Skip to main content
. 2019 Jul 19;15(7):e1007225. doi: 10.1371/journal.pcbi.1007225

Fig 1. BMAA modification induces thermodynamic destabilization and structural changes in SOD1.

Fig 1

(A) Specific heat curves generated from replica exchange DMD simulations of BMAA-modified or wild type SOD1. Peaks in specific heat indicate melting events. Dotted lines indicate major melting event for each species. (B) Histogram of potential energy of BMAA-modified or wild type SOD1 gathered from single(low)-temperature DMD simulations. SOD1-BMAA exists at a mean higher potential energy than wild type SOD1, indicating a less favorable structural conformation. Dotted lines indicate peaks. (C) Structural alignment of BMAA-modified (dark blue) and wild type (light blue) structures. Root mean square distance (RMSD) between structures is 3.24 Å. The β-strands in the dimer interface (right, cutaway of each monomer viewed from the center of the dimer interface) can be seen to be elongated and twisted in BMAA-modified SOD1 (dark blue) as compared to wild type (light blue). BMAA is shown as spheres. (D) Structural alignment of Zn- (left) and Cu- (right) binding sites of BMAA-modified (dark blue) and wild type (light blue) structures. Ions belonging to the BMAA-modified structure are in color (dark grey for Zn, orange for Cu), while ions belonging to the wild type are in light blue. Metal-coordinating residues for both structures are shown as lines.