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Abstract

The Area Under the Receiving Operating Characteristic Curve (AUC) is frequently used for 

assessing the overall accuracy of a diagnostic marker. However, estimation of AUC relies on 

knowledge of the true outcomes of subjects: diseased or non-diseased. Because disease 

verification based on a gold standard is often expensive and/or invasive, only a limited number of 

patients are sent to verification at doctors’ discretion. Estimation of AUC is generally biased if 

only small verified samples are used and it is thus necessary to make corrections for such lack of 

information. However, correction based on the ignorable missingness assumption (or missing at 

random) is also biased if the missing mechanism indeed depends on the unknown disease 

outcome, which is called nonignorable missing. In this paper, we propose a propensity-score-

adjustment method for estimating AUC based on the instrumental variable assumption when the 

missingness of disease status is nonignorable. The new method makes parametric assumptions on 

the verification probability, and the probability of being diseased for verified samples rather than 

for the whole sample. The proposed parametric assumption on the observed sample is easier to be 

verified than the parametric assumption on the full sample. We establish the asymptotic properties 

of the proposed estimators. A simulation study is performed to compare the proposed method with 

existing methods. The proposed method is also applied to an Alzheimer’s disease data collected by 

National Alzheimer’s Coordinating Center.
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1. Introduction

The Receiving Operating Characteristic (ROC) curve is one of the most commonly used 

statistical tools for evaluating the accuracy of a diagnostic marker. The area under the curve 

(AUC) is a popular summary index for evaluating a method’s power of discriminating 
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diseased from non-diseased subjects; it is the probability that the score of a randomly chosen 

diseased individual exceeds that of a randomly chosen non-diseased subjects (Bamber, 

1975). Estimation of AUC relies on knowledge of the true status of subjects, which can 

usually be verified through a gold standard. However, such verification is not applicable for 

all subjects because it is expensive, invasive or both. On the other hand, the estimation based 

on verified sub-samples only is generally biased (Begg and Greenes, 1983).

A common assumption of adjusting verification bias is that the verification mechanism is 

ignorable, also known as missing at random (MAR), which means that the selection of a 

subject for verification is independent of the subject’s disease status, conditional on the 

score of the marker and other covariates. Several approaches based on the MAR assumption 

have been proposed by, for example, Begg and Greenes (1983), Zhou (1996), Zhou (1998), 

Rodenberg and Zhou (2000), Alonzo and Pepe (2005), He, Lyness and McDermott (2009) 

and He and McDermott (2011). See Zhou, Obuchowski and McClish (2011) for a 

comprehensive overview of these works.

The MAR assumption can be unrealistic when the doctors’ decision to send a subject to 

verification is based on his or her detailed information on that subject, which may depend on 

some un-measured covariates related to disease status (Rotnitzky, Faraggi and Schisterman, 

2006); such case is known as nonignorable verification bias. The earlier existing works 

under nonignorable verification bias are limited to dichotomous or ordinal markers, 

including Baker (1995), Zhou and Rodenberg (1998), Kosinski and Barnhart (2003), Zhou 

and Castelluccio (2003) and Zhou and Castelluccio (2004). Two recent methods proposed by 

Rotnitzky, Faraggi and Schisterman (2006) and Liu and Zhou (2010) under nonignorable 

verification bias can efficiently estimate AUC for markers that are measured in any 

quantitative scale, i.e., continuous, ordinal or dichotomous. In particular, Rotnitzky, Faraggi 

and Schisterman (2006) proposed a doubly robust estimator of AUC, with the validity of the 

estimator only requiring either the disease model (the probability of being diseased given 

covariates) or the verification model (the probability of being verified given some covariates 

and the true disease outcome) to be correctly specified. The nonignorabilty parameter (the 

coefficient of the disease outcome) in their verification model was not identifiable, and thus 

a sensitivity analysis was suggested. On the other hand, Liu and Zhou (2010) suggested a 

parametric model to estimate the nonignorability parameter; they assumed a parametric 

disease regression model of the responses for the whole sample and jointly estimated the 

verification probability and the disease probability. However, such a parametric assumption 

is hard to be verified in practice, because of assumptions on the unobserved responses.

In this paper, instead of applying rather subjective sensitivity analysis for the nonignorability 

parameter, we consider a way of estimating the nonignorability parameter based on the 

maximum likelihood method under identifiability assumption based on an instrumental 

variable (Wang, Shao and Kim, 2014). We use a similar idea as the propensity-score-

adjustment method proposed by Sverchkov (2008) and Riddles, Kim and Im (2016), which 

were originally developed in the context of survey sampling, to correct nonignorable 

verification bias in AUC estimators. It is based on parametric assumption of the disease 

model for observed subjects, and parametric assumption of the verification model. An 
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instrumental variable can be used to construct a reduced verification model and result in a 

high efficient estimation.

The rest of this paper is organized as follows: In Section 2, we present our proposed 

estimator, and its asymptotic properties are discussed in Section 3, then the simulation 

studies and real data analysis are provided in Section 4. We end our paper with a brief 

discussion and conclusion in Section 5.

2. Methods

2.1 Basic Setup

Consider a sample of size n, which is assumed to be a random sample. Suppose Yi = 1 if the 

sample i is from diseased group, and Yi = 0 otherwise, and Xi and Vi are the marker of 

interest and the covariates, respectively. Let Ri = 1 if Yi is observed and Ri = 0 otherwise, i = 

1,..., n. Based on the result of Bamber (1975), the AUC of marker X is equal to

AUC =
E Y1 1 − Y2 I12

E Y1 1 − Y2
, (2.1)

where I12 = I (X1 > X2) + 0.5I(X1 = X2) and I(·) is the indicator function. If there is no 

missing value, AUC can be estimated by:

A =
∑i = 1

n ∑ j ≠ iY i 1 − Y j Ii j

∑i = 1
n ∑ j ≠ iY i 1 − Y j

, (2.2)

where Iij = I(Xi > Xj) + 0.5I(Xi = Xj).

2.2. Estimator of AUC with adjustment of verification bias

Since some Ys in (2.2) are unobserved, we need to model the distribution of the disease 

status Y based on the information of X and covariates V. Assume that the covariates can be 

decomposed into V = (V1, V2) and the dimension of V2 is greater than or equal to one. We 

assume that V2 is conditionally independent of R given (X, Y, V1). The variable V2 is called 

a (nonresponse or) instrument variable (IV) and it helps to make the model identifiable 

(Wang, Shao and Kim, 2014). We then define the verification model as

πi = pr Ri = 1 Xi, Vi, Y i = π Xi, V1i, Y i; ϕ , (2.3)

where π(·) is a known function and ϕ is the unknown parameter. The IV assumption (2.3) is 

a way of making a reduced model for πi. Roughly speaking, IV can reduce the number of 

parameters to be estimated and ensure the identifiability of the reduced model. In practice, 

the IV assumption is hard to be verified; however, as confirmed in the simulation study in 
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Section 4, the proposed method shows reasonable performance even when the IV 

assumption is weakly violated.

We write ϕ = ψ1, ψ2, ψ3, β  and assume

π Xi, V1i, Y i; ϕ = 1
1 + exp ψ1 + ψ2Xi + ψ3V1i + βY i

. (2.4)

The above verification model is a logistic regression model using (X, V1, Y) as explanatory 

variables. Parameter β is the nonignorability parameter; if β = 0, then the response 

mechanism is MAR. Note that

E R1π1
−1R2π2

−1Y1 1 − Y2 I12
E R1π1

−1R2π2
−1Y1 1 − Y2

=
E Y1 1 − Y2 I12

E Y1 1 − Y2
. (2.5)

Thus, if a consistent estimator πi of πi is available, we can estimate AUC by an inverse 

weighted type of estimator

Aiv =
∑i = 1

n ∑ j ≠ i Riπi
−1R jπ j

−1Y i 1 − Y j Ii j

∑i = 1
n ∑ j ≠ i Riπi

−1R jπ j
−1Y i 1 − Y j

, (2.6)

We will discuss how to estimate πi, or equivalently, to estimate ϕ in the verification model 

(2.3).

2.3 Parameter Estimation

To estimate ϕ in the verification model (2.3), note that the likelihood of ϕ with full response 

is

L = ∏
i = 1

n
π Xi, V1i, Y i; ϕ

Ri 1 − π Xi, V1i, Y i; ϕ
1 − Ri , (2.7)

and under some regularity conditions the maximum likelihood estimator (MLE) of ϕ can be 

obtained by solving the score equation

S(ϕ) = ∑
i = 1

n
Ri − π Xi, V1i, Y i; ϕ

∂logit πi
∂ϕ

≡ ∑
i = 1

n
s Xi, Ri, V1i, Y i; ϕ = 0,

(2.8)
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where logit πi = log πi/ 1 − πi . Since some Yi is missing, the score function (2.8) is not 

applicable. Alternatively, the MLE of ϕ can be obtained by solving the following mean score 

equation

S(ϕ) ≡ ∑
i = 1

n
E s X, R, V1, Y; ϕ Oi

= ∑
i = 1

n
Ris Xi, 1, V1i, Y i; ϕ + 1 − Ri E0 s Xi, 0, V1i, Y; ϕ Xi, Vi

= 0,

(2.9)

where E0 ⋅ | Xi, Vi = E ⋅ | Xi, Vi, Ri = 0  and Oi is the observed information for sample i, that 

is,

Oi =
Xi, Ri, Vi, Yi if Ri = 1,

Xi, Ri, Vi otherwise.

Using the mean score equation for estimating the MLE has been discussed by, for example, 

Louis (1982), Riddles, Kim and Im (2016).

We then need to estimate the conditional distribution of unobserved Y given the marker X 
and covariant V, or equivalently, the second term in (2.9). A simple choice is applying a 

parametrical disease model for all samples, like Liu and Zhou (2010) did. Instead of using a 

full parametric model, we consider an alternative approach based on the following Bayes 

formula

Pr Y i = 1 Xi, Vi, Ri = 0 =
Pr Y i = 1 Xi, Vi, Ri = 1 O 1, Xi, Vi

∑y = 0
1 Pr Y i = y Xi, Vi, Ri = 1 O y, Xi, Vi

(2.10)

where

O(Y , X, V) =
Pr Ri = 0 Y , X, V

Pr Ri = 1 Y , X, V
=

1 − π X, V1, Y; ϕ

π X, V1, Y; ϕ
.

Thus, in addition to the verification model (2.3), we only need a model for the distribution of 

the conditional distribution of Y in the verified samples, i.e., the disease model for verified 

samples Pr(Yi|Xi, Vi, Ri = 1). Rotnitzky, Faraggi and Schisterman (2006) also considered 

(2.10), but they did not discuss the estimation of the nonignorability parameter β. Instead, 

they considered a sensitivity analysis for β. Kim and Yu (2011) used (2.10) to obtain a 

semiparametric estimation of the population mean under nonignorable nonresponse 

assuming a followup sample.
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Here we specify a parametric model for Pr(Yi = y|Xi, Vi, Ri = 1) and derive Pr(Yi = y|Xi, Vi, 

Ri = 0) based on (2.10). We denote Pr(Yi = y|Xi, Vi, Ri = 1) ≡ P1(y, Xi, Vi; μ), where P1(·) is 

a known function and μ is an unknown parameter, and denote Pr(Yi = y|Xi, Vi, Ri = 0) ≡ 
P0(y, Xi, Vi; μ, ϕ), y = 1, 0. Using (2.10), the conditional distribution of the unobserved Y 
reduces to

Pr Yi = 1 Xi, Vi, Ri = 0 =
P1 1, Xi, Vi; μ eβ

1 − P1 1, Xi, Vi; μ 1 − eβ

≡ P0 1, Xi, Vi; ϕ, μ .

Here, μ0 can be simply estimated by solving

S1(μ) = ∑
i = 1

n
Ri Y i

∂log P1 Y i, Xi, Vi; μ
∂μ + 1 − Y i

∂log P1 1 − Y i, Xi, Vi; μ
∂μ

≡ ∑
i = 1

n
Ris1 Xi, Vi, Y i; μ = 0.

(2.11)

That is, parameter μ is estimated by maximizing the likelihood among the respondents. Once 

we get a ML estimator μ from (2.11), we plug μ into (2.9) to solve for ϕ. We write (2.9) as

S2(ϕ, μ) = ∑
i = 1

n
Ris Xi, 1, V1i, Y i; ϕ + 1 − Ri ∑

y = 0

1
s Xi, 0, V1i, y; ϕ P0 y, Xi, Vi; ϕ, μ

= ∑
i = 1

n
s2 Xi, Ri, Vi, Y i; ϕ, μ = 0,

(2.12)

where P0(0, Xi, Vi; ϕ, μ) = 1 − P0(1, Xi, Vi; ϕ, μ).

The actual computation for obtaining ϕ from (2.12) can be implemented by the following 

EM algorithm:

1. Specify the initial value ϕ(0).

2. For each t = 0, 1, 2,..., let ϕ(t+1) be the solution of

∑i = 1
n Ris Xi, 1, V1i, Y i; ϕ + 1 − Ri ∑y = 0

1 wiy
(t)s Xi, 0, V1i, y; ϕ = 0,

where wiy
(t) = P0 y, Xi, Vi; ϕ(t), μ .

3. Set t = t + 1 and go to step (2) until ‖ϕ(t+1) − ϕ(t)‖1 < ϵ, where ϵ is a very small 

arbitrary number, such as ϵ = 10−5.
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3. Asymptotic Properties

In this section, we establish some asymptotic properties of the proposed propensity-score-

adjustment AUC estimator Aiv. The regularity conditions and the proofs are shown in the 

Supplementary material.

Define

Di j(A, ϕ) = Riπi
−1(ϕ)R jπ j

−1(ϕ)Yi 1 − Y j Ii j − A ,

and A0 to be the true AUC, and the following theorem presents the asymptotic properties of 

the proposed estimator of A.

Theorem 1.

Suppose the regularity conditions (r1-r10) given in the Supplementary material hold. We 
have

n Aiv − A0
d N 0, σ2 , (3.1)

where σ2 = Var Qi /[Pr(Y = 0)Pr(Y = 1)]2, and

Qi = E Di j + D ji Oi − Γ′E−1 ∂s2(X, R, V , Y; ϕ)
∂ϕ s2 Xi, Ri, V i, Y i; ϕ, μ

+E
s2(X, R, V, Y; ϕ, μ)

∂μ E−1 ∂s1(X, V, Y; μ)
∂μ Ris1 Xi, Vi, Y i; μ ],

(3.2)

Γ = ∂E(Dij)/∂ϕ and s2(·) was defined in (2.12).

A sketched proof of Theorem 1 is given in the supplementary material. Pr(Y = 1), Pr(Y = 0) 

and Var(Qi) can be consistently estimated by ∑i = 1
n Riπi

−1Y i/n, ∑i = 1
n Riπi

−1 1 − Y i /n and 

Var Qi = ∑i = 1
n Qi − Qn

2/(n − 1), respectively, with

Qi = ∑
j = 1

n
Di j Aiv, ϕ + D ji Aiv, ϕ /n − Γk′ E−1 ∂s2(X, R, V , Y; ϕ, μ)/ ∂ϕ s2 Xi, Ri, Vi, Yi; ϕ, μ +

E ∂s2(x, R, V, Y; ϕ, μ)/ ∂μ E−1 ∂s1(X, V, Y; μ)/ ∂μ Ris1 Xi, Vi, Yi; μ ],
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Qn = ∑i = 1
n Qi/n, E−1 ∂s2(X, R, V , Y; ϕ, μ)/ ∂ϕ = n ∑i = 1

n ∂s2 Xi, Ri, Vi, Yi; ϕ, μ / ∂ϕ
−1,

E−1 ∂s1(X, V , Y , μ; μ)/ ∂μ = n ∑i = 1
n ∂s1 Xi, Vi, Yi; μ / ∂μ

−1, E ∂s2(X, R, V , Y; ϕ, μ)/ ∂μ =

∑i = 1
n n−1∂s2 Xi, Ri, Vi, Yi; ϕ, μ / ∂μ and Γ = n−2∑i = 1

n ∑i = 1
n ∂Di j/ ∂ϕ .

Remark:

To have a better understanding of the asymptotic variances in (3.1), we can further 

decompose Var(Qi) in (3.2). Denote the first and second terms of the right side of (3.2) as 

Qi1 and Qi2, respectively, so that Qi = Qi1 + Qi2. Rewrite (3.2) as

Var Qi = Var Qi1 + Var Qi2 + 2Cov Qi1, Qi2 .

Here,

Var Qi1 = Var A f Pr(Y = 0)Pr(Y = 1) 2 + E g2 Xi, Y i, Vi πi
−1 − 1 , (3.3)

Var Qi2 = Γ′T22
−1Γ, (3.4)

and

Cov Qi1, Qi2 = Γ′T22
−1E Di j + D ji s2i + T21T11

−1Ris1i
= 2Γ′T22

−1Cov Di j, s2i + T21T11
−1Ris1i ,

(3.5)

where Af is the AUC estimator defined in (2.2) when there is no missing data, 

g Xi, Y i, Vi = Y iPr(Y = 0) F0 Xi − A0 + 1 − Y i Pr(Y = 1) 1 − F1 Xi − A0 , with F0(·) and 

F1(·) being the cumulative distribution function of X conditional on Y = 0 and Y = 1, 

respectively. The derivation of variance decomposition (3.3) and (3.5) are also given in the 

supplementary document.

In summary, the asymptotic variance of the proposed estimators can be decomposed into 

three terms:

Var Qi = Var A f Pr(Y = 0)Pr(Y = 1) 2 + E g2 Y i, Xi, Vi πi
−1 − 1

+ Γ′T22
−1 Γ + 4Cov Di j, s2i + T21T11

−1Ris1i .
(3.6)
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The first term is the variance of Af, where no missing data is assumed; the second one 

E g2 Xi, Y i, Vi πi
−1 − 1  is due to the fact only partial samples are verified (i.e., πi smaller 

than 1); the third term Γ′T22
−1Γ is the variance generated from estimating ϕ—the unknown 

parameter in the verification model π(·) and the connection between the statistic of interest 

(here AUC) and the likelihood of ϕ and μ. It’s easy to see that the second and third terms 

become zero when no data is missing. These terms can be treated as variances produced by 

the missing mechanism. Note that g(Xi, Yi, Vi) do not depend on Ri and πi. Compared to the 

estimator Af using the full data, the increased variance of our estimators are due to the 

estimation of unknown parameter ϕ and partial verification; smaller verification probability 

would lead to a larger variance.

4. Numerical studies

4.1 Simulation studies

To test our theory, we generate synthetic data similarly as Liu and Zhou (2010): first 

generate the marker X ~ unif (−1, 1) and the covariate V under different scenarios, and then 

generate the outcome variable Y through the disease model on the full sample:

Pr Yi = 1 Xi, Vi = 1
1 + exp μ1 + μ2Xi + μ3Vi

,

and generate the missing indicator R though

πi = Pr Ri = 1 Xi, Vi, Yi = 1
1 + exp ψ1 + ψ2Xi + ψ3Vi + βYi

.

Note that under the above setting, the disease model on verified samples that we will fit, 

takes the following form:

Pr Yi = 1 Xi, Vi, Ri = 1 = 1
1 + U Xi, Vi exp μ1 + μ2Xi + μ3Vi

,

where U Xi, V i = 1 + exp ψ1 + ψ2Xi + ψ3V i + β / 1 + exp ψ1 + ψ2Xi + ψ3V i , which is not 

equal to 1 when missingness is nonignorable, in other words, Pr(Yi = 1|Xi, Vi, Ri = 1) does 

not follow a logistic distribution. However, in the simulation study, the logistic form is 

always tapped because of its prevalence in practice. In this sense, we at least weakly 

misspecified the disease model on the verified sample for nonignorable cases.

We have six different scenarios:

I. V ~ Bernoulli(0.5), (μ1, μ2, μ3) = (2, −2.5, −1), (ψ1, ψ2, ψ3) = (1.2, −1, 0) and β 
= −1.5. We fit the disease model on verified samples in a logistic form with 

explanatory variables X and V, while the working verification model is another 

logistic model with V as the IV. Under this setting, the verification model is 
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correctly specified, with Y and V being weakly correlated (the correlation 

coefficient between them is 0.16).

II. Similar to scenario I, but with (μ1, μ2, μ3) = (2, −2.5, −1), (ψ1, ψ2, ψ3) = (2, −1, 

−1) and β = 0. Under this setting, the verification model is incorrectly specified 

since ψ3 ≠ 0, with the correlation coefficient 0.16 between Y and V, and 0.19 

between R and V.

III. V ~ N(0, 1), (μ1, μ2, μ3) = (2, −2.5, −1), (ψ1, ψ2, ψ3) = (1, −1, 0) and β = −1.5. 

We fit the model similarly as in Scenario I except that the working disease model 

with sign(V)|V|1/3 instead of V. Under this setting, the working disease model is 

incorrectly specified, with Y and V being moderately correlated (the correlation 

coefficient between them is 0.28).

IV. V ~ N(0, 1), (μ1, μ2, μ3) = (0.5, −2.5, −1.5), (ψ1, ψ2, ψ3) = (2, −1, −0.8) and β = 

−2. We fit the model similarly as in Scenario I. Under this setting, the working 

verification model is incorrectly specified, with Y and V being weakly 

correlated.

V. V ~ N(0, 1), (μ1, μ2, μ3) = (0.5, −2.5, −1), (ψ1, ψ2, ψ3) = (2, −1, 0.8) and β = −2. 

We fit the model similarly as in Scenario I except that the working disease model 

with sign(V)|V|1/3 instead of V. Under this setting, both the working disease 

model and the verification model are incorrectly specified, with Y and V being 

moderately correlated (the correlation coefficient between them is 0.32).

VI. Here we generate more covariates: V1 ~ Bernoulli(0.5), V2 ~ N(0, 1) and V3 ~ 

unif(0, 1). (μ1, μ2, μ3, μ4, μ5) = (0.6, −1.5, 0.5, −0.5, 0.5), (ψ1, ψ2, ψ3, ψ4, ψ5) = 

(1, −1, 0.5, −0.5, 0.5) and β = −2. We fit the working verification model using V3 

as IV since it is less correlated with R than other covariates.

Table 1 summarizes some design statistics for each scenario, including whether the working 

models are correctly specified, verification proportion, disease prevalence and the true AUC.

We consider 200 and 2,000 samples for each scenario and generate 500 data sets for each 

case. Four additional estimators are compared to the proposed estimator: Aig, Af, Av and Afp, 

which stand for the AUC estimators using the ignorable assumption (β = 0 and without 

using IV), using full data, using verified data only and using a full parametric disease model 

(Liu and Zhou, 2010), respectively. Note that we calculate Aig and Afp in the same way as A

iv, therefore, these estimators are only different in the way of estimating parameters ϕ and/or 

μ.

The estimator Af is treated as the gold standard. A summary of the simulation results is 

presented in Tables 2, where the bias (defined as the mean difference with Af), standardized 

sample variance (Svar) and standardized mean square error (SMSE) are displayed for the six 

estimators considered. In Table 2, SVar (SMSE) of an estimator is defined as its variance 

(MSE) divided by the variance (MSE) of Af. Note that SMSE is also known as relative 

efficiency. The median value of the estimated asymptotic variances for the proposed 

estimators are compared with the Monte Carlo sample variances in Table 3. The following 

conclusions can be made from the simulation results.
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1. When the verification model is correctly specified (Scenarios I and III), the 

proposed Aiv estimator achieves the best or almost the best performance. 

Specifically, for nonignorable cases, Aiv has the smallest bias and smallest 

variance. Also, Aiv achieved a closer coverage probability to the nominal level 

than Av, Aig and Afp.

2. Aiv is robust to the disease model (Scenario III). Note that in the disease model, 

the true covariate’s effect is cubic while we fit a linear covariate’s effect. Aiv is 

superior than Av, Aig and Afp.

3. When the verification model is incorrectly specified (Scenarios II, IV, V and VI), 

in the sense of bias or variance Aiv does not always outperform other estimators, 

but in the sense of MSE and coverage probability, it outperforms others. 

Moreover, the proposed estimator generally has similar bias as Afp but is more 

efficient than Afp.

4. Further extensive simulation has been shown in the supplementary document, 

including scenarios similar to Scenario III but with different verification 

proportion and different disease prevalence. The proposed estimator Aiv is 

superior in these studies too.

The asymptotic variance of Aiv is compared with its sample variance in Table 3. When the 

verification model is correct (scenario I and III), the asymptotic variance is very close to the 

sample variance: When the verification model is incorrectly specified, the asymptotic 

variance biased slightly. It indicates that the variance estimation is slightly sensitive to the 

specification of the verification model.

4.2 Example

We use the Alzheimer’s Disease (AD) data set collected by the National Alzheimer’s 

Coordinating Center (NACC) to illustrate the proposed method. Liu and Zhou (2010) have 

analysed an earlier version of this data; the current data includes the Uniform Data Set 

(UDS) data up through the September 2014 freeze. Here we want to study the diagnostic 

ability of a medical test Mini Mental State Examination (MMSE) in detecting AD. MMSE 

ranges from 0 to 30, with lower score corresponding to a larger risk of having cognitive 

impairment. The gold standard for AD is based on a primary neuropathological diagnostic 

test (NPTH), which requires brain autopsy; only dead people can have disease verification. 

Also, some patients or their family would not like to accept brain autopsy. These are the 

main reasons for missing disease status; only about 10% patients have been verified. 

Originally, there are several values of NPTH, for example, “Normal”, “definitely AD”, 

“probably AD”, “possible AD”, etc; we define AD as “definitely AD” (Y =1) and treat 

others as control sample (Y = 0). Five covariants, AGE, SEX, marriage status (MRGS), 

Depression (DEP) and Parkinson’s disease (PD) are considered, which are known to be 

related to AD or the disease verification. After removing missing values in MMSE and 

covariants, 52,673 samples remains, in which 5,707 samples were verified by autopsy. In the 

verified sample, 55% are AD. We also categorize MRGS into two groups; coding “never 
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married” as 1 and the others as 0. The boxplots for MMSE are shown in Figure 1, which 

shows that lower MMSE scores are more likely to be associated with AD.

We fit the following logistic regression model as the disease model for verified samples:

Pr Y i = 1 Xi, Vi, Ri = 1 = 1
1 + exp μ1 + μ2Xi + μ3′Vi

, (4.1)

where V represents the vector of covariates (AGE, SEX, MRGS, PD, DEP), R indicates 

whether X is observed, and Y and X stand for MMSE and true disease status, respectively. 

The verification model is also a logistic regression model:

πi = Pr Ri = 1 Xi, Vi, Y i = 1
1 + exp ψ1 + ψ2Xi + ψ3′V1i + βY i

, (4.2)

where V1 are the covariates without the selected IV. For demonstration purpose, we simply 

select AGE as the instrument variable. Therefore, V1 stands for the reduced covariate vector 

(MRGS, SEX, PD, DEP). In the supplementary material, we also extended out study by 

using different variable as IV. Most of those studies lead to nonsignificant β or non-

convergence, which indicates that there might be no good IV existing for some studies in 

practice.

The estimated parameters, standard errors and their p-values are listed in Table 4; the p-

value is decided by a Wald-statistic and the asymptotic variances calculated according to 

Lemma 1.1 in the supplementary material. All parameters except DEP in the diseased model 

are significant. The nonignorable parameter β is estimated to be −3.777 (two-side p-value is 

about 0.10), which indicates that the missing mechanism may be nonignorable. β = −3.777 

indicates that the odds of verification for diseased individuals is about exp(3.78) = 43 units 

larger than it for non-diseased individuals with the same values of (MRGS, SEX, PD, DEP).

The AUC value calculated using only verified samples is 0.699 (95% Confidence Interval 

(CI): 0.686, 0.713), and the proposed estimators Aiv = 0.786 (95% CI: 0.754, 0.818). The 

95% CI was constructed using normal distribution. There is a significant difference between 

our AUC estimators and the AUC calculated only using verified samples (Wald test, p-value 

< 0.001). Note that, the full parametric model in this example is not converged and based on 

our study, using AGE as IV is just for an illustrative example, there might not be good 

choices of IV in this data example.

5. Concluding Remarks

We propose a new parametric approach using an instrumental variable to estimate AUC in 

the context of nonignorable verification bias. We make parametric assumptions on the 

verificaiton model and on the disease model for the observed samples only, which is easier 

to verify in practice than the disease model for the whole sample. The nonignorability 

parameter is estimated through mean score equations and joint estimation of disease 
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probability and verification probability is avoided. An inverse probability weighting 

estimator of AUC is considered and its asymptotic properties are established.

Simulation studies show that the proposed method is efficient and rather robust to the 

incorrect specifications of the disease model, but not to the incorrect specification of the 

verification model. Even when the verification model is misspecified, the suggested 

estimator is comparable to existing estimators for nonignorable cases in the sense of similar 

bias, but outperforms the existing method in the sense of efficiency. In practice, because it is 

hard to specify verification model correctly, sensitivity analyses suggested by Rotnitzky, 

Faraggi and Schisterman (2006) can be used to complement the non-robustness. An 

alternative choice involves the treatment of nonparametric techniques such as kernel 

regression models for the disease model. Also, Bayesian modeling coupled with sensitivity 

analyses in the context of missing data (Daniels and Hogan, 2008) can also be considered for 

further analyses. Such extension can be a topic of future study.

The proposed method is based on the instrumental variable (IV) assumption. We use the 

variable which has the lowest marginal correlation with R (the verification status) as the IV 

in our simulation study, it leads to good performance. This method is not ideal but is simple. 

Selecting IV is never a easy job in practice. A good practicable example of IV choice was 

introduced by Wang, Shao and Kim (2014), for a study of a data set from the Korean Labor 

and Income Panel Survey (KLIPS), in which the monthly income of 2506 regular wage 

earners in 2006 was of interest, and gender, age, level of education and the monthly income 

in 2005 were the covariates. About 35% missing values of the interested variable and all 

covariate values are observed. In such study, the monthly income in 2005 is a good choice of 

IV because it is highly correlated with the income in 2006 but it seems to be independent of 

the missingness given the other covariates. We note that if an IV is inappropriately chosen, 

the bias in AUC estimation could be substantial and the model could have nonconvergence 

problems (shown in the data example). We need more future studies on choosing IV.

After estimating the verification probability and disease probability for each individual, 

other types of AUC estimators can also be used, for example, the other AUC estimators 

introduced in Alonzo and Pepe (2005) or Liu and Zhou (2010), such as using full imputation 

(FI) method or mean score imputation (MSI) method instead of inverse probability 

weighting (IPW) method. The proposed Instrumental Variable method can also be used for 

FL and MSI. Liu and Zhou (2010) noticed that FI and MSI method generally performed 

better than IPW method. One probable reason may be that for IPW method, there are 1/πi 

terms, which may produce very extreme values for the AUC estimator and its corresponding 

asymptotic variance estimator if the πi is very small. In addition to AUC, the proposed 

method can be easily extended to the estimation of the other indexes related to ROC curve, 

such as sensitivity, specificity, and the partial area under the curve (McClish, 1989) as well 

as the modified area under the Curve (Yu, Chang and Park, 2014).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Boxplots for MMSE. “All” — using all samples, “Verified” — using all verified samples, 

“AD” — using verified AD samples, and “AD-free” — using verified AD-free samples.
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Table 1:

Summary statistics for the simulation design. Notation: for working disease model, W—weak 

misspecification, i.e., disease model is misspecified as having a logistic form, IC—incorrect specification, not 

only disease model is misspecified as having a logistic form but also the covariates effect misspecified, for 

working verification model, C—correct specification, the selected instrument variable (IV) is indeed an IV, IC

— incorrect specification, indicates that the selected IV is not an IV, I—ignorable scenario, and NI — 

nonignorable scenario

Scenario I II III IV V VI

Working disease model W W IC W IC W

Working verification model C IC C IC IC IC

Ignorable/Nonignorable NI I NI NI NI NI

Verification proportion 0.33 0.21 0.37 0.30 0.30 0.33

Prevalence 0.26 0.26 0.21 0.42 0.42 0.29

AUC 0.81 0.81 0.79 0.79 0.79 0.71
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Table 2:

Monte Carlo bias, standardized variance (SVAR), standardized mean squared error (SMSE) and 95% coverage 

probability (CP) of AUC estimators in simulation study. Af, Aiv, Aig, Av and Afp stand for the AUC estimators 

using full data, using IV method, using ignorable assumption (missing at random), using verified data only and 

using a full parametric disease model (Liu and Zhou, 2010), respectively. SVar and SMSE stand for the 

standardized variance, and standardized MSE, respectively. SVar (SMSE) of an estimator is defined as its 

variance (MSE) divided by the variance (MSE) of Af. Note that SMSE is also known as relative efficiency and 

CP for each AUC estimator was calculated using the median of the sample estimators of the corresponding 

asymptotic variances.

n=200 n=2000

Scenario Estimators Bias SVar SMSE CP Bias SVar SMSE CP

I

Af
0.000 1.000 1.000 0.95 0.000 1.000 1.000 0.95

Aiv
−0.006 2.997 3.046 0.93 −0.009 3.167 3.973 0.92

Afp
−0.064 11.949 15.276 0.74 −0.067 63.574 104.644 0.51

Aig
−0.027 5.138 5.712 0.85 −0.018 4.132 6.997 0.80

Av
−0.062 3.449 6.615 0.80 −0.059 3.080 34.647 0.10

II

Af
0.000 1.000 1.000 0.95 0.000 1.000 1.000 0.95

Aiv
−0.003 4.551 4.557 0.92 −0.017 3.833 6.588 0.88

Afp
−0.007 8.766 8.811 0.84 −0.010 14.601 15.585 0.82

Aig
0.006 5.748 5.776 0.91 0.001 5.773 5.778 0.91

Av
−0.029 4.632 5.293 0.89 −0.032 4.871 13.968 0.69

III

Af
0.000 1.000 1.000 0.95 0.000 1.000 1.000 0.96

Aiv
−0.004 2.307 2.317 0.95 −0.009 2.292 2.970 0.93

Afp
−0.059 9.031 11.478 0.72 −0.058 45.982 71.221 0.80

Aig
−0.015 3.589 3.757 0.88 −0.019 3.424 6.148 0.80

Av
−0.062 2.907 5.657 0.79 −0.063 2.525 31.856 0.10

IV

Af
0.000 1.000 0.95 1.000 0.000 1.000 1.00 0.95

Aiv
0.020 6.065 6.434 0.93 0.035 6.196 18.72 0.72

Afp
−0.038 11.557 12.972 0.82 −0.022 32.353 37.08 0.77

Aig
−0.044 9.874 11.714 0.82 −0.040 8.482 24.95 0.63

Av
−0.055 5.837 8.788 0.86 −0.056 4.992 36.91 0.34

V
Af

0.000 1.000 1.000 0.95 0.000 1.000 1.00 0.95

Aiv
0.016 6.520 6.760 0.91 0.034 7.604 19.44 0.70
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n=200 n=2000

Scenario Estimators Bias SVar SMSE CP Bias SVar SMSE CP

Afp
−0.034 11.368 12.486 0.83 −0.039 47.822 63.30 0.62

Aig
−0.041 9.568 11.203 0.83 −0.037 7.928 22.08 0.67

Av
−0.055 5.837 8.788 0.86 −0.056 4.992 36.91 0.37

VI

Af
0.000 1.000 1.000 0.95 0.000 1.000 1.00 0.96

Aiv
−0.049 5.109 6.756 0.89 −0.041 4.875 16.24 0.79

Afp
−0.049 6.659 8.313 0.83 −0.044 10.281 23.87 0.75

Aig
−0.053 6.777 8.741 0.83 −0.044 5.807 18.93 0.82

Av
−0.079 3.712 8.070 0.83 −0.069 3.671 36.08 0.52
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Table 3:

Variance comparison. SV, AV stand for sample variance and the median of estimated asymptotic variance for 

Aiv.

Scenario n 1000 × SV 1000 × AV

I 200 3.7 3.5

2000 0.4 0.3

II 200 5.6 5.3

2000 0.4 0.5

III 200 3.2 3.1

2000 0.3 0.3

IV 200 6.2 5.0

2000 0.6 0.6

V 200 6.7 5.0

2000 0.7 0.6

VI 200 7.3 7.9

2000 0.7 0.9

Stat Sin. Author manuscript; available in PMC 2019 July 31.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yu et al. Page 21

Table 4:

Coefficients, Standard error (SE) and p-values.

Disease model Verification model

coefficient SE P-value coefficient SE P-value

Intercept 1.068 0.244 <0.001 2.358 0.222 <0.001

MMSE (X) −0.079 0.003 <0.001 0.043 0.008 <0.001

MRGS −0.125 0.068 0.065 0.203 0.054 <0.001

PD −0.994 0.107 <0.001 −0.994 0.107 <0.001

SEX −0.309 0.064 <0.001 −0.755 0.036 <0.001

AGE 0.005 0.003 0.085 —

DEP −0.076 0.086 0.375 0.195 0.053 <0.001

AD (Y) — −3.777 2.306 0.104
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