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ABSTRACT
Background: Little is known about the contribution of genetic
variation to food timing, and breakfast has been determined to exhibit
the most heritable meal timing. As breakfast timing and skipping are
not routinely measured in large cohort studies, alternative approaches
include analyses of correlated traits.
Objectives: The aim of this study was to elucidate breakfast
skipping genetic variants through a proxy-phenotype genome-wide
association study (GWAS) for breakfast cereal skipping, a commonly
assessed correlated trait.
Methods: We leveraged the statistical power of the UK Biobank
(n = 193,860) to identify genetic variants related to breakfast cereal
skipping as a proxy-phenotype for breakfast skipping and applied
several in silico approaches to investigate mechanistic functions
and links to traits/diseases. Next, we attempted validation of our
approach in smaller breakfast skipping GWAS from the TwinUK
(n = 2,006) and the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) consortium (n = 11,963).
Results: In the UK Biobank, we identified 6 independent GWAS
variants, including those implicated for caffeine (ARID3B/CYP1A1),
carbohydrate metabolism (FGF21), schizophrenia (ZNF804A), and

encoding enzymes important for N6-methyladenosine RNA trans-
methylation (METTL4, YWHAB, and YTHDF3), which regulates
the pace of the circadian clock. Expression of identified genes
was enriched in the cerebellum. Genome-wide correlation analyses
indicated positive correlations with anthropometric traits. Through
Mendelian randomization (MR), we observed causal links between
genetically determined breakfast skipping and higher body mass
index, more depressive symptoms, and smoking. In bidirectional
MR, we demonstrated a causal link between being an evening
person and skipping breakfast, but not vice versa. We observed
association of our signals in an independent breakfast skipping
GWAS in another British cohort (P = 0.032), TwinUK, but not in a
meta-analysis of non-British cohorts from the CHARGE consortium
(P = 0.095).
Conclusions: Our proxy-phenotype GWAS identified 6 genetic
variants for breakfast skipping, linking clock regulation with
food timing and suggesting a possible beneficial role of regular
breakfast intake as part of a healthy lifestyle. Am J Clin Nutr
2019;110:473–484.
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Introduction
The timing of food intake is a modifiable risk factor for weight

management and chronic disease prevention (1, 2). Although
food timing choices are influenced by physiologic, behavioral,
and environmental factors, little is known about the contribution
of genetic variation (3). The estimated heritability of food
timing has been investigated in twin studies and ranges from
18% to 56%, with breakfast timing being the most heritable
among meals (3, 4). Shared heritability has also been observed
between food timing and chronotype (4) (i.e., morning or evening
preference), offering preliminary insight into the genetics of food
timing. Elucidating variants and genes may disclose underlying
regulatory biological processes and inform the development
of personalized nutrition recommendations based on genetic
preference for food timing.

The discovery of genetic variants regulating food timing is
hindered by the lack of its routine assessment in population-
based cohort studies together with limited integrated genetic data.
Breakfast skipping, more commonly assessed in some larger
epidemiologic cohorts, is shown to be correlated with the timing
of other meals (5–7), such as an earlier lunch among breakfast
skippers (8); therefore, genetic findings from breakfast skipping
may extend to food timing in general. Breakfast skipping is itself
also a heritable trait with an estimated heritability of 41–66% (9),
and has also been linked to higher risk of type 2 diabetes (10–12),
subclinical atherosclerosis (13), and detrimental cardiometabolic

HSD was supported by NIH grant R01DK107859. JM was supported
by a postdoctoral fellowship funded by the European Commission Horizon
2020 program: Marie Skłodowska-Curie Actions (H2020-MSCA-IF- 2015-
703787). FAJLS was supported in part by NIH grants R01HL094806,
R01HL118601, R01DK099512, R01DK102696, and R01DK105072. NMM
is supported in part by USDA agreement #58-1950-4-003 and funding
from the General Mills Bell Institute of Health and Nutrition. MG was
supported by the Spanish Government of Investigation, Development,
and Innovation (SAF2017-84135-R) including FEDER co-funding, and
NIDDK R01DK105072. RS was supported by NIH grants R01DK107859,
R01HL113338, and R01DK105072, and the Phyllis and Jerome Lyle
Rappaport Massachusetts General Hospital Research Scholar Award. The
Infrastructure for the Cohorts for Heart and Aging Research in Genomic
Epidemiology Consortium is supported in part by National Heart, Lung, and
Blood Institute (NHLBI) grant HL105756. Funding sources for individual
CHARGE cohort studies appear in Supplemental Table 1. General Mills
Bell Institute of Health and Nutrition was not involved in the design,
implementation, analysis, or interpretation of the data.

Supplemental Tables 1–9 and Supplemental Figures 1–4 are available from
the “Supplementary data” link in the online posting of the article and from the
same link in the online table of contents at https://academic.oup.com/ajcn/.

Address correspondence to HSD (e-mail: hassan.dashti@mgh.harvard.edu;
rsaxena@partners.org).

Abbreviations used: BHS, Bogalusa Heart Study; CARDIA, Coronary
Artery Risk Development in Young Adults; CHARGE, Cohorts for Heart
and Aging Research in Genomic Epidemiology; CHS, Cardiovascular
Health Study; FID, UK Biobank Field Identifier; GWAS, genome-wide
association study; IVW, inverse variance weighted/weighting; m6A, N6-
methyladenosine; MAF, minor allele frequency; MR, Mendelian random-
ization; NEO, The Netherlands Epidemiology of Obesity; PRS, polygenic
risk score; SNP, single nucleotide polymorphism; WHI, Women’s Health
Initiative.

Received November 26, 2018. Accepted for publication April 8, 2019.
First published online June 13, 2019; doi: https://doi.org/10.1093/ajcn/

nqz076.

health independent of dietary quality (14). In addition, morning
anorexia, a clinical feature of 2 eating disorders, night eating
syndrome and sleep-related eating syndrome (15), results in
skipped breakfast, and thus skipping breakfast is often considered
a subclinical eating disorder (16). Therefore, unraveling the
genetic architecture of breakfast skipping may further have
clinical implications and reveal genetic instruments to assess
causal links with cardiometabolic traits (17, 18).

An earlier genome-wide association study (GWAS) for
breakfast skipping in the TwinUK study found no significant
association signals; however, the null findings in that study may
be due to incomplete genetic coverage and a modest sample size
(n = 2,006) (19). Breakfast cereal is commonly measured in
dietary assessment tools, and in the United Kingdom, breakfast
cereal is the most commonly consumed breakfast food (>50%
of the population) (20, 21) and is primarily consumed in the
mornings (22). To leverage the statistical power of the UK
Biobank (23) [n = 193,860; almost 100-fold that of the prior
study (19)] to identify genetic variants related to breakfast
skipping, our primary outcome for this research, we conducted
a proxy-phenotype GWAS (24) based on the consumption of
breakfast cereal, a correlated trait, as has been conducted for other
traits measured in limited datasets (24–26). We applied an array
of in silico approaches to investigate mechanistic functions and
links to other traits and diseases. Next, we sought replication
of our findings in the published TwinUK breakfast skipping
GWAS (19), and a breakfast skipping GWAS meta-analysis in the
Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) consortium (n = 11,963).

Methods

Study populations

The present GWAS included 193,860 participants of European
ancestry with genetic information and breakfast cereal–skipping
data from 24-h recalls (27) from the UK Biobank, a prospective
population-based cohort study (23). In addition, replication was
conducted in 2,006 female participants from the previously
published TwinUK breakfast skipping GWAS (19), and 11,963
participants of European ancestry with genetic information and
breakfast-skipping data from 5 adult epidemiologic population-
based cohorts from the CHARGE consortium nutrition working
group: the Bogalusa Heart Study (BHS), the Coronary Artery
Risk Development in Young Adults (CARDIA) Study, the
Cardiovascular Health Study (CHS), The Netherlands Epi-
demiology of Obesity (NEO) Study, and the Women’s Health
Initiative (WHI) (Supplemental Table 1). Analysis was limited
to participants of European ancestry to maximize statistical
power and limit heterogeneity that may obscure signal detection.
All participants provided written informed consent, and each
cohort’s study protocol was reviewed and approved by their
respective institutional review board.

UK Biobank: assessment of breakfast skipping, genotyping,
and GWAS

In the UK Biobank, dietary data were collected from 211,036
participants through the use of the Oxford WebQ, a web-based
24-h diet recall that asks participants to self-report on the

https://academic.oup.com/ajcn/
mailto:hassan.dashti@mgh.harvard.edu
mailto:rsaxena@partners.org


Breakfast skipping GWAS 475

frequency of intake of ∼200 commonly consumed foods and
drinks in the preceding 24 h (28, 29). Breakfast cereal skipping
was estimated with the use of data from up to 5 web-based
24-h diet recalls. Participants were asked, “Did you eat any
breakfast cereal yesterday? This could be at any time of the day.
Please include hot cereals, but not cereal bars”, with responses
“Yes” or “No”. Breakfast cereals encompassed a range of hot
and cold cereal including the following: bran cereal, muesli, oat
crunch, other cereal, plain cereal, porridge, sweetened cereal, and
whole-wheat cereal. Responses from all completed recalls (≤5)
were considered for each participant (n = 193,860). Responses
were categorized as “breakfast skipping” if the participant
always responded “No”, “sometimes breakfast skipping” if
the participant sometimes responded “Yes”, and “breakfast
consumers” if the participant always responded “Yes”.

In the UK Biobank, genotyping was performed centrally by
the biobank, and genotyping, quality control, and imputation
procedures have been described in detail previously (23). In
brief, blood, saliva, and urine were collected from participants,
and DNA was extracted from the samples. Participant DNA
was genotyped on 2 arrays, UK BiLEVE and UK Biobank
Axiom, with >95% common content, and genotypes for
∼800,000 autosomal single nucleotide polymorphisms (SNPs)
were imputed to 2 reference panels. Genotypes were called
with the use of the Affymetrix Power Tools software. Detailed
information on sample and SNP quality control, population
structure by principal component analysis, and imputation have
been described previously (23, 30, 31).

GWAS was performed for breakfast skipping in related
participants of European ancestry (n = 193,860) through the
use of the BOLT-LMM (32) linear mixed models (3-category
breakfast skipping variable treated continuously) and an additive
genetic model adjusted for age, sex, 10 principal components of
ancestry, genotyping array, and accounting for relatedness with
the use of a genetic correlation matrix with a maximum per-
SNP missingness of 10% and per-sample missingness of 40%.
We used a genome-wide significance threshold of 5 × 10−8.
We used a SNP imputation quality threshold of 0.80, and a
minimum minor allele frequency (MAF) threshold of 0.001. Trait
heritability was calculated as the proportion of trait variance due
to additive genetic factors measured in this study through the use
of BOLT-REML (32), to leverage the power of raw genotype data
together with low-frequency variants (MAF ≥0.001). In the UK
Biobank, we had >80% power to detect an allele with frequency
0.01 and effect size of β >0.01 for breakfast skipping at the
genome-wide significance level (Quanto version 1.2.4).

A polygenic risk score (PRS) for breakfast skipping was
tested for association with 10 other commonly consumed
noncereal breakfast items through the use of a weighted
PRS calculated by summing the products of the breakfast-
skipping risk allele count for all 6 SNPs multiplied by the
scaled effect from the primary UK Biobank GWAS; this
calculation was performed with the GTX package in R (33).
PRS associations were tested for the following 10 noncereal
breakfast items: bread (UK Biobank Field Identifier (FID):1438),
butter/spreadable butter (FID:1428_1), coffee (FID:1498), eggs
(FID:102,930), fruits (FID:1309), milk added (FID:100,890),
orange juice (FID:100,190), processed meat (FID:1349), tea
intake (FID:1488), yogurt/ice-cream (FID:102,080). All GWAS
summary statistics were retrieved from publicly available sources

(34) and significance was considered at the Bonferroni-corrected
threshold [P < 0.005 (= 0.05/10)].

Gene and pathway enrichment analyses, genetic correlation
analyses, and Mendelian randomization

Pathway analysis was conducted with the use of MAGMA (35)
gene-set analysis in FUMA (36), which uses the full distribution
of SNP P values and is performed for curated gene sets and
GO terms obtained from MsigDB (total of 10,891 pathways).
A significance threshold was set after Bonferroni correction
accounting for all pathways tested (P < 0.05/10,891). Tissue
enrichment analysis was also conducted with FUMA (36) for
53 tissue types from the Genotype-Tissue Expression (GTEx)
project, and a significance threshold was set following Bonferroni
correction accounting for all tested tissues (P < 0.05/53).

Genome-wide genetic correlation analysis of linkage disequi-
librium score regression (37–39) with LDHub was conducted for
the breakfast skipping GWAS and publicly available data from
224 published non-UK Biobank GWAS and other lifestyle UK
Biobank GWASs for chronotype (40), sleep duration (30), and
macronutrient intake. Linkage disequilibrium score regression
estimates the genetic correlation between 2 traits from summary
statistics (ranging from −1 to 1) based on the fact that the
GWAS effect-size estimate for each SNP incorporates effects of
all SNPs in linkage disequilibrium with that SNP, and a similar
relation is observed when single-study test statistics are replaced
with the product of z scores from 2 studies of traits with some
correlation. Furthermore, genetic correlation is possible between
case-control studies and quantitative traits, as well as within
these trait types. A Bonferroni-corrected significance threshold
was selected accounting for all tests performed [P < 0.00022
(=0.05/227 tests)].

Mendelian randomization (MR) analysis was carried out
with MR-Base (41), with the inverse variance weighted (IVW)
approach serving as our main analysis method (42), and MR-
Egger (43) and weighted median estimation (44) as sensitivity
analyses. MR results may be biased by horizontal pleiotropy—
i.e., where the genetic variants that are robustly related to the
exposure of interest (here sleep duration) independently influence
levels of a causal risk factor for the outcome. IVW assumes
that there is either no horizontal pleiotropy, or that, across all
SNPs, horizontal pleiotropy is 1) uncorrelated with SNP-risk
factor associations and 2) has an average value of zero. MR-Egger
assumes the first of these conditions but relaxes the second by
explicitly estimating the nonzero mean pleiotropy and adjusting
the causal estimate accordingly. Estimation of the pleiotropy
parameter means that the MR-Egger estimate is generally far less
precise than the IVW estimate. The weighted median approach is
valid if <50% of the weight is pleiotropic (i.e., no single SNP
that contributes 50% of the weight or a number of SNPs that
together contribute 50% should be invalid because of horizontal
pleiotropy). Given these different assumptions, if all 3 methods
are broadly consistent, this strengthens our causal inference.
For our 2- and 1-sample MR analyses, we used all identified
signals from the UK Biobank GWAS and looked for the per-
allele difference in odds (binary outcomes) or means (continuous)
with correlated outcomes from publicly available summary data
in the MR-Base platform or UK Biobank published summary
statistics [for chronotype (40) and insomnia (31)]. Results are
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a likelihood measure of “more breakfast skipping”; sample 1
is our UK Biobank GWAS and sample 2 is a different GWAS
consortia (or UK Biobank in 1-sample analysis) investigating the
outcomes we explored. The exact number of SNPs used in the MR
analysis depends on the SNPs available in the outcome GWAS.
We estimate we have >95% power with 193,860 participants in
the UK Biobank to detect causal links between breakfast skipping
and outcomes (https://sb452.shinyapps.io/power/).

To further interrogate observed correlations between breakfast
skipping and chronotype reported earlier (4), we examined
causality of chronotype on breakfast skipping in bidirectional
MR. For all 351 GWAS hits identified for chronotype (40), we
assessed the per-allele difference in means with the breakfast
skipping GWAS from the UK Biobank. Sample 1 is the
chronotype GWAS (40) (23&Me participants only) and sample
2 is our UK Biobank GWAS. Results are therefore a measure of
“more evening chronotype.”

TwinUK: in silico replication

Based on reported summary statistics from the previously
published TwinUK breakfast skipping GWAS (19), we tested for
independent replication of the UK Biobank breakfast skipping
GWAS signals. In the published TwinUK study, breakfast
skipping was assessed by the following question: “How often
do you eat breakfast (e.g., bread, toast, milk) at the start of the
day?” and responses (every morning, 5–6 d/wk, 3–4 d/wk, 1–2
d/wk and <1 d/wk) were dichotomized into breakfast skippers
(skip breakfast ≥1 time/wk), or breakfast consumers (consume
breakfast every day). A total of 283,744 directly typed SNPs were
tested for association with breakfast skipping in 2,006 female
participants (403 skippers/1,603 consumers). In that published
study, all analyses were adjusted for family relatedness, but not
age. Analysis details can be found in Supplemental Material
from that publication (19). Furthermore, a PRS for breakfast
skipping, as previously described, was tested for replication in the
TwinUK with the use of all available SNPs of the 6 UK Biobank
GWAS signals in the TwinUK. If the lead SNP from the UK
Biobank signal was unavailable, due to absence of imputation
in the TwinUK study, an appropriate proxy SNP in high linkage
disequilibrium in the 1KGP3 reference panel (r2 > 0.8) was used
instead.

CHARGE consortium: assessment of breakfast skipping,
genotyping, GWAS, and meta-analysis

In cohorts from the CHARGE consortium, breakfast skipping
was assessed in each cohort through the use of a diet or lifestyle
questionnaire designed to capture the habits of the population
investigated. Typically, participants were asked to indicate how
often, on average, they had consumed breakfast according to
multiple frequency categories (e.g., never, 2–3 times/wk, 6–
7 times/wk) (see Supplemental Table 2 for cohort-specific
questions). Breakfast intake frequency was dichotomized into
breakfast skippers and breakfast consumers for the purpose of
attaining homogeneity across cohorts. Because most participants
had breakfast every day, those who reported skipping breakfast
most of the days of the week (i.e., skipped breakfast ≥4 times/wk)
were considered breakfast skippers, as has been conducted

previously (19), except for the Dutch study, NEO, which had
the lowest prevalence of breakfast skipping, where breakfast
skipped ≥2 times/wk was considered breakfast skipping (details
in Supplemental Table 2).

In the CHARGE consortium, genome-wide genotyping was
conducted in each cohort through the use of Affymetrix or
Illumina platforms. Each study performed quality control for
genotyped SNPs based on MAF, call-rate, and departure from
Hardy-Weinberg equilibrium (Supplemental Table 3). Phased
haplotypes from 1000 G were used to impute ∼38 million
autosomal variants with the use of a hidden Markov model
algorithm implemented in BEAGLE (45), MACH/minimac (46,
47), or SHAPEIT/IMPUTE (48, 49). Study-specific GWAS was
conducted with the use of genotyped and imputed SNP dosages
assuming an additive genetic model. Breakfast skipping was
evaluated as the dependent variable through the use of logistic
regression, adjusted for age, sex, study-specific centers, or
population stratification principal components, where applicable.
Variants with low MAC (<20) and low imputation quality
(BEAGLE and MACH: r2 < 0.3; or IMPUTE: proper info <0.4)
were removed. Quality control for cohort-level GWAS results
was performed to ensure correct specification of the minor allele
and agreement in frequencies with the reference population, and
examination of QQ plots assessed any large inflation of test
statistics.

Results across studies were combined through the use of fixed-
effect meta-analysis with inverse variance weights with the use of
METAL software (University of Michigan, Center for Statistical
Genetics) (50). The final GWAS meta-analysis included 5 adult
cohorts (n = 1,487 skippers; n = 10,476 consumers). To
account for population stratification, the association results from
individual studies were adjusted for genomic control before meta-
analysis with METAL by estimating the inflation of the test
statistic by comparing the median test statistic to that expected
by chance, and then applying genomic control corrections to
the standard error. Heterogeneity across studies was tested with
Cochran’s Q statistic and quantified through the use of the
heterogeneity statistic, I2, and presented as percentages. Genome-
wide significance was considered at P < 5 × 10−8. Summary
statistics are available in dbGaP. In the meta-analysis, we had
80% power to detect an allele with frequency 0.15 and effect of
OR = 1.4 for breakfast skipping at the genome-wide significance
level (Quanto version 1.2.4).

Similar to the TwinUK study PRS analysis described above, a
PRS for breakfast skipping based on the UK Biobank lead signals
was further tested for replication in the CHARGE consortium
with the use of GWAS meta-analyzed results and the GTX
package in R (33). In sensitivity subgroup meta-analysis, meta-
analysis was restricted to only younger cohorts (average cohort
age <50 y) with a higher prevalence of breakfast skipping (i.e.,
BHS and CARDIA; n = 1989; % skippers = 28.5%) or older
cohorts (average cohort age >50 y) of similar demographic to
the UK Biobank (i.e., CHS, NEO, and WHI; n = 9974; %
skippers = 9.2%), and PRS association analyses were repeated.

Results
Figure 1 represents a schematic of the study design and the

main findings. Among UK Biobank participants of European

https://sb452.shinyapps.io/power/
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n = 193,860

n = 128/632

n = 438/791

n = 174/2870

n = 554/5187n = 1359/10,604
n = 403/1603

n = 193/996

breakfast-skipping

breakfast-skipping

FIGURE 1 Schematic of the study design and main findings. Sample size (n) is total n or n skippers/n consumers. BHS, Bogalusa Heart Study; CARDIA,
Coronary Artery Risk Development in Young Adults; CHARGE, Cohorts for Heart and Aging Research in Genomic Epidemiology; CHS, Cardiovascular Health
Study; EUR, European; GWAS, genome-wide association study; LD, linkage disequilibrium; eQTL, expression quantitative trait locus; NEO, The Netherlands
Epidemiology of Obesity; WHI, Women’s Health Initiative.

ancestry with 24-h recall data on breakfast cereal (n = 193,860),
25%, 20%, and 55% were classified as always, sometimes, and
never breakfast skippers (Supplemental Table 4). Participants
classified as always skippers were, on average, younger, had
a higher BMI, were more likely to be evening chronotype,
had shorter sleep duration, had lower total energy intake,
and lower relative intakes of carbohydrate and protein, but
higher intake of fat, as compared with sometimes or never
skippers (Supplemental Table 4). The UK Biobank GWAS
for breakfast skipping identified 6 independent genome-wide
significant (P < 5 × 10−08) loci (Figures 2A, and 3, Table 1),
and genome-wide SNP-based heritability was estimated at 7.0%
(SE = 0.2%). Of the 6 genetic variants, the ARID3B/CYP1A1
locus has previously been implicated in caffeine metabolite
concentrations (51), with the higher caffeine metabolite A allele
associated with higher breakfast skipping. Genes nearest to
the remaining identified variants have been associated with
carbohydrate metabolism (FGF21) (52), smoking (METTL4)
(53), and schizophrenia (ZNF804A) (54). A combined weighted

PRS of the 6 breakfast skipping signals further associated with
other commonly consumed noncereal breakfast items, including
bread, coffee, fruits, milk added, processed meats, and tea
(all P < 0.005; Figure 4). Pathway analysis of these genes
with the use of MAGMA (35) did not identify enrichment
of specific biological pathways reaching the multiple-testing
threshold of significance; however, tissue enrichment analysis
of gene expression from GTEx tissues identified enrichment
of associated genes in the cerebellum (P = 5.43 × 10−5;
Supplemental Figure 1).

Genome-wide genetic correlations indicated shared biological
links between breakfast skipping and anthropometric, psychi-
atric, and physical disease traits (P < 2.14 × 10−4; Figure 5,
Supplemental Table 5). Positive genome-wide correlations with
breakfast skipping were observed for obesity, body fat, coronary
artery disease, lung cancer, depressive symptoms, insomnia, and
smoking, and negative genome-wide correlations were observed
for age of first birth and years of schooling. In addition,
from other UK Biobank GWASs, we observed a trend towards
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FIGURE 2 Manhattan plot for GWAS of breakfast skipping in participants of European ancestry from the UK Biobank (n = 193,860). Novel loci are
highlighted in blue and nearest gene(s) are annotated. Manhattan plot shows the –log10 P values (y-axis) for all genotyped and imputed SNPs passing quality
control, plotted by chromosome (x-axis). Horizontal dashed line denotes genome-wide significance (5 × 10−8). GWAS, genome-wide association study; SNP,
single nucleotide polymorphism.

genome-wide genetic correlation between breakfast skipping and
evening chronotype [rg (SE) = −0.040 (0.020); P = 0.046]
but no correlations with carbohydrate, fat, or protein intake (all
P > 0.01). To assess for causal links between breakfast skipping

and related traits, in 2-sample MR analyses, we observed causal
associations between genetically defined breakfast skipping and
higher BMI [IVW: 0.304 (0.153); P = 4.62 × 10−2], more
depressive symptoms [IVW: 0.289 (0.146); P = 4.86 × 10−2],

p

p
p

p
p

p

FIGURE 3 (A–F) Regional association plots for lead signals from the GWAS of breakfast skipping in the UK Biobank (n = 193,860). The panels show
–log10 P values for lead SNPs. The SNPs shown are those within 400 kb of the lead SNP. LD is indicated in color scale in relation to the highlighted marker
(purple). The scheme is red for strong LD (r2 ≥ 0.8), orange, green and blue for lower LD, and navy blue for no LD. chr, chromosome; cM, centimorgan;
GWAS, genome-wide association study; LD, linkage disequilibrium; Mb, mega base pair; SNP, single-nucleotide polymorphism.
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TABLE 1 Top signals (P < 5 × 10−8) from the UK Biobank GWAS of breakfast skipping in participants of European ancestry (n = 193,860)1

SNP Chr:position Nearest gene(s) Alleles (E/A) EAF Info β SE P value

rs8097544 18:1,839,564 METTL4 G/A 0.146 0.98 0.0326 0.0038 1.80 × 10–17

rs35107470 15:74,817,689 ARID3B G/A 0.324 0.94 0.0185 0.0030 3.50 × 10–10

rs12693399 2:185,757,011 ZNF804A A/T 0.218 1.00 0.0186 0.0033 1.20 × 10–8

rs637174 19:49,266,936 FGF21 A/G 0.341 0.98 0.0161 0.0029 1.80 × 10–8

rs6017427 20:43,467,380 RIMS4/YWHAB A/G 0.142 0.99 0.0214 0.0039 3.10 × 10–8

rs6986473 8:64,487,672 YTHDF3 T/C 0.773 1.00 0.0175 0.0032 4.20 × 10–8

1The GWAS was performed in related participants of European ancestry with the use of BOLT-LMM linear mixed models and an additive genetic model
adjusted for age, sex, 10 principal components of ancestry, genotyping array and genetic correlation matrix. Nearest genes are within the locus of interest. β

(SE) estimates are per each additional effect allele. Positive β reflects higher breakfast skipping. Chr, chromosome; E/A, effect/alternative alleles; EAF, effect
allele frequency; GWAS, genome-wide association study; Info, imputation quality score; position, base pair coordinate hg19; SNP, single nucleotide
polymorphism.

and smoking [IVW: 0.974 (0.311); P = 1.75 × 10−3], all with
consistent effect direction in sensitivity analyses across other MR
methods (Table 2). To further interrogate previously observed
correlations between chronotype and breakfast skipping, we
conducted bidirectional MR and observed that genetically
defined breakfast skipping was not causal of evening chronotype
(P = 0.67); however, genetically defined evening chronotype was
causally associated with breakfast skipping [IVW: 0.019 (0.006);
P = 9.36 × 10−4] (Table 2).

Replication of the UK Biobank signals in the independent
breakfast-skipping GWAS reported from the TwinUK study (19)
(20.1% breakfast skippers; n = 403 skippers/1,603 consumers)
provided further support for our findings (Supplemental Table
6), where a combined PRS of the 6 UK Biobank breakfast
skipping signals showed significant association with breakfast
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FIGURE 4 Breakfast skipping polygenic risk score association with
other commonly consumed noncereal breakfast items in the UK Biobank.
Weighted PRS for breakfast skipping comprised 6 breakfast-skipping signals
from the UK Biobank tested for association with 10 other commonly
consumed noncereal breakfast items with the use of the GTX package in R
(33). All GWAS summary statistics were retrieved from publicly available
resources (34) and significance was considered at the Bonferroni-corrected
threshold [P < 0.005 (= 0.05/10)], represented by the horizontal dashed blue
line. The plot shows the –log10 P values (y-axis) for the PRS association with
the 10 noncereal breakfast items. Red denotes significant association and grey
denotes nonsignificant association. GWAS, genome-wide association study;
PRS, polygenic risk score.

skipping [β (SE) = 0.014 (0.007) per allele; P value = 0.032].
The 5 cohorts from the CHARGE consortium were from the
United States and the Netherlands and included a total of
11,963 participants of whom 11.4% (n = 1359) were classified
as breakfast skippers. Across participating cohorts, breakfast
skipping ranged from 5.7% to 35.6% (Supplemental Table 7),
and in general, younger cohorts (i.e., <40 y BHS and CARDIA)
had more than double the prevalence of breakfast skipping
than older cohorts, with the exception of WHI. A combined
weighted PRS of the UK Biobank breakfast skipping signals did
not show significant association with breakfast skipping in the
CHARGE consortium GWAS meta-analysis [β (SE) = 0.048
(0.029) per allele; P value = 0.095] (Supplemental Table
8). In sensitivity meta-analysis restricted to either younger
or older cohorts, stronger evidence of PRS association was
evident among the younger cohorts (P = 0.06) compared
with the older cohorts (P = 0.70) (Supplemental Table 9).
Furthermore, in the CHARGE GWAS meta-analysis, no genome-
wide significant associations were observed (Supplemental
Figures 2–4), and a total of 4 variants showed suggestive
associations of P < 1 × 10−05 (Table 3).

Discussion
Our multiple-stage proxy-phenotype GWAS, including the UK

Biobank, TwinUK study, and CHARGE consortium, supports
the role of 6 genetic variants in breakfast skipping, and links
clock regulation with food timing. Expression of identified genes
is enriched in the cerebellum, a region previously implicated
in lifestyle traits (30). Among the identified signals is an
ARID3B/CYP1A1 genetic variant related to caffeine metabolism,
suggesting shared association signals for commonly consumed
morning food and beverage items, which is further supported by
our observed association of a breakfast PRS with other commonly
consumed noncereal breakfast items. In addition, FGF21, which
previously associated with carbohydrate intake (52), exhibits
circadian rhythmicity and is considered an important metabolic
regulator integrating the circadian clock with energy homeostasis
(55). Interestingly, 3 of the 6 loci harbor genes (METTL4,
YWHAB, and YTHDF3) that encode homologs of enzymes im-
portant for N6-methyladenosine (m6A) RNA transmethylation, a
prevalent posttranscriptional modification that regulates mRNA
decay, triages RNAs to stress granules (56), and regulates the pace
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FIGURE 5 Genetic architecture shared between breakfast skipping and selected behavioral and disease traits. LD score regression estimates of genetic
correlation (rg) were obtained by comparing summary statistics from the UK Biobank breakfast skipping GWAS with summary statistics from publicly available
GWASs for psychiatric and metabolic disorders, immune diseases, and other traits of natural variation. Traits in this figure are selected based on previously
observed epidemiologic findings; full genetic correlations with other traits can be found in Supplemental Table 5. Blue, positive genetic correlation; red,
negative genetic correlation; rg values are displayed for significant correlations. Larger squares correspond to more significant P values. Genetic correlations
significantly different from zero after Bonferroni correction (P < 0.00022) are labeled with an asterisk. GWAS, genome-wide association study, LD, linkage
disequilibrium.

of the circadian clock (57), among other functions (58). In addi-
tion, the rs6017427 allele A at RIMS4/YWHAB associated with
higher breakfast skipping is an expression quantitative trait locus
for reduced YWHAB expression in blood. Our findings suggest
one intriguing possibility that the breakfast skipping variants lead
to lower m6A mRNA methylation, resulting in lengthening of the
circadian period, contributing to evening preference, breakfast
skipping, and later food timing. Consistently, variants in this
pathway have been identified as chronotype-related variants
[rs2580160 near METTL4 and rs34054660 near YTHDF3 (40)],
supporting this hypothesis. Additional replication and future
functional studies will be required to test the hypothesis that m6A
RNA methylation plays a role in breakfast skipping and later food
timing, and extend previously observed phenotypic links between
the circadian clock and food timing (59, 60).

Through genome-wide correlation analyses, we were able to
agnostically interrogate correlations between breakfast skipping
and hundreds of publicly available traits. As expected, genetic
correlations were consistent with previously observed epidemio-
logic and experimental findings (1), such as correlations between
breakfast skipping and obesity (61) and depressive symptoms
(62). Genetic correlations with insomnia and rheumatoid arthritis,
however, are novel. As causality cannot be inferred from
correlations, we subsequently performed MR and observed that

genetically defined breakfast skipping is causal of higher BMI,
more depressive symptoms, and smoking. Interestingly, the
findings related to breakfast skipping and higher BMI are evident
despite the small contribution of breakfast to total energy intake.

Our results provide further support of the link between
breakfast skipping and chronotype (59, 60) beyond individual
loci. In bidirectional MR, we observed a causal link between
being an evening person and skipping breakfast, but not vice
versa. The identified causal links may implicate breakfast
skipping and late food timing as a mediator of certain epi-
demiologic associations reported between evening chronotype
and cardiometabolic diseases and mortality (63, 64); however,
confirmatory analyses and larger-scale studies of gene-behavior
mismatch are necessary.

Replication of our UK Biobank breakfast-skipping signals in
the TwinUK, a second British cohort, supports our rationale for
using breakfast cereal in the UK Biobank as a proxy-phenotype
for breakfast. The CHARGE consortium facilitated collaboration
across 5 adult cohort studies, tripling the number of breakfast
skipping cases compared with the published TwinUK efforts (19).
However, the lack of verification in the CHARGE consortium
breakfast skipping meta-analysis, which comprises a US and a
Dutch cohort, may suggest differences in the phenotype. The
stronger PRS association observed in the subgroup meta-analysis

TABLE 3 Top signals (P < 1 × 10−5) from CHARGE consortium genome-wide association meta-analysis of breakfast skipping (n = 11,963)1

SNP Chr:position Nearest gene
Alleles
(E/A) EAF OR (95% CI) P value

Study
association
direction I 2

rs76211599 21:20,129,400 LOC101927797 A/G 0.111 1.54 (1.29, 1.84) 1.83 × 10–6 – – – + – 12
rs2732520 11:35,056,846 PDHX A/G 0.785 1.40 (1.22, 1.60) 2.26 × 10–6 – – – – 0
rs144181848 4:128,263,712 INTU C/G 0.025 2.15 (1.55, 2.99) 5.16 × 10–6 – – + + – – 61
rs9838428 3:66,842,859 KBTBD8 G/T 0.131 1.41 (1.21, 1.64) 7.99 × 10–6 + + + – + 66

1A GWAS was performed in each cohort in participants of European ancestry with the use of logistic regression, adjusted for age, sex, study-specific
centers, and population stratification principal components, where applicable, then meta-analyzed using fixed-effect meta-analysis with inverse variance
weights in METAL software. OR (95% CI) estimates are per each additional effect allele. ORs >1.00 reflect greater odds of breakfast skipping. Order of
study in the Study association direction column: BOGALUSA, CARDIA, CHS, NEO, and WHI. I2 represents the heterogeneity statistic, presented as a
percentage. BHS, Bogalusa Heart Study; CARDIA, Coronary Artery Risk Development in Young Adults; CHARGE, Cohorts for Heart and Aging Research
in Genomic Epidemiology; Chr, chromosome; CHS, Cardiovascular Health Study; E/A, effect/alternative alleles; EAF, effect allele frequency; GWAS,
genome-wide association study; NEO, The Netherlands Epidemiology of Obesity; position, base pair coordinate hg19; SNP, single nucleotide polymorphism;
WHI, Women’s Health Initiative.
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restricted to younger cohorts may possibly be as a result of
the higher prevalence of breakfast skipping in that subgroup
(younger = 28.5% skipping compared with older = 9.2%
skipping). In addition, none of the tested GWAS variants achieved
the genome-wide significance threshold at P < 5 × 10−08, likely
due to the overall low prevalence of breakfast skipping (11.4%)
and continued insufficient statistical power.

Various strengths in our investigation are worth noting. Our
study employs a proxy-phenotype approach to leverage the
statistical power of a large biobank, the UK Biobank, that focuses
on dietary composition to assess dietary pattern. A similar proxy-
phenotype approach (24) has been successfully implemented in
earlier GWASs when the phenotype of interest is difficult to
ascertain, available in a limited dataset, or unmeasured (25).
Thus, we proposed the use of breakfast cereal, a commonly
eaten breakfast food in the United Kingdom (20, 21) temporally
consumed during the morning (22), as a proxy-phenotype to
advance our understanding of the role of breakfast. We validated
our approach by demonstrating associations of our PRS with
other noncereal breakfast items and in an independent UK
cohort with breakfast skipping data. Via this approach, other
foods that exhibit distinct temporal peaks (i.e., based on time
of day or season) may possibly also be used as proxies to
advance studies on food timing and patterns. The lack of PRS
association with butter, eggs, orange juice, and yogurt may be
a result of weak breakfast temporal peaks for these foods. In
addition, we utilized genome-wide genetic correlation analyses
to support previously identified associations observed from cross-
sectional epidemiologic analyses, which are prone to various
limitations, and extend findings to indicate causality through
the use of MR. Lastly, the CHARGE consortium cohorts in the
present meta-analysis used comparable dietary assessment tools
that were appropriate for the population under study, providing
the highest-quality data that can be reasonably collected across
epidemiologic studies.

A major limitation of the current GWAS is the reliance on
existing large data not designed to capture dietary intake beyond
composition. Thus, further studies with improved phenotyping
are necessary to verify our findings. A limitation of taking
breakfast cereal as a proxy-phenotype for breakfast intake is
exposure misclassification. Considering that 94% of people in
the UK are breakfast consumers (65), we may be misclassifying
an important number of participants (∼48.8%) in the UK
Biobank, a bias that will persist despite our large sample size.
However, misclassification resulting from this will likely reduce
our statistical power to detect genetic variants and bias our results
towards the null. Thus, it is plausible that additional signals
exist beyond the 6 we reported. In addition, we did not factor in
the dietary quality, macronutrient composition, and added-sugar
content of cereals in the analysis, which may influence satiety
and weight regulation, particularly when considering the range
of cereals included in the cereal definition. Furthermore, we may
have missed other important environmental factors that could
potentially confound or interact with genetic factors to influence
our results. It is worth noting that there was no significant
(P = 0.22) genome-wide genetic correlation observed between
breakfast cereal, a carbohydrate-rich food, and carbohydrate
intake, which indicates that the identified signals are not entirely
driven by the carbohydrate content. Ordinal scaling of breakfast
skipping in the UK Biobank hinders our ability to appropriately

interpret the magnitude of findings, including causal links. In
addition, power was a limitation in our CHARGE consortium
GWAS, given the modest number of studies with available
breakfast data and the low prevalence of breakfast skipping at
a population level (8). The low prevalence of breakfast skipping,
ranging from 5.7% to 35.6% in the included cohorts, necessitated
the use of weekly frequency intake (i.e., >3 or <4 times/wk)
to dichotomize the trait. Lastly, the present analysis was limited
to participants of European ancestry, and further investigation in
other ethnicities is necessary for generalizability of our findings.

Recommendations to consume a nutrient-dense breakfast
introduced in the 2010 Dietary Guidelines for Americans (66)
have been removed from the 2015 iteration (67), and should
be critically re-evaluated in light of increasing prevalence of
breakfast skipping (11% in 1970 to 18% in 2002) (68) and
later times of food intake in the United States (8, 68). Our
comprehensive and complementary UK Biobank, TwinUK study,
and CHARGE consortium proxy-phenotype GWAS approach
identified 6 genetic variants for food timing, linking the role
of the circadian clock in regulating food timing. Overall, our
observed genetic correlation and MR results are in keeping with
a potentially healthy role of regular breakfast intake, consistent
with recommendations from the American Heart Association (1).
Furthermore, we recommend that future studies, including large
biobanks such as the US-based AllOfUs initiative (69), collect
data on dietary pattern, including timing, to further interrogate
their genetic and physiologic effects on human health.

This research has been conducted with the use of the UK Biobank
Resource (UK Biobank application number 6818) and CHARGE consortium.
We thank the researchers from the UK Biobank and CHARGE consortium
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