Skip to main content
. 2019 Jul 19;15(7):e1007225. doi: 10.1371/journal.pcbi.1007225

Fig 3. Proposed mechanism of BMAA toxicity in ALS pathology.

Fig 3

(A) Chemical structure of BMAA molecule. (B) Misincorporation of BMAA for serine causes structural rearrangement and strain that propagates to the dimer interface and metal-binding residues. BMAA is show as spheres colored by atom type; copper (orange) and zinc (cerulean) ions are shown as spheres. (C) From left to right: misincorporation of BMAA into SOD1 promotes dimer dissociation and destabilization of the metal-binding sites; metal binding is further destabilized in the monomeric form, leading to metal loss; without metal ions, the SOD1 monomer fold is destabilized misfolds; misfolding promotes oligomerization and the formation of non-native SOD1 trimer, previously shown to be neurotoxic; misfolded SOD1 monomer can also form fibrils observed in ALS patients.