithmic dependence of the mean unfolding force on the loading rate and predicts an unfolding force 
in a range of ~50–75 pN (Fig. 6, blue and red lines), much higher than the measured unfolding forces of below 
40 pN (Fig. 6). There are several possible explanations of this discrepancy: (i) Eq. 1 may be invalid, especially 
at high loading rates. Indeed, Eq. 1 is based on the adiabatic approximation (ref.33) where the folded molecule 
is in local equilibrium at any given value of the force F. When this approximation is inadequate, a microscopic 
model of spectrin dynamics would be required to describe its mechanical response. (ii) Coupling between the 
molecule and the experimental apparatus may affect the observed unfolding dynamics thus causing discrepancy 
between the observations made by different experimental techniques. (iii) The force dependence of the unfolding 
rate k(F) may be more complex than that described by the EZB model, Eq. 4. More specifically, the loading rate 

Figure 4.  The relationship between the loading rate and the estimated peak of the unfolding force distribution. 
The solid line shows a fit of the loading rate, viewed as a function of the peak force, with Eq. 7. (Model B).
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dependence observed in Fig. 6 is indicative of the anti-Hammond effect, where the activation length Δx increases 
with the force F. In this case, the barrier ΔG(F) is no longer a linear function of the force, and Eq. 4 is incorrect. 
However, the following generalization of Eq. 4, written in a differential form, is still true22,32,37:
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Figure 5.  Force extension curves for spectrin unfolding by AFM. (a) Representative unfolding trace from one 
AFM experiment. (b) Unfolding forces and loading rates of 32 unfolding events obtained at three different 
pulling speeds.

Figure 6.  Loading rate dependence of the mean unfolding force. The black markers represent the experimental 
magnetic tweezers data, and the gray markers represent the AFM data. Blue line and red lines the predictions 
based on Eqs 1 and 3 with the parameters estimated using Eq. 2 (Model A: blue) and from the location of 
the distribution peaks (Model B: red). The theoretical mean unfolding force for each model was estimated 
numerically as the mean of the distribution, Eq. 1, with the k(F) chosen according to each model. Note that only 
the magnetic tweezers data were used in estimating the model parameters. The green line gives the predictions 
of Model A modified to include a sixth order term (Eq. 11) while keeping other parameters unchanged.
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Δ = −Δd G F dF x F( )/ ( ) (8)

Since we have = −Δ
k F k e( ) 0

G F
kBT

( )
, Eq. 8 implies that = Δ−d k F dF k T x Fln ( )/ ( ) ( )B

1 . Substituting this result into 
Eq. 6, one finds that the formula for the peak force Fm, Eq. 7, still holds even for a non-constant activation length 
Δx. To obtain Fm this equation must now be solved self-consistently, viewing the activation length as a function 
of this force, Δx = Δx(Fm). As a result, the dependence of the peak force on the logarithm of the loading rate, ln 
r, is no longer linear because Δx varies with the value of r. This leads to curvature in a plot of Fm vs ln r.

To understand the sign of this curvature, it is expedient to think of ln r as a function of Fm, as in Fig. 4. 
Differentiating Eq. 7 with respect to Fm, one obtains:

=
Δ

+
Δ 




Δ −
Δ





d r
dF

x
k T

d x
dF

F x k T
x

ln / 1
(9)m B m

m B

For constant Δx, this derivative is constant, given a linear relationship between the peak force and ln r. Assuming 
that the force satisfies the inequality Δ F x k TB  (which is a reasonable expectation since the force would not 
cause any significant speedup of the unfolding process otherwise), we find that, if Δx decreases with increasing 
force, the second term in Eq. 9 is negative, and thus ln r increases with the force slower than linearly. Equivalently, 
Fm increases with the loading rate faster than logarithmically. This scenario corresponds to the Hammond effect, 
where the folded state and the transition state approach one another is the force increases.

In contrast, if the transition state moves away from the native state as the force increases, a scenario known as 
the anti-Hammond behavior, then the dependence of the peak force on the loading rate is weaker than logarith-
mic, which is the case for our data (Fig. 6). We note that, although the above arguments describe the relationship 
between the peak (rather than mean) force and the loading rate, the mean force shown in Fig. 6 behaves in a 
similar way.

Generally speaking, the anti-Hammond effect is caused by a multi-dimensionality of the underlying energy 
landscape18,37–39 and may arise in the cases of both single and multiple unfolding pathways. For a single unfolding 
pathway, the simplest model that accounts for both the Hammond and anti-Hammond effects is the force Taylor 
expansion of the free energy barrier assuming sufficiently low force [see, e.g., Konda et al.37]:

χΔ = − Δ − Δ − ΔG F k T k F k G F x F( ) ln ( )/ (0) /2 (10)B 0
2

The first term is the same as in EZB, but the second term now accounts for the force-induced movement of both 
the native (N) and the transition (TS) states according to the equation χ=dx dF/TS N TS N( ) ( ), with χ χ χΔ = −TS N  
being the change in the compliance (i.e., the inverse stiffness) from the native to the transition state. The sign of 
Δχ determines whether Hammond or anti-Hammond behavior is observed. A positive value of Δχ implies that 
the transition state has positive compliance and that it is more compliant than the folded state; as a result, the 
location of the transition state moves away from that of the native state as the force is increased, resulting in an 
increasing value of the activation length Δx - this is the anti-Hammond behavior. A positive value of ∆χ further 
implies a faster than exponential increase of the rate with the force because the barrier decreases with the force 
faster than linearly. It is easy to see that this results in the mean unfolding force rising with lnr slower than linearly, 
as in Fig. 6. Indeed, at any given loading rate r the protein will tend to unfold sooner than in the case of the expo-
nential k(F), resulting in a lower mean unfolding force and thus weaker dependence of the mean unfolding force 
on lnr (which is close to linear for the exponential k(F)).

Can inclusion of the quadratic term, as in Eq. 10, account for the experimental loading rate dependence seen 
in Fig. 6? Fitting the magnetic tweezers data using Eq. 10 amounts to fitting ln k(F) to a second-order polynomial 
in F, which would allow for curvature of the fits of Figs 3 and 4. Unfortunately, doing so does not result in statis-
tically significant improvement of the fits (although it is curious that the value of Δχ was found to be positive for 
both Model A and Model B, which corresponds to anti-Hammond behavior). More importantly, the rather small 
values of Δχ that are consistent with the lack of curvature observed in Figs 3 and 4 (Δχ ≤ 0.01 nm/pN) do not 
produce a significant effect when extrapolated to the AFM force range. In other words, it is impossible to reconcile 
the magnetic tweezers and the AFM data by merely assuming the quadratic dependence of the form of Eq. 10.

Instead, our data suggest a much stronger anti-Hammond effect than that estimated when only a quadratic 
correction to the force dependence of the free energy is included. Such stronger anti-Hammond behavior may 
arise from higher order terms, which are neglected in the expansion of Eq. 10, which, as a result, would only be 
appropriate for short extrapolations. For extrapolations of the unfolding rate constant k(F) over longer force (F) 
ranges, it may be necessary to include higher order terms in Eq. 10. To illustrate the effect of higher-order terms, 
consider a modified model that includes an additional sixth order term,

= +k F k e( ) , (11)aF cF
0

6

where the coefficients a, and k0 are the same as in Model A and c is a newly introduced constant that does not have 
an immediate physical meaning. Inclusion of this higher-order term (with = . × − −c pN2 0 10 9 6) brings model 
A much closer to the experimental data in the entire range of forces examined (Fig. 6 green line).

There is, of course, no physical reason to include specifically a sixth order term, and very similar results are 
obtained with a fourth or eight order term (with an appropriate coefficient) as well as with a combination of such 
higher order terms. In order to agree with both Model A at low force and with the high force AFM data, any such 
model must possess two features: First, the higher order terms must be negligible in low loading rate regime 
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explored by the magnetic tweezers experiments, and, second, they should be positive resulting in a faster than 
exponential growth of K(F) at high forces and, consequently, in lower unfolding forces.

Discussion
We have investigated the force-induced unfolding kinetics of spectrin repeats over a wide range of unfolding 
forces and loading rates by combining magnetic tweezers experiments with traditional AFM experiments. In 
contrast to the results reported by high-force AFM studies, which demonstrate only a weak dependence of the 
unfolding rate on force9–11, the results from magnetic tweezers experiments at low unfolding forces reveal a much 
stronger dependence. Indeed, within an experimental range of forces of 10–40 pN the unfolding rate varies over 
nearly 2 orders of magnitude (Fig. 3). Consequently, the mean unfolding force changed by a factor of ~2 as the 
loading rate was increased over a factor of 40 (Fig. 6). These observations are consistent with a roughly exponen-
tial increase of the unfolding rate with the applied force, which, in turn, corresponds to the unfolding barrier 
decreasing linearly with force, Δ ≈ Δ − ΔG G F x(0) , as in the commonly accepted Eyring-Zhurkov-Bell (EZB) 
formula. The value of the activation length Δx (i.e., the amount by which the protein is elongated before it reaches 
the unfolding transition state) is deduced from these results to be in a range Δx ≈ 0.65–0.85 nm, comparable to 
values found for other proteins40.

When the EZB predictions are extrapolated to higher loading rates corresponding to the regime probed by 
AFM, however, we find that they overestimate the average unfolding force and its loading rate dependence, as 
compared to the actual AFM data reported here (as well as the published AFM for slightly different spectrin 
constructs). In terms of the EZB model, the weaker loading rate dependence found in the AFM measurements 
can be interpreted as a longer activation length, suggesting that the activation length increases with an increasing 
loading rate/unfolding force.

There are several possible causes of this discrepancy:

	 (i)	 It is conceivable that the model where the probability of unfolding obeys first-order kinetics with a force- 
(and thus time-) dependent rate k(F) breaks down at high forces, as this model assumes that the force F 
changes slowly enough that quasi-equilibrium at each value of the force exists33.

	(ii)	 It is also conceivable that the disagreement between the magnetic tweezers and AFM data seen in Fig. 6 is 
due to instrumental differences (e.g., force calibration errors, etc.). One further caveat that should be 
considered when combining magnetic tweezers data with AFM data is the influence of the instrument on 
the measured unfolding rate. Because in both experimental techniques the protein is elastically coupled to 
a much larger probe (AFM tip/cantilever assembly or magnetic bead), which is subjected to considerable 
hydrodynamic drag, the observed unfolding rate may be different from the intrinsic unfolding rate, and it 
may thus be different for different techniques. The effect of the instrument on the observed rate has been 
the subject of recent interest41–44, with the conclusion that this effect can be complicated and dependent on 
the elasticity of the linker connecting the protein and the probe and the hydrodynamic drag on the probe. 
While we cannot rule out that the discrepancy between the magnetic tweezers and AFM data is caused by 
differences in the experimental techniques, we note that the above studies suggest that the effects of the 
instrument on the unfolding dynamics is to change the prefactor A in the Arrhenius/Kramers equation, 

= −Δ
k F Ae( )

G F
kBT

( )
, by modifying the effective friction along the reaction coordinate. It seems less likely that 

such experimental differences would affect the observed activation length Δx thereby changing the slope of 
the loading rate dependence (cf. Eq. 9), which is observed to become weaker at higher loading rates/forces.

	(iii)	 Finally, the EZB-predicted linear force dependence of the activation barrier (Eq. 4) may only be applicable 
in a limited range of forces probed by a single experimental technique. Indeed, more accurate theories 
predict a nonlinear force dependence of the free energy barrier38. Depending on how the activation length 
depends on the applied force, one can differentiate between Hammond behavior45, where it decreases with 
the force, and anti-Hammond behavior, where it increases17,18,46. Hammond behavior is more familiar, has 
been predicted by simple one-dimensional kinetic models and is observed in the chemical unfolding of 
several proteins47–50. Anti-Hammond behavior is a manifestation of essential multidimensionality of the 
underlying free energy landscape37,39,51–53.

The data reported here and obtained by two different experimental techniques is consistent with 
anti-Hammond behavior: the unfolding behavior at low forces, as investigated with magnetic tweezers, can be 
reconciled with the behavior at higher forces, as investigated in the AFM experiments, if the activation length 
increases with increasing force. Indeed, extrapolation of the logarithmic dependence of the mean unfolding force 
〈F〉 on the loading rate r in the magnetic tweezer experiments to the values of r in the AFM regime would pre-
dict much higher unfolding forces than those observed experimentally, indicating a slowdown in the 〈F〉 vs ln r 
dependence (Fig. 6). Such a change in the dependence of the unfolding force on the loading rate is not compatible 
with the EZB model, which predicts the slope of this dependence to be constant and inversely proportional to the 
activation length32,

Δ
d F d r k T

x
/ ln , (12)

B

A decrease in the slope with the increasing force implies that the activation length must increase (note that Eq. 12 
immediately follows from Eq. 9 if one assumes force-independent activation length and neglects the difference 
between the peak force Fm and its average value F). We note that significant deviations from the simple logarith-
mic increase of the mean unfolding (or unbinding) force with the loading rate have been reported in other studies 
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(e.g.54–56). In contrast to our results, however, these studies observed an opposite trend; specifically, the mean 
unfolding force exhibited a biphasic behavior, with slow logarithmic increase at low loading rates superseded 
by fast logarithmic increase at high loading rates. This behavior is consistent with the Hammond effect and was 
interpreted as evidence of complexity of the unfolding/unbinding kinetics. Here we find change in the opposite 
direction, thus an anti-Hammond effect.

The anti-Hammond effect necessitates that the unfolding rate increases faster than exponentially as the pull-
ing force increases. This behavior follows from the exact relationship (Eq. 8) between the dependence of the free 
energy barrier on the applied force and the (force-dependent) activation length22,57,

≈ − Δ = Δ−d k F dF k T d G dF x k Tln ( )/ ( ) / / (13)B B
1

The slope of the dependence ln k(F) on force will increase if Δx also increases with the force. The observation of 
anti-Hammond behavior highlights limitations of the simple, one-dimensional models often invoked to explain 
force induced unfolding kinetics. Such models consider the protein’s free energy G(x) viewed as a function its 
extension x; the native state then corresponds to a minimum xN of G(x). When subjected to a force, the location 
of this minimum is shifted in the direction of the force, consistent with the common experience that objects are 
elongated rather than shrunk in response to stretching forces. Conversely, the position of the transition-state xTS 
corresponds to a maximum of G(x); as a result, it is shifted in the direction opposite to the force because the bar-
rier curvature (effectively playing the role of the spring constant) is negative. Provided that the activation length, 
Δ = −x x xTS N , is positive, the transition state moves toward the folded state inevitably resulting in Hammond 
rather than anti-Hammond behavior.

Anti-Hammond behavior can result from different physical mechanisms. One possibility is that it results from 
a switch in the unfolding pathway as the force changes52. In this scenario unfolding can occur through two paral-
lel pathways, and the barrier to unfolding by force for each pathway obeys the simple EZB relationships, 
Δ = Δ − ΔG F G F x( ) (0)1 1 1, and Δ = Δ − ΔG F G F x( ) (0)2 2 2. If Δ < ΔG G(0) (0)1 2  and Δ < Δx x1 2, then the first 
pathway is dominant (i.e. has a lower barrier) at low forces. However, the longer activation length of the second 
pathway causes its barrier to unfolding, ΔG F( )2 , to decrease faster with the force increase, so that it may become 
dominant at high forces. As a result, the activation length equals Δx1 at low force but attains a higher value Δx2 
when the force is raised, which is the anti-Hammond effect. Indeed, this type of scenario was invoked to explain 
experimental measurements by Jagannathan et al.16. A second mechanism leading to the anti-Hammond effect 
exists even in a single-pathway scenario and is a fundamental consequence of the multi-dimensionality of the 
underlying free energy landscape17,58. On a multidimensional free energy landscape, the transition state is no 
longer a maximum but instead a saddle point, with some directions leading uphill in free energy and others 
downhill. Unlike in the one-dimensional model discussed above, then, the transition-state compliance χTS 
(inverse of spring constant) is negative only if the pulling coordinate x happens to be well aligned with the “intrin-
sic” unfolding coordinate that corresponds to the downhill direction so that the two coordinates are essentially 
the same. In the absence of such alignment, the transition-state compliance is positive and, if the transition state 
is further softer than the native state (i.e., χTS > χN) then anti-Hammond effect ensues. For a free energy land-
scape of a high dimensionality, there are many directions leading uphill from the transition state but only one 
leading downhill (corresponding to the intrinsic unfolding coordinate). It was thus argued17 that, if the underly-
ing dimensionality of the free energy landscape is sufficiently high, low force behavior of the transition-state will 
almost universally exhibit anti-Hammond rather than Hammond effect. Although a single-pathway unfolding 
mechanism17,58 is sufficient to describe the anti-Hammond effect observed in our measurements, the data 
described here do not allow us to discriminate between single- and multiple-pathways mechanisms.

Despite theoretical arguments and simulations that support the anti-Hammond effect18,21, prior experimental 
evidence of the anti-Hammond behavior is limited, to our knowledge, to a single report16. There are several likely 
reasons for the dearth of experimental support of this effect. Specifically, the anti-Hammond effect is expected 
to become superseded by Hammond behavior at sufficiently high forces, when the intrinsic unfolding coordi-
nate becomes aligned with the pulling coordinate58. Low-force measurements are often limited by instrument 
force stability and by the timescale of the process, which may be too slow to observe at low forces. In addition, 
measurement of the curvature in the ln k(F) dependence on force needed to distinguish between Hammond and 
anti-Hammond behavior requires accurate measurements in a sufficiently broad range of forces that are difficult 
to accomplish without combining different techniques. This type of study may become more common with the 
advances in single-molecule force spectroscopy59.

Conclusions
We report a single molecule force spectroscopy study of the mechanically induced unfolding of spectrin that 
combines low-force measurements by magnetic tweezers with high force measurements by AFM. The unfolding 
forces that we have probed thus range from a few piconewtons, which is comparable to the forces occurring in 
vivo, to ~50 piconewtons. The data reveal that the unfolding rate is much more sensitive to the force in the high 
force regime probed by AFM than in the low force regime probed by magnetic tweezers. This behavior is con-
sistent with the anti-Hammond effect, a phenomenon that is intrinsically linked to multi-dimensionality of the 
underlying free energy landscape where the unfolding transition state moves away from the native state as the 
applied mechanical force increases. While predicted to be universal by theoretical studies, this behavior is rarely 
observed and contrary to the commonly used one-dimensional models of single pathway protein unfolding. The 
difference between the behavior observed by two different experimental techniques may alternatively be caused 
by inadequacy of the theoretical model of simple first-order kinetics used in the data analysis or by dynami-
cal effects that are imposed on molecular dynamics by the AFM and tweezer setups. Definitive explanation of 
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the difference in the behavior observed by the two techniques would thus require further experiments using 
improved single-molecule techniques capable of bridging the force gap between the two techniques.

Methods
Protein construction and preparation.  We cloned the human β-spectrin repeats 12–15 flanked by a 
6xHis tag and a SNAP domain at the N-terminus and a 23 amino acid biotinylation tag at the C-terminus in the 
first multiple cloning site of the protein expression plasmid pETduet. The same plasmid expressed the biotin pro-
tein ligase BirA in the second multiple cloning site so that both proteins would be made in the same cell and BirA 
could biotinylate the 23 amino acid C-terminal tag of the spectrin construct. The plasmid was transformed into 
the Rosetta (DE3) E. coli strain. Cells were grown in 2 L LB supplemented with 100 μg/mL of ampicillin and 50 μg/
mL biotin to an OD600 ~ 0.5 and protein expression was induced by 0.5 mM IPTG for 3 hours at 28 °C. Cells were 
lysed by 2 passes at 15,000 PSI through an Emulsiflex C3 homogenizer (Avestin). The clarified lysate was passed 
over a 5 mL NTA column. The eluted NTA fractions were concentrated and passed over a 16/60-superdex S200 
size exclusion column. Purity was assessed by SDS-PAGE followed by Coomassie staining and UV-vis absorb-
ance. Pure fractions were pooled and stored at −80 °C in PBS, 10% glycerol and 2 mM DTT.

Flow cell assembly and functionalization.  Flow cells were constructed by heating strips of parafilm 
between a silanated coverslip and microscope slide, with holes in the slide made and the parafilm cut to define 
four separate flow channels per slide. The channels were washed with 100 mM Sodium Bicarbonate buffer pH 8.5. 
A solution of 250 μg/μL of BG-PEG-NH2 (New England Biolabs) and amino microspheres (Polysciences, 1:200 
dilution) in 100 mM Sodium Bicarbonate buffer pH 8.5 was incubated with the coverslip surface for 3 hours. 
Non-magnetic amino microspheres (3 micron diameter, Polysciences, <8% coefficient of variance in diameter) 
were used as reference beads to eliminate drift. The unbound ligand and beads were washed out with 500 μL of 
1 M Tris pH 8.0 and channels were incubated for 30 minutes to block unreacted epoxide groups. Channels were 
then washed with 500 μL of buffer containing 10 mg/mL BSA, PBS, 2 mM DTT and 0.01% tween and blocked 
with BSA overnight at room temperature to prevent non-specific binding of beads to the surface. Additionally, 
the streptavidin-coated magnetic beads (2.7 µm diameter, M-270 Strepavidin, ThermoFisher, <3% coefficient of 
variance in diameter) were also blocked against non-specific binding by diluting 10 μL of streptavadin beads into 
300 μL of 10 mg/mL BSA, PBS, 2 mM DTT and 0.01% tween and incubated overnight at 4 °C while gently rocking 
to prevent the beads from settling.

Force calibration for magnetic tweezers.  The force calibration was performed as described previ-
ously15,60, based on the Brownian calibration scheme used widely in magnetic tweezers experiments, namely 
that pulling force is inversely related to transverse fluctuations. This is straightforward to implement for tethered 
DNA molecules that are sufficiently long (3,000 nm) that the transverse bead fluctuations are quite large even for 
high (100 pN) forces23. However, for the much shorter protein tethers (100 nm) the fluctuations are small so that 
direct calibration is possible only at low forces (<5 pN); this is a problem since there is appreciable variation in 
pulling force from bead to bead. We solved this problem using the approach described in ref.23, whereby a data 
set on a long DNA tether was collected to provide a calibration of force versus magnet position. For each short 
protein tether studied, a series of transverse fluctuation recordings were collected at 3 to 5 different magnet posi-
tions below 5 pN, where the fluctuations were large enough to be measurable. These measurements were used to 
determine a tether-specific amplitude that was applied to the calibration curve to obtain the force versus magnet 
position curve for that short protein tether, as described in ref.23.

Constant loading-force magnetic tweezers experiments.  To determine the relationship between 
magnet position and force of a tethered bead we fit the magnet position vs. ln(force) curves of five tethered beads 
to a polynomial and obtained a function describing this relationship. This function was then used to move the 
magnet at the appropriate rate to achieve the desired linear loading rate.

Atomic-force-microscopy (AFM) experiments.  Pulling experiments using AFM were carried out on 
a Cypher AFM instrument from Asylum Research and on a home-built single-molecule AFM as previously 
described in the literature60. In each experiment, we deposited 1 μL of spectrin solution (0.5 mg/mL) in PBS onto 
a glass substrate covered by 50 μL of PBS. We allowed the protein to absorb onto the substrate for 10 minutes 
before pulling. The spring constant of each individual cantilever (MLCT or Olympus OBL, Bruker AFM Probes, 
Camarillo, CA) was determined experimentally by measuring the cantilever power spectrum and using the equi-
partition theorem61 at the beginning of each experiment.

Data Availability
The raw datasets generated during and analyzed in the current study are available from the corresponding authors 
on reasonable request.
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