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Summary

The identity and heterogeneity of glial progenitors and their contributions to brain tumor 

malignancy remain elusive. By applying lineage-targeted single-cell transcriptomics, we uncover 

an unanticipated diversity of glial progenitor pools with unique molecular identities in developing 

brain. Our analysis identifies distinct transitional intermediate states and their divergent 

developmental trajectories in astroglial and oligodendroglial lineages. Moreover, intersectional 

analysis uncovers analogous intermediate progenitors during brain tumorigenesis, wherein 

oligodendrocyte-progenitor intermediates are abundant, hyper-proliferative and progressively 

reprogrammed towards a stem-like state susceptible to further malignant transformation. Similar 

actively cycling intermediate progenitors are prominent components in human gliomas with 

distinct driver mutations. We further unveil lineage-driving networks underlying glial fate 

specification and identify Zfp36l1 as necessary for oligodendrocyte-astrocyte lineage transition 

and glioma growth. Together, our results resolve the dynamic repertoire of common and divergent 

glial progenitors during development and tumorigenesis and highlight Zfp36l1 as a molecular 

nexus for balancing glial cell-fate decision and controlling gliomagenesis.
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By applying lineage-targeted single-cell transcriptomics analysis, Weng and colleagues uncover 

distinct intermediate glial progenitors in the neonatal brain, and their malignant counterparts in 

murine and human gliomas. Lineage-driving network analysis further identifies Zfp36l1 as a 

pivotal regulator for glial fate specification and glioma growth.

Introduction

Abnormal development of glial progenitors, including astrocyte lineage precursors and 

oligodendrocyte precursor cells (OPCs), contributes to tumorigenesis and various 

neurological diseases (Gallo and Deneen, 2014; Zong et al., 2015). Although single-cell 

analysis of human glioma tissues has been reported (Filbin et al., 2018; Patel et al., 2014; 

Tirosh et al., 2016; Venteicher et al., 2017), the tumorigenic cell of origin and the molecular 

links between native glial progenitors and pre-cancerous/neoplastic cells during glioma 

transformation have not been fully defined. Understanding the transformation potential of 

diverse glial progenitors during brain tumorigenesis should reveal avenues to selectively 

target transformed cells for cancer therapy.

Until recently, studies of glial cells had largely been limited to the analysis of in vitro 

cultures or bulk tissues confounded by heterogeneity (Dugas et al., 2006; Zhang et al., 

2014). Astrocytes can be derived from radial glia or neural stem cells in the developing CNS 

(Kriegstein and Alvarez-Buylla, 2009; Molofsky et al., 2012), while the identity of astrocyte 

lineage precursors and their diversity in the developing cortex remain elusive. Astrocyte 

heterogeneity has been characterized in different regions of the adult brain based on cell 

surface markers (Lin et al., 2017), but such population-based approaches have likely failed 

to resolve the full extent of underlying heterogeneity and progenitor cell identity. Recent 

single-cell studies indicate that there is regional diversity among oligodendrocyte lineage 

cells in the murine central nervous system (Marques et al., 2018; Marques et al., 2016), 

however, whether the OPC pool exhibits diverse states and lineage plasticity at the specific 

time-window during brain development and malignancy has not been entirely defined. These 

unresolved issues impelled us to explore lineage-targeted transcriptomics and intersectional 

analysis of glial progenitors and glioma-forming cells at the single-cell level to identify key 

cellular components and molecular determinants for brain tumorigenesis.

Here we describe targeted high-throughput single-cell RNA-sequencing (scRNA-seq) on 

prospective astrocyte lineage cells and OPC populations isolated by fluorescence activated 

cell sorting (FACS) from neonatal mouse cortices. We found that astrocyte lineage cells are 

much more dynamic than previously appreciated in the developing cortex and uncovered a 

transitional progenitor population during astrocyte lineage development. In contrast to the 

astrocyte lineage, the progenitors of oligodendrocytes exhibited a fate-restricted continuum 

that encompassed a primitive OPC intermediate population prior to OPC commitment in the 

neonatal cortex. Application of scRNA-seq to a murine model of glioblastoma (GBM) 

revealed that primitive OPC intermediates disproportionately contributed to glioma 

formation. Analyses of different tumorigenic phases suggested that reprogramming of the 

OPC intermediates into a stem-like state, rather than direct stem-cell proliferation, resulted 

in malignant transformation. Similar actively cycling oligodendrocyte-progenitor 
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intermediates were prominent components in human gliomas caused by distinct driver 

mutations. A machine-learning algorithm identified an RNA-binding protein, Zfp36l1, as a 

critical regulator of glial fate specification and glioma growth, suggesting that this network 

could be targeted to develop a lineage-specific therapy for malignant glioma.

Results:

Single-cell transcriptomics reveals distinct glial progenitors in developing brain

Human GFAP promoter-driven GFP expression in hGFAP-GFP transgenic brains has been 

previously shown to mark astrocyte lineage cells (Ge et al., 2012; Zhuo et al., 1997). We 

performed droplet-based scRNA-seq (Macosko et al., 2015) on FACS-sorted GFP+ cells 

from the neonatal cortices of hGFAP-GFP animals at P5 and P6, when astrocyte precursors 

undergo proliferation and differentiation (Ge et al., 2012; Sauvageot and Stiles, 2002) 

(Figure 1A).

Unsupervised clustering using t-SNE (Macosko et al., 2015) revealed nine clusters with 

distinct gene expression signatures (Figure 1B–C). Gene ontology analysis (Chen et al., 

2009) classified these clusters into discrete subpopulations including radial-glia-like cells, 

astrocytes, OPCs, neuroblasts, neurons (GABAergic and glutamatergic), and ependymal 

cells (Figure 1B–C). Clustering was independently verified with BackSPIN (Marques et al., 

2016) and PAGODA (Fan et al., 2016) (Figure S1A).

Among hGFAP-GFP+ cells, 14.6% were astrocytes and 5.4% were radial-glia-like (Figure 

1D). By subclustering of the astrocyte lineage group, we identified a cell cluster expressing 

the markers of both astrocytic signature genes (e.g., Slc1a3 and Aldh1l1) and 

oligodendrocyte lineage genes (e.g., Olig1 and Olig2; Figure 1B–D) (Lu et al., 2000; Zhou 

et al., 2000), suggesting that these may be transitional intermediate glial progenitor cells 

(iGCs). A subgroup of iGC population, but not mature astrocytes, that expressed cell-cycle-

related genes (e.g., Mki67) were defined as cycling iGCs (Figure 1C). The signature genes 

are highly cell-type-specific in distinct glial progenitor cells (Figure 1E). Moreover, t-SNE 

visualization showed that the astrocyte lineage cells were segregated into astrocyte, radial-

glia-like, and iGC subpopulations, exhibiting specific signature (Figure 1F,G).

We next compared the neonatal astrocytic populations to five previously identified 

populations of adult astrocytes. The astrocytes in the neonatal cortex were highly correlated 

with the adult astrocyte population C (Lin et al., 2017) (Figure 1H). The iGC population 

resembled postnatal radial glia (Hochgerner et al., 2018) and adult quiescent neural stem 

cells (NSCs) (Dulken et al., 2017) (Figure S1B), suggesting that iGCs are unique to the 

immature astrocyte population in the developing cortex.

Unexpectedly, the hGFAP-GFP+ cells also included cells with gene signatures associated 

with committed OPCs, marked by Pdgfra, and a primitive OPC subpopulation (pri-OPCs), 

which expressed low levels of Pdgfra and high levels of Olig1/2 (Figure 1B–E). A t-SNE 

plot based on differential gene expression revealed these two distinct OPC clusters: OPCs 

(e.g. Pdgfra+ and Cspg4+), and pri-OPCs (e.g. Ppp1r14b+, Ascl1+, Btg2+ and Hes6+) (Figure 

1I–J). The pri-OPC population most closely resembled adult activated NSCs (Dulken et al., 
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2017) (Figure S1B). An unsupervised pseudo-time analysis using Slingshot (Fletcher et al., 

2017), was consistent with a developmental trajectory from pri-OPC to OPC (Figure 1K) 

with increased expression of Pdgfra over the trajectory and high levels of early lineage genes 

(e.g. Ppp1r14b) in pri-OPCs (Figure S1C). A fraction of pri-OPCs and OPCs expressed cell-

cycle genes, indicating that they are proliferating during early oligodendrogenesis (Figure 

1C). The other cell clusters expressed the markers of neuronal subpopulations, GABAergic 

(e.g., Dlx1) and glutamatergic (e.g., Neurod1) neurons, and ependymal cells (e.g., Foxj1 and 

Wdr52) (Figures 1C, S1D).

Immunostaining also indicated the co-expression of neuronal markers, Sp8 and Dlx2, in a 

fraction of hGFAP-GFP+ cells in the developing cortex (Figure S1E–G). The presence of 

neurons within hGFAP-GFP+ populations may result from perdurance of GFP expression 

from ventricular zone neural progenitor cells. Corroborating Drop-seq data, single-cell 

sequencing of FACS-sorted hGFAP-GFP+ cells with SMART-seq of 110 sorted hGFAP-GFP
+ single cells revealed similar cellular clusters (Figure S1H).

To further investigate cell trajectories during glial cell development, we utilized Slingshot, a 

statistical framework for inferring branching lineage assignments and developmental 

distances (Fletcher et al., 2017) and principal component analysis (PCA). The cell lineage 

development was predicted to start from radial glia passing through iGCs, after which two 

distinct trajectories were identified that led to either an OPC or an astrocytic fate (Figure 

1L). The intermediate iGC populations were located between astrocytes and OPCs, 

supporting the hypothesis that iGCs are a transitional cell type.

In vivo validation of markers of astrocytes and their lineage precursors

To validate single-cell clustering, we performed immunostaining for the neural cell type-

specific markers in the cortex of the hGFAP-GFP mice at P5. The GFP+ cells were detected 

in astrocytes marked by GFAP and glutamine synthetase (GS) (Figure 2A–B). Consistent 

with transcriptome analysis, we also detected a population of GFP+ cells expressing both 

astrocytic markers (e.g., GFAP or Slc1a3) and the oligodendrocyte lineage marker Olig2 

(Figure 2C–E), suggesting that these are the transitional iGC population. Furthermore, a 

proportion of GFP+ cells expressed a radial glia marker Blbp, an OPC marker PDGFRα, and 

a pri-OPC marker Ppp1r14b (Figure 2F–H).

A recent study based on GFP expression in hGFAP-GFP transgenic cortices at P6 suggested 

that cortical astroglia result from the local proliferation of astrocytes (Ge et al., 2012). We 

therefore analyzed proliferating cells, in the hGFAP-GFP cortex at P5. Remarkably, among 

hGFAP-GFP+ cells that were proliferative (Ki67+), we found that 84.2% were positive for 

Olig2 (Figure 2I–J), indicating that these dividing cells are likely iGC or OPCs, rather than 

differentiated astrocytes, consistent with the gene expression profile clustering analysis 

(Figure 1C). In contrast to the neonatal cortex, few iGC-like cells were detected in adulthood 

(Figure 2K–L).

Single-cell analysis identified a set of regulatory genes enriched in astrocyte clusters (Figure 

S1I–J) including transcriptional regulators Bhlhe40 and Prdm16 (Zhang et al., 2014). To 

validate their specific expression in astrocytes, we performed immunostaining in the 
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developing cortex and spinal cord. The majority of hGFAP-GFP+ cells in the mouse cortex 

at P5 (71.3%) were co-immunostained with BHLHE40 (Figure 2M). Expression of 

PRDM16 and BHLHE40 was also detected in GS+ astrocyte in mouse spinal cord and 

human cortical sections, respectively (Figure 2N–P). These observations suggest that 

PRDM16 and BHLHE40 are useful markers of mouse and human astrocytes.

Single-cell analysis reveals distinct oligodendroglial progenitor states and a restricted 
lineage trajectory

To distinguish between two possible trajectories in early glial cell development – that iGCs 

transition into pri-OPCs or vice versa – we utilized scRNA-seq to characterize cellular 

heterogeneity of PDGFRα-expressing OPCs in the early neonatal cortex. PDGFRα 
expression has been shown to mark OPCs in the brain (Woodruff et al., 2001), so we isolated 

nuclear-GFP+ presumptive OPCs from the cortices of PDGFRα-H2bGFP mice (Klinghoffer 

et al., 2002) at P1 and P3, when most of the oligodendrocyte lineage cells are at the 

immature precursor stage (Figure 3A).

Unsupervised clustering based on gene expression patterns (Macosko et al., 2015) and gene 

ontology enrichment analyses (Chen et al., 2009) revealed eight distinct groups: OPCs, pri-

OPCs, cycling OPCs with a cell-mitotic expression signature, immature pre-myelinating 

oligodendrocytes (iOLs), neuroblasts, cycling neuroblasts, astrocytes, and pericytes (Figure 

3A–B, S2A–B). Their gene expression profiles were correlated to previously identified 

neural cell types (Zhang et al., 2014) (Figure S2C). The most abundant cell populations were 

OPCs, pri-OPCs, and cycling OPCs; only about 1% were iOLs (Figure 3C). Another rare 

population (1.4%) had an astrocytic gene signature (Figure 3B–C), consistent with the 

notion that very few oligodendrocyte progenitors give rise to astrocyte lineage cells during 

normal development (Kang et al., 2010). Some additional rare cell types were also present 

including pericytes, likely derived from PDGFRα+ vasculature, and the leptomeninges. 

Based on incidence and amplitude of signature gene expression each delineated cellular 

cluster had a distinct regulatory state (Figure 3D). Subclustering analysis further showed that 

PDGFRα-GFP+ progenitors in the oligodendrocyte lineage were separated into two main 

clusters of OPCs (Pdgfrahigh or Cspg4high) and pri-OPCs (Olig2+ and Pdgfra low/Cspg4low) 

(Figures 3E–F and S2D).

Pseudo-time analysis with Slingshot revealed a trajectory from pri-OPCs (e.g., Ascl1, 

Ppp1r14b, and Btg2) to OPCs (e.g., Pdgfra, Cspg4, and Epn2) to iOLs (e.g., Plp1, Bmp4, 

and Neu4) (Figure 3G, H), and gene expression dynamics on the pseudo-temporal axis 

(Figure 3H–I). scRNA-seq of PDGFRa-GFP+ cells using SMART-seq confirmed this 

trajectory (Figure S2E–F). Cell-cycle gene signatures appeared in both pri-OPCs and OPCs 

but not in iOLs (Figure 3I). Although genes enriched in OPCs and iOLs were previously 

reported (Marques et al., 2016; Zhang et al., 2014), our data provide a high-resolution view 

during early postnatal cortical oligodendrogenesis and defined the pri-OPC population 

(Figure 3J). The gene signature of the cortical pri-OPC population resembled that of pre-

OPCs from the mouse hippocampus at P0 and P5 (Hochgerner et al., 2018; La Manno et al., 

2018) (Figure 3K–L), although the cortical pri-OPCs are not exactly the same as the 

hippocampal pre-OPCs.
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Notably, a cluster of PDGFRα-H2bGFP+ cells exhibited gene expression signatures 

characteristic of neuroblasts. These cells had strong expression of the neuronal marker Sp8 

but lacked Olig2 expression (Figure S2G–H). The proportion of Sp8+ cells among 

PDGFRα-GFP cells was much higher in the embryonic cortex at E14.5 than P3 (Figure S2I–

J). Transposase-accessible-chromatin (ATAC-seq) (Buenrostro et al., 2015) of PDGFRα-

GFP cells isolated from E14.5 and P5 brains revealed that chromatin of neuronal genes such 

as Dcx, Dlx1/2 and Stmn2 was more accessible at E14.5 than at P5, whereas stronger ATAC-

seq peak signals were detected in OPC/iOL-associated genes (e.g., Olig2, Cnp, Nkx6–2) at 

P5 (Figure S2K–M). These observations suggest that PDGFRa promoter activity is higher in 

neuroblasts at early stages than late developmental stages and that GFP+ neuronal cells are 

likely due to GFP perdurance from PDGFRα-GFP+ neuroblast precursor cells.

Identification of transcriptional regulatory networks that drive glial lineage specification

To identify the transcriptional regulators (TRs) that drive oligodendrocyte or astrocyte 

lineage commitment, we developed a machine-learning algorithm that interrogates cell-

lineage-driving TRs based on differentially expressed genes, target binding potential, and 

cellular cluster relationships (Figure 4A). This analysis revealed sets of significantly 

enriched TRs in OPC and astrocyte populations (Figure 4B–C; Table S1). For OPC-driving 

TR sets, we detected previously known transcriptional regulators of oligodendrocyte fate 

commitment and differentiation including Olig1/2, Sox10, and Nkx2–2 (Dugas et al., 2006), 

which validated our approach. We also identified factors not previously shown to function in 

oligodendrocyte lineage development (e.g., Ppp1r14b, Zfp36l1, Ostf1; Figures 4B and S3A). 

Among the candidate driving factors for astrocyte lineage development were astrocyte 

differentiation associated genes (e.g., Id3, Nfia, Sox9), Notch signaling effectors (e.g., Hes5, 

Hey2, Hes1), astrocyte-enriched Prdm16 and Bhlhe40, and potential developmental 

regulators (e.g., Rfx4, Trps1, Gli3) (Figures 4C and S3B).

To identify the potential regulators of glial lineage choice, we focused on a subset of 

candidate lineage-driving transcriptional regulators that are shared for both OPC and 

astrocyte lineages (Figures 4D and S3C). Among them, Zfp36l1, encoding an RNA-binding 

zinc-finger protein of the C3H type (Stumpo et al., 2004), had a much higher lineage-driving 

potential in OPCs than astrocytes (Figure 4D). Zfp36l1 is mainly expressed in 

oligodendrocyte progenitors (Figure S3D) (Marques et al., 2016). Although a suitable 

Zfp36l1 antibody for immunohistochemistry is not available, mRNA in situ hybridization 

indicates that Zfp36l1 expression is expressed in subventricular zone (SVZ) progenitors 

during early developmental stages (Figure S3E). Zfp36l1 expression was detected in Ascl1+ 

SVZ progenitors and Olig2+ oligodendrocyte lineage cells at the edge of the SVZ and the 

boundary of the corpus callosum at P7 (Figure 4E), suggesting a potential role of Zfp36l1 in 

regulating oligodendroglial cell fate commitment.

Lineage-driving factor Zfp36l1 controls oligodendrocyte-astrocyte lineage transition

To determine the role of Zfp36l1 in glial fate specification in the developing brain, we 

selectively ablated Zfp36l1 floxed alleles in a neural progenitors and radial glia in a Nestin-

Cre line (Zhuo et al., 2001) to generate Zfp36l1fl/fl; Nestin-Cre+/− mice (Zfp36l1-cKO; 

Figure 4F). mRNA in situ hybridization revealed substantial reduction in Zfp36l1 in neural 
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progenitors in the SVZ and the cortical region at P1 in Zfp36l1-cKO mice compared to 

controls (Figure 4G). Zfp36l1-cKO animals were born at the expected Mendelian frequency; 

however, Zfp36l1-cKO mice exhibited substantially enlarged lateral ventricles (Figure 4H).

Immunostaining indicated that numbers of Olig2+ and PDGFRα+-OPCs and pri-OPCs were 

reduced in the cortices of the Zfp36l1-cKO mice at P7 compared to controls (Figure 4I–K). 

Expression of the myelin protein MBP was also diminished in both the corpus callosum and 

cortical regions (Figure 4I). Zfp36l1-cKO mice exhibited generalized tremors, likely due to 

the myelination deficiency. Expression of astrocytic markers GFAP and GS were increased 

in Zfp36l1-cKO cortices compared to controls (Figure 4L–M), although the numbers of 

iGCs were comparable (Figure 4N). To confirm that GS+ and GFAP+ cells were derived 

from the Cre-mediated Zfp36lfl/fl recombined cells, we bred mice bearing Zfp36l1fl/fl and 

Nestin-Cre with a tdTomato Cre reporter line. The immunostaining results showed that the 

GFAP- and GS-positive cells were co-labeled with tdTomato+ cells (Figure 4O), indicating 

that these ectopic astrocytes were descended from the Zfp36l1-deleted progenitors at the 

expense of OPCs. These results suggest that Zfp36l1 controls oligodendrocyte-astrocyte fate 

transition in the developing brain.

To further validate the machine learning approach, we examined the function of Ppp1r14b, 

which exhibits a high potential for driving OPC lineage progression (Figure 4B). We found 

that knockdown of Ppp1r14b in primary OPCs inhibited expression of myelin genes as well 

as OPC differentiation into mature oligodendrocytes (Figure 4P–R), suggesting that 

Ppp1r14b regulates OPC lineage progression.

Heterogeneous glial progenitors in glioma revealed by single-cell RNA-seq

To investigate the cellular diversity in glioma and their relationship with native glial 

progenitors, we established an animal model of malignant glioma induced by a DNp53-
PDGFB retrovirus expressing dominant-negative p53 (DN-p53) and PDGFB, potent 

inducers of proneural GBM formation (Lei et al., 2011; Lu et al., 2016). Brain tumors 

formed around three weeks after stereotaxic delivery of DN-p53-PDGFB retroviruses into 

the cortical white matter at a gliogenic stage P2 (Figure 5A). Tumor tissues harvested 35 

days post injection (dpi), in the aggressive tumorigenic phase, were dissociated into single-

cell suspensions and analyzed by scRNA-seq.

Unsupervised clustering analysis identified eight different clusters with distinct gene 

expression signatures characteristic of pri-OPC-like and iGC-like populations, committed 

OPCs (COP), and immune cell populations, but with low abundance of astrocytes, radial 

glia, mature oligodendrocytes, neuronal cells and endothelial cells (Figures 5B, S4A–B). 

The pri-OPC-like cells scored highly for the proneural GBM gene signature, but low for 

neural, classical, and mesenchymal signatures (Verhaak et al., 2010) (Figure 5C). The 

subclustering for neural cell types identified cellular characteristics that parallel that of the 

normal neonatal cortex, including astrocyte-like, iGC-like, COP-like, pri-OPC-like, cycling 

OPC (G1/S and G2/M), ependymal cells, and cell populations unique to tumor cells with 

stress and hypoxia signatures (Figure 5D). We next compared the gene expression signatures 

of glial lineage cells in normal and malignant brain tumor tissues. A population of cells in 

the tumor tissues exhibited a stronger similarity of expression patterns to pri-OPCs than 
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normal OPCs or iOLs in the developing cortex (Figure 5E). These “pri-OPC-like” cells had 

a partial OPC signature including PDGFRα expression (Figure 5E). In addition, a cell 

population appeared to be correlated to both OPC and iOL (Figure 5E) as COP-like cells. 

The gene expression profiles of iGC-like precursors and astrocytes resembled those of the 

native developmental counterparts (Figure 5E).

Strikingly, pri-OPC-like cells (e.g. Olig1/2, Ascl1, and Ppp1r14b) and their mitotic cells in 

G1/S and G2/M phases were present in the highest abundance in neural cell types in the 

tumor tissues (72.6 %; Figure 5F). In addition, the pri-OPC signature score and their 

proportion were higher in tumors than in neonatal brains (Figure 5G,H), suggesting the 

expansion and amplification of pri-OPC-like populations during tumorigenesis. The unique 

gene sets in PDGFRα-GFP cell populations showed gene signatures enriched in gliogenesis 

and oligodendrocyte development (Figure 5I–J). In contrast, the unique gene sets in tumors 

exhibited pathway components enriched in GBM, astrocytoma, and stem-cell-related genes 

(Figure 5J), suggesting that pri-OPC analogs in the proneural-like glioma tissues contribute 

to malignant transformation during tumorigenesis.

pri-OPC-like intermediates exhibit a transit-amplifying property during gliomagenesis

t-SNE visualization of glioma cell populations showed that a large majority of the cells 

exhibited expression of the signature genes for pri-OPCs (Figures 6A–B, S4C). To further 

explore the identity of pri-OPC-like cells in tumor tissues, we evaluated expression of 

stemness signature gene sets related to glioma formation (Tirosh et al., 2016) in our dataset. 

Strikingly, we found that most pri-OPC-like cells expressed stemness signature markers such 

as Sox2, Ccnd2, Sox11, and Chd7, and exhibited a higher stemness score than committed 

OPCs, iGC-like cells, and astrocytes (Figure 6C–D). In addition, gene expression of pri-

OPC-like cells in tumors correlated most strongly with the adult activated NSC signature 

(Figure S4D) and exhibited the highest stemness score (Figure S4E). These observations 

suggest that the pri-OPC-like cells are amplified in the tumor tissues and acquire stem cell-

like properties.

Further subclustering analysis based on cell-cycle markers indicated that the majority of pri-

OPCs also expressing cell-cycle genes in G1/S and G2/M phases (Figure 6E). The fraction 

of cycling OPCs in G1/S or G2/M phases (34.4%) was substantially higher than that in 

PDGFRα-GFP+ or hGFAP-GFP+ OPC populations from normal neonatal brains (Figure 

6F). This increase in mitotic pri-OPC-like cells in tumors suggests that pri-OPC-like cells 

are the transit-amplifying cell population that fuels tumor growth.

In contrast to native glial populations isolated from normal developing cortex, in tumors we 

detected cells expressing stress-associated signature genes (Figures 6A, S5A–B), and 

hypoxia-associated genes (Figures 6A, S5C–D). These signatures were present in a 

subpopulation of OPC-like cells (Figure S5E) consistent with observations in human 

gliomas and other tumor tissues (Patel et al., 2014; Puram et al., 2017). Among glial 

progenitors, the frequency of Mki67+ cells among Olig2+ or Sox2+ OPC-like intermediates 

was higher in tumor tissues compared with frequencies in the developing cortex (Figure 6G), 

consistent with an expansion of the pri-OPC progenitor population during tumorigenesis.
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Similar to the heterogeneity of astroglial cells in the developing cortex, we also identified 

both astrocyte-like cells (expressing Gja1 and Aqp4) and iGC-like populations (expressing 

Olig2 and astrocyte markers Slc1a2 and Slc1a3) (Figures S4 and 5F–G). The iGC-like 

cluster was present at a higher proportion in tumor tissues than normal developing cortex 

(Figure S5H). Intriguingly, radial glia markers were hardly detectable in the tumor tissues 

(Figure S5I), suggesting that radial glia/NSC-like cells do not actively divide during 

tumorigenesis in the malignant glioma model.

Reprogramming of oligodendrocyte-progenitor-like intermediates towards a tumorigenic 
phenotype during tumorigenesis

To better understand the progression of distinct cells during different phases of 

gliomagenesis, we examined cellular compositions of tumor tissues at an early stage of 

tumorigenesis at dpi 25 in the animal model by scRNA-seq. The clusters of tumor cells at 

dpi 25 were similar to those at dpi 35 (Figure S5J–L), whereas immune cells (mainly, 

microglia or macrophages) were more abundant at dpi 35 than dpi 25 (Figure 6H), 

suggesting that the complexity of the tumor microenvironment is higher at the late stage of 

tumorigenesis. Interestingly, although the percentage of pri-OPC populations among neural 

cell groups was comparable (Figure S5M), the pri-OPC-like cells at the late phase at dpi 35 

had a higher correlation coefficient score with respect to stemness signature genes than at 

dpi 25 (Figure 6I). In addition, the ratio of actively cycling cells among pri-OPC-like cells 

was significantly higher at dpi 35 than dpi 25, indicating that at the later stage pri-OPC-like 

cells have higher proliferative capacity (Figure 6J–K). These data suggested that pri-OPC-

like cells undergo reprogramming into a more stem-like state during the progression of 

tumorigenesis.

Because glioma cells frequently harbor large-scale chromosomal alterations, we estimated 

copy number variations (CNVs) from the average expression of genes in individual large 

chromosomal regions within each cell (Patel et al., 2014). Compared with microglia/

macrophages within the tumor lesion, which are non-malignant cells of a distinct lineage 

and presumably have ‘normal’ copy numbers, the majority of pri-OPC-like cells at dpi 35 

had extensive copy number aberrations (Figure 6L). Alterations included copy number gains 

at loci such as Ccna2, Ccne2, and Mcm2, genetic alterations frequently seen in human 

gliomas (Brennan et al., 2013). In contrast, at dpi 25, few CNVs were detected in pri-OPC 

populations (Figure 6L), suggesting that oligodendrocyte progenitor-like cells are 

progressively reprogrammed towards a tumorigenic phenotype due to an increase in 

genomic instability.

To investigate whether the observations in the mouse glioma model reflect the tumorigenesis 

process in human brain tumors, we analyzed the single-cell transcriptomic signatures of 

different human gliomas with distinct driver mutations including oligodendrogliomas (IDH-

O), astrocytoma (IDH-A), GBM, and diffuse midline gliomas (Filbin et al., 2018; Patel et 

al., 2014; Tirosh et al., 2016; Venteicher et al., 2017). We observed a prominent pri-OPC-

like progenitor population expressing pri-OPC markers ASCL1, PDGFRA, BTG2, and 

OLIG2 in the human gliomas compared to committed OPCs and oligodendrocytes (Figures 

6M–N, S6). Markedly, the pri-OPC-like populations from distinct human gliomas exhibited 
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a stemness-associated signature (Figures 6N, S6) and were the predominant mitotic cell 

proportion among neural cells in tumor tissues (Figure 6O). These observations suggest 

reprogramming of pri-OPCs to a primitive and mitotic state endowed with stemness 

properties during human glioma tumorigenesis, similar to that observed in the animal model. 

Further, this suggests that these human gliomas may originate from the same intermediate 

glial progenitors, particularly pri-OPC-like intermediates. Our observations suggest that 

tumorigenesis influences the abundances of the glial progenitor populations with substantial 

reprogramming of OPC-like cells to adopt a ‘stemness’ program during tumorigenic 

progression.

Targeting lineage-driving determinant Zfp36l1 inhibits the initiation and growth of glioma

Given its requirement for OPC fate specification in the developing cortex (Figure 4), we 

hypothesized that Zfp36l1 is critical for the growth of gliomas such as proneural GBMs, 

which display strong OPC signatures (Verhaak et al., 2010). Zfp36l1 was enriched in pri-

OPC-like and cycling pri-OPC-like cells in our murine proneural GBM model (Lu et al., 

2016) (Figure 7A). We inhibited expression of Zfp36l1 in tumor cells isolated from the 

mouse glioma tissues using siRNA. Zfp36l1 deficiency significantly decreased the rate of 

glioma cell proliferation (Figure 7B–D). In addition, when tumor cells were transduced with 

Zfp36l1 shRNA lentiviral vectors, OPC-associated genes were downregulated, whereas 

astrocyte-associated signature genes were upregulated (Figures 7E–F, S7A).

To further assess the tumorigenic function of Zfp36l1 in vivo, we performed microinjection 

of retrovirus carrying DN-P53;PDGFB-Cre into the cortical white matter of control and 

Zfp36l1fl/fl mice. In the Zfp36l1fl/fl mice the Cre recombinase converted Zfp36l1-floxed 

alleles to complete knockout alleles. Histological analysis revealed that the Zfp36l1-iKO had 

no detectable tumor mass at dpi 30 or 60, when all the virus-injected control mice had 

developed tumors with full penetrance (Figure 7G). Most control mice died before dpi 60 

due to the extensive growth of tumors; the Zfp36l1-iKO mice had a significantly extended 

survival curve (Figure 7H). Although tumors were detected in 2 of 15 Zfp36l1-iKO mice at 

100 dpi (Figure 7G), immunostaining showed greatly reduced Ki67+ proliferative cells in 

these tumors (Figure 7I–J). In addition, there were higher frequencies of GFAP+ astrocyte-

like cells and iGC-like cells and lower frequencies of pri-OPC-like cells in the Zfp36l1-iKO 

tumor tissues than in control tumors (Figure S7B–C), consistent with the role of Zfp36l1 in 

regulating oligodendroglial-astroglial fate switch in the developing brain.

Analysis of TCGA datasets of human gliomas showed that ZFP36L1 was expressed at 

higher levels in human GBMs than normal brain (Figure 7K). Importantly, patients with 

GBM and low-grade gliomas with high levels of ZFP36L1 expression exhibited a 

significantly lower survival probability than those with low expression levels (Figure 7L–

M), indicating that ZFP36L1 may have a pro-oncogenic role. To examine the effects of 

ZFP36L1 depletion on human GBM cell growth, we transduced lentiviral vectors delivering 

ZFP36L1 shRNA into patient-derived proneural GBM cells TS543 and GBM3264 (Lu et al., 

2016) to knockdown ZFP36L1 (Figure 7N). The size and number of spheres formed in sh-

ZFP36L1-transduced tumor cells were substantially diminished compared to controls 

(Figure 7O–P). In addition, cell-cycle-related genes and OPC-associated proneural genes 
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characteristic of GBM were downregulated and expression of astrocyte-associated signature 

genes were increased upon ZFP36L1 depletion (Figure 7Q–R). These observations indicate 

that ZFP36L1 is critical for murine and human glioma cell growth and tumor cell fate switch 

and suggest that a convergent mechanism controls normal gliogenesis and glioma 

tumorigenesis.

Discussion

Lineage-targeted single-cell analysis uncovered common and divergent molecular and 
cellular dynamics of glial progenitors and malignant counterparts

Malignant glioma is notoriously heterogeneous at the cellular level, and tumors consist of a 

substantial proportion of glial progenitor-like cells (Tirosh et al., 2016). The single-cell 

transcriptomic analyses of targeted lineage precursor populations presented here revealed 

glial progenitor heterogeneity and two previously uncharacterized intermediate progenitor 

cells in the neonatal brain, namely, pri-OPCs and iGCs. Our unbiased sorting approaches are 

more likely to capture the complete cell lineage heterogeneity as compared to cell type 

assignment based on known cell markers. Despite the distinct transcriptome profiling among 

these glial progenitor populations, it is possible that these progenitors could be transient 

states of a more limited set of glia in a stage-dependent manner, representing a 

developmental continuum along the lineage.

Despite the dissimilarity of cell compositions between normal brain and tumor tissues, we 

detected pri-OPC-like and iGC-like cells in tumor tissues, which paralleled their 

counterparts observed in the normal developing brain, suggesting that tumorigenesis mirrors 

ontogeny. Importantly, we found that actively cycling pri-OPC intermediate progenitors are 

predominant cellular components in human gliomas caused by distinct genetic mutations, 

indicating common molecular and cellular networks that link normal glial progenitors and 

their malignant counterparts. Given that gliomas can occur in different regions (e.g., 

hemispheric and midline structures) (MacDonald et al., 2011; Monje et al., 2011), it remains 

to be defined whether specific glial precursor cells in different brain regions correlate with 

the patterns of gliomagenesis during childhood and adolescence.

scRNA-seq revealed divergent developmental trajectories and proliferation potentials of 
glial progenitor intermediates

In the neonatal cortex, hGFAP-GFP marks astrocyte lineage cells (Ge et al., 2012). In 

contrast, hGFAP-GFP mainly labels adult neural stem cells in subependymal zone, SVZ, and 

dentate gyrus regions of adult mice (Beckervordersandforth et al., 2010; Dulken et al., 2017; 

Hochgerner et al., 2018). Our single-cell analysis of neonatal cortices reveals that GFP+ cell 

populations include astrocytes, OPCs, and neuroblasts, suggesting that a population of GFP+ 

cells in the neonatal cortex is derived from hGFAP-GFP-labeled neural stem cells. 

Strikingly, we identified an unexpected iGC population related to the well-known astroglial 

and oligodendroglial cells in the neonatal brain. Cell trajectory analyses indicated that these 

astroglial/oligodendroglial lineage “double-positive cells” are most likely immature 

transitional cells. A recent study suggested a local generation of astrocytes through 

proliferation in the developing cortex (Ge et al., 2012). However, our single-cell data 
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indicate that an Olig2+ iGC subpopulation, but not astrocytes, expresses cell-cycle-related 

genes, suggesting that the proliferating astrocytic progenitors are a population of transitional 

iGCs, rather than committed or differentiated astrocytes. Our pseudo-timeline analysis 

predicted that the intermediate iGCs might lead to astrocytic and oligodendrocytic 

developmental trajectories; thus, the Olig1/2-expressing iGCs might behave like bipotential 

glial progenitors.

PDGFRα-GFP-derived progenitors are mainly confined to oligodendrocyte lineage cells, 

suggesting a developmental fate-restricted continuum along the oligodendrocyte lineage. 

Lineage trajectory analysis identified a previously uncharacterized progenitor population as 

pri-OPCs in the neonatal cortex. These early pri-OPCs might serve as early oligodendrocyte 

progenitors with lineage plasticity (Cai et al., 2007; Zhu et al., 2012). They represent a small 

population in the adult brain (Figure S7D–S7E), and likely reflect a subset of Sox2+/Olig2+ 

oligodendroglial precursor cells (Figure S7F) in adulthood (Gibson et al., 2014). It is 

possible that pri-OPCs are not fate-restricted in certain contexts, and there may be additional 

layers of heterogeneity not been revealed by these analyses, although pri-OPCs do not 

appear to produce astrocyte lineage cells.

FACS isolation of PDGFRα-GFP+ cells from the neonatal cortex yielded a number of 

neuronal populations; this was not the case in this population of cells isolated from juvenile 

and adult brains (Marques et al., 2016). The presence of neuronal markers diminishes over 

the course of development, suggesting that PDGFRα-GFPlow cells are neuronal lineage cells 

driven by transient PDGFRα promoter activity (Kang et al., 2010). Alternatively, this could 

be the result of perdurance of GFP expression from a common precursor of OPC and 

neuroblasts expressing PDGFRα (Rivers et al., 2008), expression of which is turned off in 

neuroblasts, even though the GFP expression remains.

Lineage-driving determinant Zfp36l1 is critical for oligodendrocyte-astrocyte lineage 
transition and gliomagenesis

We developed a machine-learning algorithm to identify the regulatory networks that drive 

the specification of distinct glial cell fates. We observed a potential bifurcation of glial 

sublineage states that enabled us to identify putative regulators of glial fate specification. 

Among the lineage-driving regulators expressed by both oligodendrocyte and astrocyte 

lineages, we identified an RNA-binding protein Zfp36l1 that appears to regulate 

oligodendrocyte fate specification. Although Zfp36l1 is largely restricted to OPCs within the 

oligodendrocyte lineage, it is detected in other lineages, suggesting that Zfp36l1 might have 

a function in other cell systems (Hodson et al., 2010; Nasir et al., 2012).

We also demonstrated a critical role of Zfp36l1 for tumor cell growth in the murine glioma 

model and patient-derived GBM cells. Deletion or downregulation of Zfp36l1 increased 

astrocytic gene expression and astrocyte differentiation, suggesting that Zfp36l1 inhibition 

may divert the fate of the proliferating tumor cells with OPC characteristics to astrocyte-like 

cells and maintain them in a postmitotic state. Thus, our data suggest a commonality of gene 

regulation between gliogenesis and tumorigenesis and indicate that targeting the lineage-

driving determinant Zfp36l1 may inhibit glioma cell growth. Future studies of how the 

lineage-specific regulatory networks regulate glial lineage trajectories and brain 
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tumorigenesis may reveal additional selective treatment vulnerabilities for malignant 

gliomas.

Reprogramming of pri-OPC intermediates results in the stem-like phenotype of glioma

Although de-differentiation of mature neural cell types could potentially induce glioma 

tumorigenesis (Friedmann-Morvinski et al., 2012), our data suggest that pri-OPC 

intermediates undergo a phenotypic shift through reprogramming into a stem-like state 

susceptible to further tumor transformation in a self-reinforcing loop. We observed that the 

actively cycling cells were highly overrepresented among these pri-OPC progenitor 

intermediates in gliomas. This is in contrast to the traditional cancer stem cell model, which 

posits stem cells as a minority of malignant cells. The increase of the intermediate iGC 

population in tumor tissues compared to normal developing cortices suggests that nascent 

astrocyte precursors like iGCs could be poised to transition into a pri-OPC state resulting in 

hyper-proliferation. Thus, distinct cellular niches might undergo dynamic transitions over 

the course of tumorigenesis and contribute to different tumor phenotypes.

Notably, the pri-OPC-like cells were the predominant cycling cell population in the human 

gliomas evaluated, resembling the tumorigenesis process in the animal model. Our 

observations suggest that reprogramming and amplification of pri-OPCs to a cancerous, 

stem-like phenotype, rather than direct proliferation of neural stem cells, results in brain 

tumor pathogenesis and progression. This is consistent with previous observations that OPCs 

are a cell of origin in anatomically distinct gliomas (Liu et al., 2011; Monje et al., 2011) and 

with our recent observation that elimination of Olig2+ mitotic OPC-like progenitors 

abrogates tumor growth in a GBM animal model (Lu et al., 2016). Nonetheless, we cannot 

conclude that gliomagenesis has a single cell of origin as the actual mutation even in cases 

where these cells account for the bulk of the proliferation could be in upstream progenitors.

The single-cell transcriptome data reported here will serve as a resource for understanding 

the heterogeneity and identity of distinct glial progenitors and their contributions to brain 

tumor formation. Our findings demonstrate the importance of single-cell mapping and 

reconstructing fundamental processes of progenitor dynamics and plasticity during 

development and tumorigenesis. Identification of lineage-specific vulnerabilities for 

targeting malignant gliomas is an essential step toward a glioma treatment avenue.

STAR★Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Qing Richard Lu (Richard.Lu@cchmc.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—PDGFRα-H2BGFP knock-in male mice (the Jackson Laboratory, catalog no. 

007669) and hGFAP-GFP mice (the Jackson Laboratory, catalog no. 003257) are purchased 

from Jackson Laboratory. Mice homozygous for floxed alleles of Zfp36l1 f/f (Stumpo et al., 

2004) were crossed with mice carrying Cre recombinase driven by the nestin promoter 
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(Nestin-Cre+/−) to generate Zfp36l1 cKO (Zfp36l1f/f; Nestin-Cre+/−) and heterozygous 

control (Zfp36l1f/+; Nestin-Cre+/−) mice. Animals of either sex were used in the study and 

littermates were used as controls unless otherwise indicated. The mouse strains used in this 

study were generated and maintained on a mixed C57Bl/6;129Sv;CD-1 background and 

housed (four or less animals per cage) in a vivarium with a 12-hour light/dark cycle. All 

animal studies were approved by the Institutional Animal Care and Use Committees of the 

Cincinnati Children’s Hospital Medical Center, USA.

Primary OPC and Culture—Primary rat OPCs were isolated and cultured as described 

previously with slight modifications (Chen et al., 2007). Briefly, mixed glial cells were 

initially cultured in DMEM-F12 medium supplied with 15% FBS, then switched to B104 

conditioned medium for 2 days before isolating OPCs by mechanical detachment in an 

orbital shaker. Isolated rat OPCs were grown in Sato growth medium supplemented with 

mitogens 10 ng/ml PDGF-AA and 20 ng/ml bFGF, and differentiated in OL Differentiation 

Medium (Sato medium supplemented with 15 nM T3 and 10 ng/ml ciliary neurotrophic 

factor).

Mouse and Human GBM Cell Culture—Mouse, human tumor cell (GBM3264) and 

sphere cultures were established and maintained in serum-free DMEM/F12 medium (Life 

Technologies), containing B27 (without vitamin A, Invitrogen, Carlsbad, CA), epidermal 

growth factor (20 ng/mL, Peprotech), and basic fibroblast growth factor (20 ng/mL; 

Peprotech). The human GBM proneural cell lines (TS543) were maintained in Neural Stem 

Cell (NSC) Basal Medium with NSC proliferation supplements, 10 ng/ml EGF, 20 ng/ml 

basic-FGF and 2 μg/ml Heparin (Stem Cell Technologies, Vancouver, Canada) as previously 

described (Lu et al., 2016).

Human Glioma Single Cell RNA-seq Datasets—We analyzed the single cell RNA-

seq expression profiles of human GBM, IDH mutant oligodendroglioma, IDH mutant 

astrocytoma and H3K27M diffuse midline glioma from the GEO public resource (http://

www.ncbi.nlm.nih.gov/geo/) and the accession numbers are GSE82211 (Patel et al., 2014), 

GSE70630 (Tirosh et al., 2016), GSE89567 (Venteicher et al., 2017) and GSE102130 (Filbin 

et al., 2018). We performed clustering by R package Seurat (https://satijalab.org/seurat/). To 

exclude the batch effect of distinct patients, we used unique marker genes for variable genes 

analysis, they were used for principle component analysis (PCA). The statistically 

significant PCs were used for two-dimension t-distributed stochastic neighbor embedding (t-

SNE).

Human glioma patient survival and gene expression data were analyzed from TCGA (https://

tcga-data.nci.nih.gov/docs/publications/tcga/), GTEx projects (https://gtexportal.org/), as 

well as http://gepia.cancer-pku.cn/ and http://ualcan.path.uab.edu/.

METHOD DETAILS

Single-cell Isolation and Library Preparation—Neonatal pups are euthanized on the 

ice, decapitated, and the brain was immediately removed and submerged in fresh ice-cold 

HBSS-HEPES (15 mM HEPES, Gibco 15630–060 and 15 mM Glucose, Sigma G8769 
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dissolved in HBSS Sigma H6648), cortices were carefully dissected and minced by blade. 

The tissue pieces were incubated with 3 ml of TrypLE 5× solution (dilute in HBSS-HEPES 

by 10× TrypLE, Gibco A12177) for 10 min in a 37°C-incubator following by gentle 

trituration through Pasteur pipettes with polished tip for ten times, filtered the suspension by 

40mm strainer, centrifuge at 1300 rpm to get the single cell pellet.

Collect the GFP+ alive cell by excluding the population of GFP- and 7-AAD+ (Stemcell 

75001) death cells performed on MoFloXDP (Beckman Coulter). For droplet sequencing 

(Drop-seq), we followed the procedure as described by Macosko et al. (Macosko et al., 

2015). The cDNA libraries were purified, quantified, and then sequenced on the Illumina 

Hiseq 2500. In addition, GFP+ single cells were prepared using the C1 Single-Cell Auto 

Prep System (Fluidigm) according to the manufacturer’s instructions. For single cell RNA-

seq data from Drop-seq and Fluidigm C1 platforms, we discarded low quality cells which 

obviously deviate from the major cell population. We performed two quality measurements: 

the number of genes and the average expression level (log2(TPM+1)) of a curated list of 

housekeeping genes. In PDGFRα-GFP populations, we excluded the cells with either fewer 

than 500 detected genes or an average housekeeping expression level below 0.35 (recovered 

100% cells). In the hGFAP-GFP cells, we excluded those cells with either fewer than 900 

detected genes or an average housekeeping expression level below 1.6 (recovered 41% 

cells). On average, we recovered 2280, 4581 transcripts per cell, which represented 1301, 

and 2096 unique genes expressed per cell, respectively.

For single cell RNA-seq of tumor cells, the tumor tissues were digested by TryplE with 

collagenase Ⅰ, and single cell suspension was treated by Red Blood Cell Lysis Buffer 

(Sigma, 11814389001). Cells from tumor tissues at dpi 25 and dpi 35 were sequenced by 

drop-seq or 10× genomics, respectively. Chromium Single Cell 3’ Library & Gel Bead Kit 

v2 (120237), Chromium Single Cell A Chip Kit (120236) and Chromium i7 Multiplex Kit 

(120262) were used along with a 10× GemCode Single Cell Instrument, per the 

manufacturer’s manuals (document CG00052; Rev A). Base on the distribution of cells 

ordered by percentage of mitochondrial genes, housekeeping genes and detected gene 

numbers, we excluded those cells with either less than 600 detected genes or an average 

housekeeping expression level below 1.3 in dpi 35 (recovered 100% cells), as well as 

excluded those cells with either more than 2800 detected genes or less than 700, and an 

average mitochondrial expression level more than 0.2 in dpi 25 (recovered 73% cells). For 

each set of drop-seq, isolated cells at each stage were pooled together and processed to 

reduce the risk of batch effects. The histograms of UMIs were shown in figshare (https://

figshare.com/s/439405353ba2c51b5d51).

Cell Clustering and Visualization—We performed unsupervised clustering by R 

package Seurat (Macosko et al., 2015). The highly variable genes were identified from these 

cells using Seurat with the default setting for mouse datasets, they were used for principle 

component analysis (PCA). The statistically significant PCs were used for two-dimension t-

distributed stochastic neighbor embedding (tSNE). Differentially expressed gene (adjusted 

p-value<0.05 and more than 1.5-fold change or p-value<0.05) for scRNA-seq data were 

shown as Table S2. The clustered cell matrix for hGFAP-GFP, PDGFRα-GFP and mouse 

glioma was shown in figshare (https://figshare.com/s/439405353ba2c51b5d51). We verified 
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the clustering by two other different methods: Backspin and PAGODA (Pathway and 

Geneset Overdispersion Analysis). The hGFAP-GFP and PDGFRa-GFP datasets were 

clustered using the BackSPIN algorithm as previously described (Marques et al., 2016). In 

short, the BackSPIN algorithm executed a bi-clustering by sorting the cells and genes into a 

one-dimensional ordering where a binary split is performed based on the distribution of 

genes within each ordering. The algorithm repeatedly performs feature selection and 

subsequent splits until an appropriate threshold is achieved. For clustering the hGFAP-GFP 

and PDGFRa-GFP datasets using PAGODA (SCDE R-package) (Fan et al., 2016), First, the 

drop-out rate is determined and the amplification noise is estimated to fit the error models 

for each single cell. Poor cells with abnormal fit will be removed. PAGODA estimates the 

overdispersion in genes and gene sets for cell clustering analysis. The overdispersion in gene 

sets is defined as the amount of variance explained by the first principal component exceed 

the background expectation. Gene annotation from GO terms are used to facilitate the 

process by finding pathways with significantly excess of coordinated variability. Finally, 

cells are clustered according to their patterns in all significant aspects.

For the dataset from Fluidigm C1 cells, we performed unsupervised clustering by ICGS in 

AltAnalyze (http://www.AltAnalyze.org). All the ICGS, Marker Finder and PCA plot were 

following the guidance of toolkit AltAnalyze (http://www.AltAnalyze.org). For further 

subclassification, Marker Finder was performed. After classification, PCA was conducted by 

Altanalyze using the clustered matrix. Individual gene plot was executed by input distinct 

genes. For the minimum Pearson correlation cutoff, we used 0.4 for Fluidigm C1.

Analysis of Cell Lineages Trajectory—We used a recently developed cell lineage 

inference algorithm, Slingshot (Version 0.0.0.9005, https://github.com/kstreet13/slingshot), 

to predict lineage trajectories and bifurcations by ordering cells along trajectories. Slingshot 

takes as input a matrix of reduced dimension normalized expression measures using PCA 

and cell clustering assignments. Lineages are defined by ordered sets of clusters beginning 

with the root node and terminating in the most distal cluster(s) with only one connection. 

Potential fitting curves are drawn to the subsets of cells that potentially make up each 

lineage. The ordering provided by Slingshot, analogous to pseudo developmental time 

points, is referred to herein as developmental order. The cluster representing RG was chosen 

as the starting root node.

To analyze the timing of oligodendrocyte development, we extracted cells from OPC and 

immature oligodendrocyte clusters from the original cell dataset. The subpopulations were 

pooled for analysis. The most variable genes among all the single cells were identified by 

Seurat. A pseudo developmental timeline of single cells was then calculated with the 

package Slingshot, using the most variable genes as time ordering genes. Based on the 

established differentiation direction of oligodendrocyte (from pri-OPC to OPC to iOL), the 

direction of pseudotime axis was determined. OPC and pri-OPC in hGFAP-GFP dataset 

were explored as the same method.

Identification of Lineage-driving Transcriptional Regulators—1) Overview of the 

driving transcriptional regulator (TR) detection method: we call a set of TRs the driving TRs 

of a cell group if they activate and regulate the cell group’s differentially expressed genes 
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(DEGs). Because of the regulation relationships with the DEGs, the driving TRs are 

expected to bind these genes more frequently than random bindings. Thus, in order to decide 

whether a TR is a driving TR, we compare its binding frequency (to the DEGs) with the 

binding frequency due to randomness. To do this, for each given cell group, we first detect a 

set of DEGs, then estimate the TR-DEG binding state matrix (binding or not binding) and 

the TR-DEG binding probability matrix (due to randomness). 2) Differentially expressed 

genes: we identify DEGs of each cell group using EdgeR. 3) TR-gene binding state matrix 

and TR-DEG binding state matrix: In order to compute the binding frequency of each TR, 

we first infer the TR-gene binding state (whether a TR is binding to a gene or not) based on 

association of TR-gene expression. Since TR-gene regulation is tissue-specific, we consider 

the problem within the scope of a certain tissue. We assume that, in a specific tissue, a gene 

should have similar expression pattern with a TR that regulates (binds) it. Pearson 

correlation coefficient is employed to assess the association between expression of a TR and 

a gene, and Student’s t-test of correlation coefficient is performed to decide if the TR-gene 

pair is statistically significantly associated, namely, if the gene is bound by the TR. The 

inferred binding state of all TR-gene pairs are organized into a TR-gene binding state 

matrix, and that of all TR-DEG pairs are organized into a TR-DEG binding state matrix. 4) 

TR-gene binding probability matrix and TR-DEG binding probability matrix: The binding 

probability, or the frequency of random bindings, between a gene (or its enhancer regions) 

and a TR can be impacted by two factors: 1) the affinity of a gene to TRs (the tendency that 

this gene is bound by any TR); and 2) the affinity of a TR to genes (the tendency that such 

TR binds any gene). Genes may have different affinities to TRs because of their different 

properties such as gene length and GC content. Similarly, TRs have different affinity to 

genes due to differences in features such as motif characteristics. TR with short motifs are 

more likely to bind a gene by chance. However, all these causing factors can be hardly given 

as priori knowledge. We estimate the effects of all these factors from the data. Regardless of 

all complex causes, the affinity of a gene to TRs can be captured by totally how many TRs 

can bind the gene, and the affinity of a TR to genes can be indicated by totally how many 

genes it binds.

With the affinities of different genes and of different TRs taken into account, we assume that 

TR-gene pairs’ random binding states follow a 2D Fisher’s noncentral hypergeometric 

distribution. Then the probability of a TR-gene pair’s random binding can be estimated as:

s.t.

∑
j

M riw j
riw j + 1 = ni

∑
i

N riw j
riw j + 1 = m j

where Pij is the probability that the ith TR binds the jth gene. ni is conceptually the number of 

genes that the ith TR binds and computationally the sum of the ith row in TR-gene binding 

state matrix. Similarly, mj is the number of TRs that bind to the jth gene i.e., the sum of the 

jth column in TR-gene binding state matrix. {ri} and {wj} are variables reflecting the ith TR’ 

affinity to genes and the jth gene’s affinity to TRs, respectively. Pijs can be obtained by 

solving the equation system. It can be proved that the solution for Pijs is unique. In practice, 
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Pijs are obtained by first initializing {ri}, then updating {wj} and {ri} iteratively. All Pijs 

together form a TR-gene binding probability matrix, from which Pijs of only DEGs are 

selected to compose a TR-DEG binding probability matrix.

5) Driving TR detection: Having obtained the TR-DEG binding state matrix and TR-DEG 

random binding probability matrix, we compare them to detect driving TRs of each given 

cell group. For each TR, we decide it as a driving TR if its binding frequency to the cell 

group’s DEGs is statistically significantly higher than its random binding probability to 

these DEGs.

The test statistics, which indicates how higher the observed binding frequency is than the 

null random binding probability, is computed as following:

Si = ∑
k = 1

K
[log 1

Pik
Yik

− log 1

1 − Pik
1 − Yik

]

where k is the index of DEG; Yik is the binding state (1 for binding and 0 for non-binding) 

of the ith TR and kth DEG. Pik is the null random binding probability of the ith TR and kth 

DEG. Yik and Pik are respectively from the TR-DEG binding state matrix and TR-DEG 

binding probability matrix. Finally, to facilitate the evaluation of statistical significance, we 

transform the score[Si] into a Z-score of the ith TR:

zi =
Si − E Si

Var Si

which approximately follows a standard Gaussian distribution and from which we can get p-

value for the TR.

Active cycling cell analysis—Gene sets representing five phases of the cell cycle (G1/S, 

S, G2/M, M and M/G1) were refined as previously described (Tirosh et al., 2016). In short, 

we extracted cycling genes by examining the correlation between the expression pattern of 

each gene and the average expression pattern of all genes in either dpi25 or dpi35 tumor 

dataset, and excluding genes with a low correlation (R<0.25). This step removed genes that 

were identified as phase-specific in HeLa cells but did not correlate with that phase in our 

single-cell data.

Then the putative actively cycling cells were identified as previous method (Tirosh et al., 

2016). Basically, the cells were defined as actively cycling by at least a twofold upregulation 

and a t-test P value < 0.01 for either the G1/S or the G2/M gene set compared to the average 

of all cells. Relative proliferating score in both putative actively cycling cells and leftover 

pri-OPC-like cells were calculating, the average actively cycling score in non-actively 

cycling cells were normalized to 1.

Stemness score and module calculation—To explore the stemness signature of pri-

OPC-like cells in tumor tissues, we applied stemness signature gene sets related to glioma 
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formation (Tirosh et al., 2016) to our dataset, and calculated the average expression of 

stemness genes in each cell, which represented the stemness score. The stemness score of 

each group was then calculated. To compare the stemness score in tumor tissues and normal 

neonatal glial cells, we employed all cells in hGFAP-GFP and PDGFRa-GFP dataset, and 

the stemness score of each cell in either dataset was calculated and normalized to the 

average of stemness gene expression of all tumor cells. The stemness score of each group 

was then calculated.

For pri-OPC score in Figure 5G, we selected all the OPC-lineage cells from PDGFRα-GFP 

dataset and employed Seurat to get the variable genes. We excluded all the merged genes 

between pri-OPC and OPC from pri-OPC differential expressed genes (Table S3), the pri-

OPC score of each cell in either dataset was calculated and normalized to the average of pri-

OPC gene expression of all tumor cells. The pri-OPC score of each group was then 

calculated. For violin plots, the gene list for each referred gene module were shown in Table 

S3.

Correlation analysis between cortical pri-OPC and hippocampal pre-OPC—To 

compare cortical pri-OPC/OPC/iOL with pre-OPC/OPC from the mouse hippocampus at P0 

and P5, we firstly extracted gene expression data of pre-OPC and OPC from previously 

published datasets (Hochgerner et al., 2018; La Manno et al., 2018), and used the Seurat 

program to combine the datasets of cortical pri-OPC/OPC/iOL with hippocampal pre-OPC/

OPC, normalized the expression values, and conducted PCA. The data were then scaled by 

Seurat and regress to “nUMI” and “Mt- genes”, the correlation coefficient values were 

calculated by “cor.test” function in R.

Tissue Processing and In Situ Hybridization—Mice at various developmental stages 

were anesthetized with ketamine/xylazine and perfused with PBS followed by 4% 

paraformaldehyde (PFA). Brain tissues were dissected and fixed in 4% PFA overnight. 

dehydrated in 20% sucrose at 4°C, embedded in OCT and cryosectioned at 16 μm or 

paraffin-embedded for sectioning at 10 μm. For immunostaining of cryosections, tissues 

were shortly fixed in 4% PFA for 2–4 hours. For vibratome sectioning, tissues were fixed in 

4% PFA overnight and embedded by 4% agarose in PBS and sectioned at 50 μm. In situ 

hybridization was performed as previously described (Lu et al., 2002). Digoxigenin-labeled 

riboprobes used in the study was murine Zfp36l1.

Immunofluorescence Staining and Immunohistochemistry—Cryosections (16-μm 

thick) or vibratome sections (50-μm thick) were permeabilized and blocked in blocking 

buffer (0.3% Triton X-100 and 5% normal donkey serum in PBS) for 1 h at room 

temperature and overlaid with primary antibodies overnight at 4 °C. For human brain 

paraffin section staining, we performed antigen retrieval before permeabilization. Antibodies 

used in the study were: Olig2 (Rabbit, Millipore, AB9610, RRID:AB_10141047; Mouse, 

Millipore, MABN50, RRID:AB_10807410), PDGFRα (Rat; BD Bioscience, 558774, 

RRID:AB_397117), APC (Mouse; CC1, Oncogene Research, OP80, RRID:AB_2057371), 

MBP (Goat; Santa Cruz Biotechnology, sc-13914, RRID:AB_648798), Sp8 (Goat; Santa 

Cruz Biotechnology, sc-104661, RRID:AB_2194626), Dlx2 (Rabbit; Abcam, ab30339, 

RRID:AB_731969), Glutamine Synthetase (Mouse; Millipore, MAB302, 
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RRID:AB_2110656), Sharp2 (Rabbit, Abcam, ab97525, RRID:AB_10680936); BHLHE40 

(Rabbit, Sigma, HPA028922, RRID:AB_2672828), PRDM16 (Rabbit; LifeSpan 

BioSciences, LS-B4625, RRID:AB_10797227), GFAP (Mouse; Sigma, G3893, 

RRID:AB_477010), Ki67 (Rabbit; Thermo Fisher Scientific, RM-9106, 

RRID:AB_2335745), BrdU (Mouse; BD Pharmingen, 555627, RRID:AB_395993), GFP 

(Goat, Novus Biologicals, NB100–1770, RRID:AB_10128178; Rabbit, Thermo Sci, 

A11122, RRID:AB_221569), Slc1a3 (Rabbit; Novus Biologicals, NB100–1869, 

RRID:AB_2190597), PHI-1 (Mouse; Santa Cruz Biotechnology, sc-514759), Ascl1 (Rabbit; 

Abcam, ab74065, RRID:AB_1859937), BLBP (Rabbit; Abcam, ab32423, RRID: 

AB_880078), Sox2 (Goat; Santa Cruz Biotechnology, sc-17320, RRID: AB_2286684). 

After washing with 0.3% Triton X-100 in PBS, cells or sections were incubated with 

secondary antibodies conjugated to Cy2, Cy3 or Cy5 (Jackson ImmunoResearch 

Laboratories) for 2 h at room temperature, stained in DAPI for 10 min, washed in PBS and 

mounted with Fluoromount-G (SouthernBiotech). Cell images were quantified in a blinded 

manner. For BrdU staining, cells or tissue sections were denatured with 1 N HCl for 1 hr at 

37°C. Sections were neutralized with 0.1 M Borax pH 8.5 (Sigma) for 10 min, washed with 

PBS and blocked with 5% normal donkey serum (Sigma, Inc.) for 1 hr at room temperature. 

All immunofluorescence-labeled images were acquired using a Nikon C2+ confocal 

microscope. For Zfp36l1 in situ combined with immunolabeling, we developed in BM 

Purple (Roche-11442074001) for 3 days to enhance the signal.

Assay for Transposase-accessible Chromatin Using Sequencing (ATAC-Seq)—
ATAC-seq assays were performed as previously described (Buenrostro et al., 2015). Briefly, 

we isolated nuclei of ~50,000 FACS-sorted PDGFRa-GFP+ cells from the cortices of a pool 

of 3 individual animals at each E14.5 and P5 stage in a cold lysis buffer (10 mM Tris-HCl, 

pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630) by exclude GFP− and 7-AAD+ 

cells. After spinning down at 500 × g for 10 min at 4 °C, nuclei were resuspended in 

transposition mix containing TD (2× reaction buffer), TDE1 (Nextera Tn5 Transposase) at 

37°C for 30 min. The samples were purified using a Qiagen MinElute kit. Transposed DNA 

fragments were subsequently amplified and purified using Qiagen MinElute PCR 

Purification Kit. Libraries were generated using the Ad1_noMX and Ad2.1–2.4 barcoded 

primers and were amplified for 11 total cycles. Libraries were purified with AMPure beads 

(Agencourt) to remove contaminating primer dimers. All libraries were sequenced on the 

Illumina HiSeq 2500 with 75 bp single-end reads.

Reads of ATAC-seq data were aligned to mm10 genome using Bowtie with the following 

options: --best --chunkmbs 200 (http://bowtie-bio.sourceforge.net). Peak calling was 

performed using Model-based analysis of MACS version 2.12 (https://github.com/taoliu/

MACS) with specific parameters without the prebuilt model: --shift −75 --extsize 150 --

nomodel --call-summits --nolambda --keep-dup all -p 0.01, to call peaks, which extend and 

shift the fragments to get the region cut by the Tn5 sites. We calculated the peak_RPKM, 

then GSEA (v2.2.0) was used to analyze the enrichment of signature gene sets from different 

cell types in E14.5 and P5 PDGFRα-GFP cells. Homer (http://homer.ucsd.edu/homer/) was 

used to generate the normalized UCSC bedgraph files (the total number of tags is 

normalized to 10 million) to show the genome browser tracks.
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siRNA Knockdown, Transduction and Sphere Formation Assays—For siRNA 

knockdown by negative control or Ppp1r14b siRNA (Sigma, SASI_Rn01_00039926, 

SASI_Rn01_00039931) in rat OPCs, we used Lipofectamine® RNAiMAX Transfection 

Reagent (ThermoFisher Scientific, 13778150) according to the manufacturer’s protocol. 

Cells were harvested for immunocytochemistry or qRT-PCR analysis.

For siRNA knockdown by negative control or Zfp36l1 siRNA (Sigma, 

SASI_Mm01_00063508, SASI_Mm01_00063509, SASI_Mm01_00063512) in mouse 

tumor cells, we use Lipofectamine® RNAiMAX Transfection Reagent (ThermoFisher 

Scientific, 13778150) according to the manufacturer’s protocol. Cells were harvested after 

72 h and performed BrdU staining (pulse-labeled with BrdU for 1 hr before fixation).

For qRT-PCR, mouse and human tumor cells were transduced by non-target control or 

lentiviral vectors carrying Zfp36l1 shRNA lentivirus (Nasir et al., 2012) for 72 h, the cells 

were harvested and analyzed by qRT-PCR.

For the human sphere formation assay, the primary spheres were further dissociated into 

single cells and diluted to a density of 1000 cells/ml. Then the cells were infected by non-

target control or lentiviral vectors carrying Zfp36l1 shRNA lentivirus for 48 hours. The 10 

μl/well diluted cell suspension was plated to ultralow attachment 96-well plate (Corning 

Inc., Corning, NY, USA) in serum-free medium. The number of wells with spheres is 

counted after 8 days induction.

RNA Extraction and qRT-PCR—Analyses were conducted with RNA extracts from 

cells. Total RNA was extracted per the Trizol (Life Technologies) protocol. cDNA was 

generated with iScript™ cDNA Synthesis Kit (Bio-Rad). qRT-PCR was performed using the 

ABI Prism 7700 Sequence Detector System (Perkin-Elmer Applied Biosystems). qRT-PCR 

analysis is based on the ΔΔCT method with normalization of the raw data to GAPDH genes. 

For each gene, ΔCT was calculated by subtracting CTGAPDH from CTGENE in either the 

control or experimental group. We set the average ΔCT of the control as a calibrator, then 

the 2–ΔΔCT method was used to calculate each relative expression in both control or 

experimental group. The values in the control were normalized to 1 by dividing each data 

point with the averaged control value. The primer sequences were included in Table S4.

Copy Number Variation Analysis—CNV analysis in single-cell profiling of tumor 

tissues was performed as previously described (Patel et al., 2014), with minor changes. 

Briefly, CNVs were estimated by sorting the analyzed genes by their chromosomal location 

and applying a moving average to the relative expression values, with a sliding window of 

100 genes within each chromosome, then to stabilize the graph, we averaged such these 50 

genes again. To normalize these patterns to the reference cluster of “normal cells”, we used 

the macrophage/microglia cluster with the same tumor tissues in each single-cell profile at 

different stages of tumorigenesis.

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were done using Microsoft Excel, GraphPad Prism 6.00 (San Diego California, 

www.graphpad.com) and RStudio (https://www.rstudio.com/). Data are shown as mean ± 
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SEM or as a Box-and-whisker plot, as a dot plot and as a violin plot. Data distribution was 

assumed to be normal, but this was not formally tested. Statistical significance was 

determined using two-tailed Student’s t tests or Wilcoxon rank-sum and signed-rank tests as 

indicated. One-way ANOVA test was performed by multiple comparisons following 

Turkey’s ranking tests when comparing multiple groups. Significance was set as * for p < 

0.05, ** for p < 0.01, and *** p < 0.001. Correlation significance of distinct groups or scores 

was assessed by Pearson’s correlation coefficient-test. Values of p<0.05 denoted a 

statistically significant difference. No statistical methods were used to predetermine sample 

sizes, but our sample sizes are similar to those generally employed in the field. 

Quantifications were performed from at least three independent experiments. No 

randomization was used to collect all the data, but they were quantified blindly.

DATA AND SOFTWARE AVAILABILITY

All the scRNA-seq and ATAC-seq data have been deposited in the NCBI Gene Expression 

Omnibus (GEO) under accession number GSE122871.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• scRNA-seq reveals distinct transitional states of glial progenitors in the cortex

• Intersectional analysis reveals malignant analogs of glial progenitor 

intermediates

• Reprogramming OPC intermediates into a stem-like state for malignant 

gliomagenesis

• Zfp36l1 is a critical regulator of glial fate specification and gliomagenesis
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Figure 1. Unsupervised ordering of the hGFAP-GFP-derived cells reveals developmental 
hierarchy
(A) Scheme for analysis of hGFAP-GFP+ cells using scRNA-seq from neonatal cortices 

(n=5 mice).

(B) t-SNE analysis of hGFAP-GFP+ cell clusters.

(C) Heatmap of hGFAP-GFP+ cells ordered as t-SNE (n = 815). Columns, individual cells; 

rows, genes.

(D) The proportions of distinct clusters among total hGFAP-GFP+ cells.

(E) Dot plot of levels of selected marker genes in subpopulations.

(F-G) t-SNE plots of F) astrocyte (Astro), radial glia (RG), and iGC and G) marker genes.

(H) Comparison of astrocyte and iGC clusters with adult astrocyte populations.

(I-J) t-SNE plot of I) OPC and pri-OPC cells and J) marker genes.
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(K) Pseudo-time ordering of pri-OPCs and OPCs in hGFAP-GFP+ dataset. Red line, the 

predicted trajectory.

(L) Predicted lineage trajectories from RG-like cells in hGFAP-GFP+ cells.

See also Figure S1 and Table S2.
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Figure 2. Identification of hGFAP-GFP classification and astrocyte-enriched transcription 
factors revealed by scRNA-seq
(A) Immunolabeling for GFAP and GS in the cortex of P5 hGFAP-GFP mice.

(B) The percentage of indicated cells among hGFAP-GFP+ cells in P5 mouse cortices (n=4 

for GFAP; n=3 for GS and PDGFRα).

(C) Immunolabeling for GFAP, Olig2, and Slc1a3 from P5 hGFAP-GFP mice.

(D) Zoom on boxed area in panel C.

(E) The percentage of Olig2+ and Olig2– cells among hGFAP-GFP+GFAP+ (left) or hGFAP-

GFP+Slc1a3+ (right) cells in P5 mouse cortices (n=3).

(F) Immunolabeling of Blbp in the cortices from hGFAP-GFP mice at P3.
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(G) Expression of PDGFRα in the cortices of P5 hGFAP-GFP mice.

(H) Immunolabeling for Ppp1r14b and Olig2 in the cortices of hGFAP-GFP mice at P3.

(I) Immunolabeling for Olig2 and Ki67 from P5 hGFAP-GFP mice.

(J) Left, enlarged images of panel I show cells co-labeled with Ki67 (arrows) and cells 

without Ki67 (arrowheads). Right, percentage of Olig2+ and Olig2– cells among Ki67+ 

hGFAP-GFP+ double positive cells (>300 cell counts from 3 cortices).

(K) Immunolabeling for Olig2 and GFAP or Slc1a3 in adult cortices at P60.

(L) The percentage of GFAP+ or Slc1a3+ among Olig2+ cells at P5 and P60 (>400 cell 

counts from 3 cortices at each stage).

(M) Immunolabeling for BHLHE40 in P5 hGFAP-GFP cortices.

(N-P) Immunolabeling for N) PRDM16 and GS in P14 mouse spinal cord and O) BHLHE40 

and GS in human cortices. DAPI, blue. Arrows; co-labeled cells. P) Percentage of 

BHLHE40+ or PRDM16+ in GS+ cells (>300 cell counts from 3 samples).

Data are presented as means ± SEM. Scale bars, 50 μm in A, C, G, I, K, M; 20 μm in F, N, 

O; 10 μm in D, H, J and G (inset).
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Figure 3. Identification of the developmental hierarchy of PDGFRα-GFP-derived cells
(A) t-SNE plot of PDGFRα-GFP+ populations (n=5 per timepoint).

(B) Heatmap of PDGFRα-GFP+ cells ordered as t-SNE.

(C) The proportions of distinct clusters among total PDGFRα-GFP+ cells.

(D) Dot plot of the expression level of selected marker genes in subpopulations.

(E-F) t-SNE plot of E) OPC lineage cells and F) marker genes.

(G) Pseudo-time ordering of pri-OPCs, OPCs, and iOLs in the PDGFRα-GFP+ dataset.

(H) pri-OPC, OPC, and iOL-specific genes along the pseudo-timeline.

(I) Heatmap of expression dynamics among pri-OPCs, OPCs, and iOLs.
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(J) Comparison of clusters in PDGFRα-GFP+ profiles with the expression signatures of 

neural and oligodendrocyte lineage progenitors.

(K) PCA comparison of iOL, OPC, and pri-OPC clusters in PDGFRα-GFP+ cortex with pre-

OPC and OPC populations in P0 and P5 hippocampi.

(L) Correlations based on scaled expression values for comparisons shown in panel K.

See also Figure S2 and Table S2.
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Figure 4. Regulatory networks underling glial lineage specification
(A) Workflow to identify driver genes.

(B-C) The top representative TRs ranked by Z-score in B) OPC and C) astrocyte clusters.

(D) Intersection of OPC and astrocyte TRs. Relative Z-scores were normalized to the 

average of individual Z-scores of all genes in each gene list.

(E) Zfp36l1 in situ hybridization combined with Olig2 and Ascl1 immunostaining at P7.

(F) Diagram depicting Nestin-Cre-mediated excision of Zfp36l1 floxed alleles.

(G) In situ hybridization analysis of Zfp36l1 mRNA in the cortical ventricular zone region 

of P1 brain from control and Zfp36l1-cKO mice.
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(H) H&E-stained brain sections from control and Zfp36l1 iKO mice at P14.

(I) Immunolabeling of OLIG2, PDGFRα, and MBP from control and Zfp36l1-cKO cortices 

at P7.

(J-K) The numbers of J) Olig2+ (left) or PDGFRα+ (right) cells and K) Ppp1r14b+/Olig2+ 

pri-OPC-like cells in P7 control and Zfp36l1-cKO cortices.

(L) Immunolabeling for GFAP and GS in control and Zfp36l1-cKO cortices at P7.

(M-N) The numbers of M) GS+ cells and N) GFAP+/Olig2+ iGC-like cells in the cortices of 

P7 control and Zfp36l1-cKO mice.

(O) Immunostaining for GFAP and GS with tdTomato in Zfp36l1-cKO;tdTomato cortices at 

P7. Arrows indicate colabeled cells.

(P) qRT-PCR analysis of indicated gene expression from rat OPCs after Ppp1r14b depletion.

(Q-R) Rat OPCs treated with control and Ppp1r14b siRNAs were Q) immunostained for 

MBP and Olig2 and R) percentage of MBP+ OLs were determined. Cells were differentiated 

with or without T3 after PDGF-AA withdrawal for 72 hours.

Data are presented as means ± SEM; n=3 independent experiments or animals/genotype; 

*p<0.05; **p < 0.01; ***p < 0.001; n.s., not significant. Scale bars, 1 mm in H; 100 μm in 

G, Q; 50 μm in E, I, L and O.

See also Figure S3 and Table S1.
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Figure 5. Cellular heterogeneity of murine malignant gliomas revealed by scRNA-seq
(A) H&E-staining showing the malignant glioblastoma tissue (arrow) at dpi 35. Scale bar: 1 

mm.

(B) t-SNE analysis of single cells from glioma core tissues at dpi 35.

(C) Left, comparison of OPC-like cells with human GBM subtypes based on TCGA 

datasets. Right, distributions of subtype scores.

(D) Heatmap of mouse glioma cell clusters (excluding immune and endothelial cells). 

Selected marker genes are displayed on the right.

(E) Pearson’s correlation coefficient between normal and tumor cell populations.

(F) The proportions of distinct identified clusters in single-cell data from glioblastoma.

(G) Distributions of the pri-OPC scores across pri-OPC-like cells from tumors and OPC 

populations in normal cells.

(H) The ratio of OPC/COP-like to pri-OPC-like cells in PDGFRα, hGFAP-GFP+, and tumor 

scRNA-seq pools.
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(I) Venn diagram depicting the intersection of top 100 marker genes (ranked by p-value) in 

pri-OPC-like subpopulations between PDGFRα-GFP and tumor datasets.

(J) Gene ontology analysis of unique genes showing p-value (-log10) and representative 

terms.

***p < 0.001; one-way ANOVA with post hoc Tukey’s test.

See also Figure S4 and Table S2, S3.
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Figure 6. pri-OPCs are a transit-amplifying tumorigenic population during tumorigenesis
(A-C) t-SNE analysis of A) glia-related cells, B) pri-OPC marker genes, and C) stemness-

related genes from 35 dpi glioma dataset.

(D) Distribution of stemness genes across major tumor subpopulations.

(E) Left, expression of selected cell cycle genes (rows) in individual tumor cells (columns). 

Cells were ordered by cell-cycle score. Right, t-SNE plot of G1/S or G2/M marker genes.

(F) Percentage of cycling OPCs in PDGFRα-GFP, hGFAP-GFP, and tumor cell datasets.

(G) Percentage of proliferating (Ki67+) cells that were Olig2+ (left) and Sox2+ (right) in 

PDGFRα-GFP and tumor scRNA-seq pools.

(H) Proportions of immune-related cells in single-cell profiles from dpi 25 and 35 mouse 

gliomas.
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(I) Major cell populations (dots) from dpi 25 and 35 tumors scored for the pri-OPC and 

stemness signatures. Correlation values are in the top right quadrant.

(J) The percentage of actively cycling cells among pri-OPC-like cells in dpi 25 and 35 

tumors.

(K) The relative cycling scores of pri-OPC-like cells from dpi 25 and 35 gliomas.

(L) Ratios of CNVs in pri-OPCs normalized against the “normal” cluster of macrophage/

microglia at dpi 25 (above) and dpi 35 (below).

(M-N) t-SNE plot of M) glia-related cells and N) pri-OPC-like and stemness marker genes 

after excluding immune cells in human IDH-O dataset.

(O) Percentage of proliferating cells in pri-OPC-like and other neural cell populations in 

human glioma datasets.

***p < 0.001; one-way ANOVA with post hoc Tukey’s test in D, Student’s t test in K.

See also Figure S5, S6 and Table S3.
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Figure 7. Zfp36l1 is critical for the initiation and growth of glioma
(A) Expression of Zfp36l1 in seven clusters from mouse gliomas.

(B) RT-qPCR quantification of Zfp36l1 in mouse gliomas cells.

(C) BrdU labeling in control and si-Zfp36l1-treated tumor cells.

(D) Percentages of BrdU+ cells in control and si-Zfp36l1-treated tumor cells.

(E-F) qRT-PCR analysis of E) proneural and F) classical tumor-associated genes in primary 

tumor cells infected by control or Zfp36l1 shRNA.

(G) H&E-staining of brain sections of Zfp36l1fl/+ or Zfp36l1fl/fl mice at 30, 60, and 100 and 

dpi. Arrows indicate tumor regions.
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(H) Kaplan-Meier survival analysis of control Zfp36l1fl/+ (n=13) and Zfp36l1fl/fl (n=15) 

mice after injection of retrovirus. *** p < 0.001 (log-rank test).

(I) Immunostaining of Ki67 within the tumor regions from control and Zfp36l1-iKO mice.

(J) Percentages of Ki67+ cells in control (n=3) and Zfp36l1-iKO (n=2) tumors.

(K) Levels of ZFP36L1 in normal brain (n=207) and primary GBM (n=163) from the TCGA 

and the GTEx datasets.

(L-M) Survival probability of L) GMB patients and M) low-grade glioma patients with high 

and low/medium expression of ZFP36L1.

(N-P) Relative qPCR expression of N) ZFP36L1 in human GBM cells (GBM3264) infected 

with control or Zfp36l1 shRNA lentivirus for 8 days were evaluated N) by qPCR for 

expression of ZFP36L1, O) for sphere formation, and P) sphere number.

(Q-R) Relative qPCR expression of Q) cell cycle and proneural genes and R) proneural and 

classical tumor genes in primary proneural GBM TS543 and GBM3264 with ZFP36L1 
knockdown over control.

Data are presented as means ± SEM; n=3; ***p < 0.001; **p < 0.01; *p<0.05; Student’s t 
test. Scale bars, 1 mm in G; 100 μm in O; 10 μm in C and I.

See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-Olig2 Millipore Cat#AB9610; RRID:AB_10141047

Mouse anti-Olig2 Millipore Cat#MABN50;
RRID:AB_10807410

Rat anti-PDGFRα BD Bioscience Cat#558774;
RRID:AB_397117

Mouse anti-APC (CC1) Oncogene Research Cat#OP80; RRID:AB_2057371

Goat anti-MBP Santa Cruz biotechnology Cat#sc-13914; RRID:AB_648798

Goat anti-Sp8 Santa Cruz Biotechnology Cat#sc-104661; RRID:AB_2194626

Rabbit anti-Dlx2 Abcam Cat#ab30339; RRID:AB_731969

Mouse anti-Glutamine Synthetase Millipore Cat#MAB302; RRID:AB_2110656

Rabbit anti-Sharp2 Abcam Cat#ab97525; RRID:AB_10680936

Rabbit anti-BHLHE40 Sigma Cat#HPA028922; RRID:AB_2672828

Rabbit anti-PRDM16 LifeSpan BioSciences Cat#LS-B4625; RRID:AB_10797227

Mouse anti-GFAP Sigma Cat#G3893; RRID:AB_477010

Rabbit anti-Ki67 Thermo Fisher Scientific Cat#RM-9106; RRID:AB_2335745

Mouse anti-BrdU BD Pharmingen Cat#555627; RRID:AB_395993

Goat anti-GFP Novus Biologicals Cat#NB100–1770; RRID:AB_10128178

Rabbit anti-GFP Thermo Fisher Scientific Cat#A11122; RRID:AB_221569

Rabbit anti-Slc1a3 Novus Biologicals Cat#NB100–1869; RRID:AB_2190597

Rabbit anti-PHI-1 (Ppp1r14b) Santa Cruz Biotechnology Cat#sc-514759

Rabbit anti-Ascl1 Abcam Cat#ab74065; RRID:AB_1859937

Rabbit anti-BLBP Abcam Cat#ab32423; RRID: AB_880078

Goat anti-Sox2 Santa Cruz Biotechnology Cat#sc-17320; RRID: AB_2286684

Biological Samples

Mouse cortex, spinal cord This study N/A

Human cortex tissue CCHMC pathology core N/A

Chemicals, Peptides, and Recombinant Proteins

PDGF AA PeproTech Cat#100–13A

bFGF PeproTech Cat#100–18B

Insulin from bovine pancreas Sigma-Aldrich Cat#I6634

DIG RNA Labeling Mix Roche Cat#11277073910

PolyJet SignaGen Laboratories Cat#SL100688

MinElute PCR Purification Kit Qiagen Cat#28004

Heparin Solution Stem Cell Technologies Cat#07980

BCIP®/NBT Alkaline Phosphatase 
Substrate

Sigma Cat#B5655

T7 RNA polymerase Promega Cat#P207B

TRIzol reagent ThermoFisher Scientific Cat#15596018
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REAGENT or RESOURCE SOURCE IDENTIFIER

iScript™ cDNA Synthesis Kit, 100 × 
20 μl rxns

Bio-Rad Cat#1708891

Fluoromount-G SouthernBiotech Cat#0100–01

RNAiMAX ThermoFisher Scientific Cat#13778030

NeuroCult™ NS-A Proliferation Kit 
(Human)

Stem Cell Technologies Cat#05751

HBSS Sigma Cat#H6648

HEPES Gibco Cat#15630–060

Glucose Sigma Cat#G8769

TrypLE Gibco Cat#A12177

7-AAD+ Stem Cell Technologies Cat#75001

Human CNTF Peprotech Cat#450–13

Recombinant Human EGF Peprotech Cat#100–15

BM Purple Roche Cat#11442074001

Critical Commercial Assays

BioAnalyzer High Sensitivity Chip Agilent Technologies Cat#5067–4626

Hifi HotStart Readymix Kapa Biosystems Cat#KK2602

Chromium Single Cell 3’ Library & Gel 
Bead Kit v2, 16 rxns PN

10× Genomics Cat#120237

Chromium Single Cell A Chip Kit, 48 
rxns PN

10× Genomics Cat#120236

Chromium i7 Multiplex Kit, 96 rxns PN 10× Genomics Cat#120262

High Sensitivity DNA Kit Agilent Cat#5067–4626

Nextera® XT DNA Library Preparation 
Kit

Illumina Cat#FC-131–1024, Cat#FC-131–1096

NEBNext® High-Fidelity 2X PCR 
Master Mix

NEB Cat#M0541S

100× SYBR Green I Invitrogen Cat#S-7563

Nextera® DNA Sample Preparation Kit 
(24 Samples)

Illumina Cat#FC-121–1030

Deposited Data

Raw and processed data This paper GEO: GSE122871

Human GBM of single-cell rna-seq (Patel et al., 2014) GEO: GSE82211

IDH mutant oligodendroglioma of single-
cell rna-seq

(Tirosh et al., 2016) GEO: GSE70630

IDH mutant astrocytoma of single-cell 
rna-seq

(Venteicher et al., 2017) GEO: GSE89567

H3K27M diffuse midline glioma of 
single-cell rna-seq

(Filbin et al., 2018) GEO: GSE102130

P0 and P5 mouse OPC cells (Hochgerner et al., 2018) GEO: GSE95753

Experimental Models: Cell Lines

Human GBM cell line (TS543) (Lu et al., 2016) N/A

Human GBM cell line (GBM3264) Jeremy N. Rich N/A

Rat OPC primary culture This study N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human: HEK 293 cell ATCC CRL-11268

Mouse GBM cell line This study N/A

Experimental Models: Organisms/Strains

B6.129S4-Pdgfratm11(EGFP)Sor/J The Jackson Laboratory Stock No. 007669

FVB/N-Tg(GFAPGFP)14Mes/J The Jackson Laboratory Stock No. 003257

Zfp36l1 flox/flox (Stumpo et al., 2004) N/A

B6.Cg-Tg(Nes-cre)1Kln/J The Jackson Laboratory Stock No. 003771

Sprague Dawley® Rats Charles River Laboratories N/A

Rosa26tdTomato, Ai14 The Jackson Laboratory Stock No. 007914

Oligonucleotides

Ppp1r14b siRNA-1
CAAACCCACUGAGGCCUUC[dT][dT]

Sigma SASI_Rn01_00039926

Ppp1r14b siRNA-2
GGAAGGUCACCGUCAAGUA[dT][dT]

Sigma SASI_Rn01_00039931

Zfp36l1 siRNA-1
GACCUCUUGGGCUCACCUA[dT][dT]

Sigma SASI_ Mm01_00063508

Zfp36l1 siRNA-2
GCUUUCGAGACCGCUCUUU[dT][dT]

Sigma SASI_Mm01_00063509

Zfp36l1 siRNA-3
GCCUCUUUGCUCCUAGCAU[dT][dT]

Sigma SASI_Mm01_00063512

MISSION siRNA Universal Negative 
Control #1

Sigma Cat#: SIC001

See Table S4 for the primers for 
Genotyping, q-PCR

N/A N/A

Recombinant DNA

pSicoR-shZfp36l1 (Nasir et al., 2012) N/A

PB-CAG-DNp53-PDGFB This paper N/A

PB-CAG-DNp53-PDGFB-Cre This paper N/A

Software and Algorithms

Cell Ranger 10X Genomics https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome

Seurat (Macosko et al., 2015) http://satijalab.org/seurat/

Altanalyze Cincinnati Children’s 
Hospital Medical Center

http://www.altanalyze.org/

Slingshot Deconstructing Olfactory 
Stem Cell Trajectories at 
Single-Cell Resolution

https://github.com/kstreet13/slingshot

GraphPad Prism 6.00 GraphPad www.graphpad.com

PAGODA (SCDE R-package) (Fan et al., 2016) http://hms-dbmi.github.io/scde/

BackSPIN algorithm (Marques et al., 2016) https://github.com/linnarsson-lab/BackSPIN

R language R Core Team (2016) The 
R Project for Statistical 
Computing

http://www.r-project.org

Toppfun Cincinnati Children’s 
Hospital Medical Center

https://toppgene.cchmc.org/enrichment.jsp

Toppcluster Cincinnati Children’s 
Hospital Medical Center

https://toppcluster.cchmc.org/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Gene Set Enrichment Analysis (GSEA) Broad Institute http://software.broadinstitute.org/gsea/index.jsp

MACS Liu Lab, Harvard 
University

http://liulab.dfci.harvard.edu/MACS

HOMER Integrative Genomics and 
Bioinformatics core at the 
Salk Institute

http://homer.ucsd.edu/homer/

UCSC Genome Browser The human genome 
browser at UCSC

http://genome.ucsc.edu/

DRIVE (for finding lineage driving TRs) This paper Methods

Cell Stem Cell. Author manuscript; available in PMC 2020 May 02.

http://software.broadinstitute.org/gsea/index.jsp
http://liulab.dfci.harvard.edu/MACS
http://homer.ucsd.edu/homer/
http://genome.ucsc.edu/

	Summary
	Graphical Abstract
	eTOC blurb
	Introduction
	Results:
	Single-cell transcriptomics reveals distinct glial progenitors in developing brain
	In vivo validation of markers of astrocytes and their lineage precursors
	Single-cell analysis reveals distinct oligodendroglial progenitor states and a restricted lineage trajectory
	Identification of transcriptional regulatory networks that drive glial lineage specification
	Lineage-driving factor Zfp36l1 controls oligodendrocyte-astrocyte lineage transition
	Heterogeneous glial progenitors in glioma revealed by single-cell RNA-seq
	pri-OPC-like intermediates exhibit a transit-amplifying property during gliomagenesis
	Reprogramming of oligodendrocyte-progenitor-like intermediates towards a tumorigenic phenotype during tumorigenesis
	Targeting lineage-driving determinant Zfp36l1 inhibits the initiation and growth of glioma

	Discussion
	Lineage-targeted single-cell analysis uncovered common and divergent molecular and cellular dynamics of glial progenitors and malignant counterparts
	scRNA-seq revealed divergent developmental trajectories and proliferation potentials of glial progenitor intermediates
	Lineage-driving determinant Zfp36l1 is critical for oligodendrocyte-astrocyte lineage transition and gliomagenesis
	Reprogramming of pri-OPC intermediates results in the stem-like phenotype of glioma

	STAR★Methods
	CONTACT FOR REAGENT AND RESOURCE SHARING
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Animals
	Primary OPC and Culture
	Mouse and Human GBM Cell Culture
	Human Glioma Single Cell RNA-seq Datasets

	METHOD DETAILS
	Single-cell Isolation and Library Preparation
	Cell Clustering and Visualization
	Analysis of Cell Lineages Trajectory
	Identification of Lineage-driving Transcriptional Regulators
	Active cycling cell analysis
	Stemness score and module calculation
	Correlation analysis between cortical pri-OPC and hippocampal pre-OPC
	Tissue Processing and In Situ Hybridization
	Immunofluorescence Staining and Immunohistochemistry
	Assay for Transposase-accessible Chromatin Using Sequencing (ATAC-Seq)
	siRNA Knockdown, Transduction and Sphere Formation Assays
	RNA Extraction and qRT-PCR
	Copy Number Variation Analysis

	QUANTIFICATION AND STATISTICAL ANALYSIS
	DATA AND SOFTWARE AVAILABILITY

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table T1

