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Abstract

Purpose of review—Studies of the genetic model organism, Drosophila melanogaster, have 

unraveled molecular pathways relevant to human physiology and disease. The Malpighian tubule, 

the Drosophila renal epithelium, is described here, including tools available to study transport; 

conserved transporters, channels, and the signaling pathways regulating them; and fly models of 

kidney stone disease.

Recent findings—Tools to measure Malpighian tubule transport continue to advance, including 

use of a transgenic sensor to quantify intracellular pH and proton fluxes. A recent study generated 

an RNA sequencing-based atlas of tissue-specific gene expression, with resulting insights into 

Malpighian tubule gene expression of transporters and channels. Advances have been made in 

understanding the molecular physiology of the WNK (With No Lysine)-SPAK/OSR1 (Ste20-

related proline/alanine rich kinase/oxidative stress response) kinase cascade that regulates 

epithelial ion transport in flies and mammals. New studies in Drosophila kidney stone models have 

characterized zinc transporters and used Malpighian tubules to study the efficacy of a plant 

metabolite in decreasing stone burden.

Summary—Study of the Drosophila Malpighian tubule affords opportunities to better 

characterize the molecular physiology of epithelial transport mechanisms relevant to mammalian 

renal physiology.
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Introduction

Thomas Hunt Morgan’s pioneering studies in the early 20th century began 110 years of 

Drosophila melanogaster research, and established the common fruit fly as a powerful 
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genetic model organism (1). Six Nobel prizes have recognized Drosophila studies on 

fundamental genetic mechanisms, early embryonic development, odorant receptors and the 

olfactory system, innate immunity, and circadian rhythms, illuminating molecular 

mechanisms conserved in mammalian physiology. Ongoing work has exploited the fly for 

study of the nervous system, metabolism, cardiovascular function, cancer, and inflammation 

(2,3). This review will highlight studies on the Drosophila renal epithelium, the Malpighian 

tubules, with a focus on epithelial transport.

The Drosophila toolbox

The Drosophila genome, which contains approximately 14,000 genes, was the first animal 

genome sequenced using a whole-genome shotgun approach (1). Germline mutations exist 

for many Drosophila genes, and gene disruption and gene-silencing techniques can target 

additional genes (2). Genes can be expressed or silenced in a temporally and spatially 

restricted fashion, using the GAL4/UAS system (4,5) (Figure 1).

UAS-RNAi lines targeting nearly every Drosophila gene are available from publicly 

accessible collections (10,11), or can be generated in individual laboratories using 

established protocols (12,13), as can transgenic UAS lines to allow expression of wild-type 

or mutant genes (3,13,14*). Transgenic animals can be made in 2–3 months.

FlyBase (http://flybase.org) is a rich Drosophila resource, including information on genes 

and the genome, orthologs, references, available tools, and expression data. “Omics” efforts 

have provided a detailed map of gene expression across developmental timepoints and in 

different tissues. In particular, FlyAtlas provides information on gene expression in larval 

and adult Malpighian tubules, as well as many other tissues. The first iteration was based on 

an Affymetrix microarray platform (15), while FlyAtlas 2 used RNA sequencing technology 

(16**). Both FlyAtlas (http://flyatlas.gla.ac.uk/flyatlas/index.html) and FlyAtlas2 (http://

flyatlas.gla.ac.uk/FlyAtlas2/index.html) have publicly accessible search engines that allow 

queries for expression patterns of genes of interest. Analysis of these datasets has identified 

tubule-enriched genes (17,18).

Assays for study of Malpighian tubule function

While Drosophila has podocyte-like cells, called nephrocytes, that also have some of the 

endocytic functions of mammalian proximal tubule cells (19–21), these are anatomically 

separate from the four Malpighian tubules, which lie in the abdominal cavity in direct 

contact with the hemolymph (plasma).

Malpighian tubules are genetically and functionally segmented. GAL4 expression patterns, 

driven by endogenous genomic enhancers, define a distal initial and transitional segment, a 

main segment, a proximal lower segment, and an upper and lower ureter (6,17). Urine 

generation by the blind-ended tubules occurs in the main segment (22), with subsequent 

modification in the lower segment and hindgut (23–25*) (Figure 2).

Transepithelial ion and water fluxes can be measured in isolated Malpighian tubules, as first 

pioneered by Ramsay in stick insects (30), and later adapted for Drosophila tubules (22). 
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Drosophila tubules, which are nearly 3 mm long (25*), are easily dissected under a 

stereomicroscope, and 20–30 tubules can be studied in a single experiment using the 

Ramsay assay (31,32). When paired with the use of ion-specific electrodes (31), the Ramsay 

assay allows measurement of transepithelial fluxes of inorganic and organic ions, including 

sodium, potassium, and calcium (29); ammonium (33); salicylate (34); and 

tetraethylammonium (35). When paired with confocal microscopy, the Ramsay assay can 

measure transport of fluorescent organic anions and cations (36). In vitro tubule perfusion 

has been performed in Drosophila tubules (37), and allows control over luminal perfusate. 

Ion secretion and reabsorption have also been measured using self-referencing ion-selective 

microelectrodes positioned in the unstirred layer (27,35,38).

Transgenic sensors, expressed in the tubule using the GAL4/UAS system, have been used to 

measure intracellular (9) and mitochondrial calcium (39) in tubule epithelial cells, as well as 

intracellular chloride (14*,40) and pH (41**). cAMP (adenosine 3’5’-cyclic 

monophosphate), cGMP (guanosine 3’5’-cyclic monophosphate) and calcium signaling have 

been manipulated in a cell-specific fashion using optogenetic techniques and by expressing 

exogenous receptors coupled to these signaling pathways and exposing tubules to their 

ligands (42,43).

Malpighian tubule ion and water transport

Although the configuration of transporters and channels in the Malpighian tubule differs 

from the mammalian tubule, in many cases the transporters, and the signaling pathways 

regulating them, are conserved.

Fluid secretion by the main segment

In the fluid-secreting main segment, transepithelial cation flux occurs through principal 

cells, while chloride flux occurs through the neighboring stellate cells (40,44,45). Fluid 

secretion is energized by the apical vacuolar proton ATPase (V-ATPase) (22,46–49), a multi-

subunit transporter homologous to the mammalian V-ATPase in the collecting duct 

intercalated cell that is mutated in patients with distal renal tubular acidosis (50,51). The V-

ATPase generates a lumen-positive transepithelial potential of ~40 mV (37,44), which is 

thought to drive proton/cation exchange across the apical membrane (Figure 3).

In the mammalian kidney, SLC12 cation-chloride cotransporters, including the sodium-

potassium-2-chloride (NKCC) and sodium-chloride (NCC) cotransporters, play important 

roles, and are the target of commonly used diuretics (62). Both NKCC2 and NCC are 

mutated in human salt-losing tubulopathies, as are the inwardly rectifying potassium 

channels, ROMK (renal outer medullary potassium channel) and Kir4.1 (63). Functional 

roles in the principal cell have been demonstrated for the Drosophila NKCC (28), encoded 

by Ncc69 (64,65), and two inwardly rectifying potassium channels, Irk1 and Irk2, expressed 

in the tubule (37,66–68). While a third putative inwardly rectifying potassium channel, Irk3, 

is expressed at very high levels in the tubule (17), there was no functional consequence of 

knocking it down on fluid secretion or potassium flux (37).
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The basolateral sodium/potassium-ATPase (Na+/K+-ATPase) (56,69) is required for 

transepithelial potassium flux, by recycling sodium entering the principal cell through the 

NKCC (28). Na+/K+-ATPase activity is also required for hormonally-stimulated fluid 

secretion (70), and provides the driving force for sodium-dependent transport of organic 

anions like salicylate and para-aminohippuric acid (71,72).

CLC family chloride channels are important for chloride transport in the mammalian kidney, 

and are mutated in human patients with salt-losing tubulopathy (73). A CLC chloride 

channel in Drosophila, encoded by Clc-a, is required in stellate cells for transcellular 

chloride secretion in hormonally stimulated tubules (40). Chloride transport mechanisms in 

unstimulated tubules are not defined. A paracellular pathway for chloride transport has been 

demonstrated in Aedes aegypti mosquitos (74,75); whether a similar pathway exists in 

Drosophila tubules is unknown.

There are 8 aquaporin (AQP) family genes in Drosophila (76). Transcripts for Drip have 

been localized to the stellate cell of the adult Malpighian tubule, while transcripts for 

CG17664 and CG4019 have been localized to the principal cell (77), suggesting that 

transcellular water transport could occur in both cell types. Knockdown of the CG4019 
Aedes aegypti homolog, AaAqp5, which is expressed on the apical and basolateral 

membranes of the larval mosquito principal cell, results in decreased tubule fluid secretion 

(78).

Calcium, magnesium and phosphate transport

Calcium transport occurs predominantly in the initial/transitional segment, which is larger in 

anterior tubules compared to posterior tubules (6,38,79–81). Intracellular calcium- and 

magnesium-rich concretions are found in the distal tubule of Drosophila hydei larvae (82), 

and active magnesium transport has been demonstrated in Malpighian tubules of larval 

Aedes campestris mosquitos (83). Mammalian TRPM (transient receptor potential cation 

channel, subfamily M) channels are important for epithelial magnesium transport (84–87). A 

Drosophila TRPM channel is predominantly expressed in the initial/transitional segment, 

and has been implicated in magnesium transport (88), although tubule magnesium fluxes 

have not been measured in Drosophila.

At least one proven phosphate transporter, MFS13 (major facilitator superfamily 13), is 

enriched in the Malpighian tubule. Malpighian tubule phosphate fluxes have not been 

measured, but ablation of tubule epithelial cells in the main segment results in higher 

hemolymph phosphate concentrations in animals fed a high-phosphate diet (89,90). 

However, while 42 of 46 human solute carrier (SLC) families are found in insects, the 

SLC34 family, which includes the mammalian proximal tubule NaPi (sodium phosphate) 

cotransporters Npt2a and Npt2c, is not found in insects (91).

Other transporters expressed in the Malpighian tubule

Many other transporters, exchangers and channels are also expressed in the Malpighian 

tubule (17); a few examples will be reviewed here. The SLC5 family of sodium/glucose 

cotransporters, which includes the mammalian proximal tubule transporters SGLT1 and 

SGLT2, is comprised of 15 genes in Drosophila (92), 7 of which are enriched in expression 
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in the adult tubule in FlyAtlas 2. Addition of glucose to the bathing medium increases fluid 

secretion by the tubule (26), but glucose transport has not otherwise been examined.

An important function of the proximal tubule is the secretion of small molecules, including 

medications and endogenous solutes like uremic toxins (93,94). Similarly, the Malpighian 

tubule secretes organic anions and cations, including tetraethylammonium, para-

aminohippuric acid, ouabain, and human therapeutics like methotrexate, daunorubicin, and 

salicylate (34–36,70–72,95). Transporter families involved in this process in the mammalian 

proximal tubule include the ABCC (ATP-binding cassette C, also known as the MRP, or 

multidrug resistance, transporters), SLC22 (which includes the OAT1 and OAT3 organic 

anion transporters), and SLCO (also known as OATP, or organic anion transporter P) 

families (94). These transporter classes are well-represented in the Drosophila genome, and 

many family members are enriched in expression in the Malpighian tubule in FlyAtlas 2, 

including nine of fourteen ABCC, eleven of twenty-five SLC22 (76,91,96), and six of eight 

SLCO/Oatp transporters (70). A functional role for Oatp58Db has been demonstrated in 

ouabain transport (70), and the roles of dMRP, MET (Methoprene-tolerant, an SLC46 family 

member), and Oatp58Dc have been explored in organic anion and cation transport 

(95,97,98).

Signaling pathways regulating ion transport

Signaling pathways regulating epithelial transport are also conserved between flies and 

mammals. For example, nitric oxide signaling regulates sodium transport in multiple 

nephron segments in the mammalian kidney (99–102), and also regulates transport in the 

Malpighian tubule (103–105).

Another conserved regulatory pathway is the WNK (With No Lysine)-SPAK/OSR1 (Ste20-

related proline/alanine rich kinase/oxidative stress response) kinase cascade, which regulates 

ion transport in the thick ascending limb and distal convoluted tubule of the mammalian 

nephron (106). There are four WNK paralogs in mammals, and WNK1 and WNK4 are 

mutated in a human syndrome of hypertension and hyperkalemia (107). WNKs 

phosphorylate two related kinases, SPAK and OSR1, to activate them (108,109). Activated 

SPAK and OSR1 then phosphorylate SLC12 transporters, including NCC, NKCC1 and 

NKCC2, to activate them (110–115). Drosophila has a single WNK homolog, which 

phosphorylates the fly SPAK/OSR1 homolog, encoded by Fray (116–118). Fray 

phosphorylates fly NKCC (Ncc69), and WNK and Fray regulate Malpighian tubule 

transepithelial ion transport via NKCC in the principal cell (13). Thus, WNK-SPAK/OSR1 

regulation of renal epithelial ion transport is conserved from flies to mammals.

Chloride binds to the active site of WNKs and inhibits their autophosphorylation and 

activation in vitro (119,120). Acute decreases in intracellular chloride in Malpighian tubule 

epithelial cells result in WNK activation over 30 to 60 minutes, with stimulation of 

transepithelial ion flux (13,14*). These findings are relevant to chloride regulation of 

transport in the mammalian distal convoluted tubule to maintain potassium homeostasis 

(121,122). A role for the scaffold protein mouse protein 25 (Mo25)/calcium-binding protein 

39 to achieve maximum pathway stimulation and ion transport was also demonstrated (14*). 
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Mo25 is expressed in the mammalian distal convoluted tubule and thick ascending limb 

(123), but its functional role in those nephron segments has so far been unexplored.

The Malpighian tubule also affords opportunities to study mammalian genes in the context 

of a transporting renal epithelium. For example, knockdown of Drosophila Mo25 was 

rescued by expression of mouse Mo25α (14*). Knockdown of Drosophila WNK can be 

rescued by expression of mammalian WNKs, but the three kidney-expressed mammalian 

WNKs (1, 3 and 4) behave differently (Rodan AR, unpublished data). Because mammalian 

WNKs compensate for one another (124–126), and also interact (127–129), the ability to 

express individual or specific combinations of WNKs may allow better definition of the 

roles of individual WNK paralogs or their combinations.

Malpighian tubule kidney stone models

Kidney stones are increasing in incidence and prevalence, with an associated increase in 

cost, and are associated with substantial morbidity (130). The Drosophila Malpighian tubule 

has been developed as a model of stone formation using dietary and genetic approaches 

(Table 1) (131). These include high oxalate diet, which can contribute to stone formation in 

humans (132); melamine, which resulted in infant stone disease due to tainted milk powder 

in China (133,134); and knockdown of Xanthine dehydrogenase (Xdh), which results in 

stone formation when mutated in humans (xanthinuria type I) (135). Stones can be 

visualized with light microscopy with polarizing light, microscopic computed tomography 

or scanning electron microscopy (132–134).

The SLC26 anion exchanger family includes nine Drosophila genes (136), six of which 

show enrichment in the Malpighian tubule in FlyAtlas and FlyAtlas 2, including dPrestin. 

dPrestin mediates chloride exchange with oxalate, sulfate, thiosulfate and formate 

(132,136,137). Principal cell knockdown of dPrestin decreased crystal formation in the high-

oxalate diet model (132) and the inhibitory effect of sulfate and thiosulfate feeding on stone 

formation (137). Thus, dPrestin is an important mediator of Malpighian tubule oxalate 

transport.

A recent study used Drosophila to examine effects of the plant metabolite 3,4,5-tri-O-

galloylquinic acid methyl ester (TGAME) on stone formation, and found decreased calcium 

oxalate formation ex vivo when tubules were incubated in TGAME-containing baths 

(138**). Thus, this rapidly performed assay may have utility for prioritizing compounds of 

interest for further study.

Analysis of the concretions in Xdh knockdown flies revealed significant amounts of zinc, 

which was also found in human samples of Randall’s plaques (precursors for calcium-based 

kidney stones) and human xanthine kidney stones. Increasing dietary zinc increased 

Malpighian tubule stone formation, while dietary supplementation with a zinc chelator 

decreased stones (135). There are two major families of zinc transporters. Transcripts of five 

of seven SLC30 family genes, and five of ten SLC39 family genes, are enriched in the 

Malpighian tubule in FlyAtlas 2. Knockdown of three of the tubule-enriched SLC30 family 

members reduced tubule stone formation (135). CG10006 (Zip10) is an SLC39 zinc 
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transporter highly enriched in the Malpighian tubule. Immunohistochemistry demonstrated 

apical membrane staining of the Drosophila transporter in the principal cell of the 

Malpighian tubule, and of the human transporter in the apical membrane of the proximal 

tubule and cortical collecting duct (139**). Drosophila is thus a useful model to study the 

role of zinc in stone formation.

Conclusion

The strength of Drosophila melanogaster as a model organism relevant to human physiology 

has derived from conservation of molecular pathways. Complex interactions between 

mammalian nephron segments (140), or between the kidney and other organs, may be better 

modeled in organisms with kidney structures and hormonal signaling more similar to 

humans (141). On the other hand, as discussed here, transporters and channels important in 

the mammalian kidney are also present in the Drosophila Malpighian tubule, and some have 

been functionally characterized. Similarly, signaling pathways relevant to ion transport 

regulation in the mammalian kidney also regulate transport in the Malpighian tubule. 

Drosophila thus affords opportunities for ongoing characterization of the molecular 

physiology of epithelial transport. Unbiased genome-wide forward genetic screening may 

identify novel pathways interacting with known transporters and signaling pathways, and 

opportunities also exist for drug screening (3) and characterization (138**).
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Key points

• Drosophila melanogaster has a sophisticated genetic and physiological toolkit 

to characterize transport processes in the fly renal epithelium, the Malpighian 

tubule.

• Many classes of transporters, exchangers and channels important in 

mammalian kidney function have Drosophila homologs that are expressed in 

the Malpighian tubule.

• Signaling pathways regulating transport are also conserved in Drosophila, 

such as the WNK-SPAK/OSR1 pathway, and recent studies have 

characterized the molecular physiology of these pathways.

• The Malpighian tubule has also been developed as a model for kidney stone 

formation, including testing of pharmacological agents for stone treatment, 

and characterizing the role of zinc in stone formation.
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Figure 1. Temporally and spatially restricted gene expression using the GAL4/UAS system.
A) The yeast transcription factor, GAL4, is transgenically expressed in a tissue or cell type 

of interest under the control of endogenous genomic enhancers, or engineered cell type-

specific promoters. For example, GAL4 lines targeting specific subsets of Malpighian tubule 

epithelial cells have been generated (6–9). The GAL4-expressing fly is mated to a second fly 

containing the transgenically expressed GAL4 DNA-binding domain, UAS (Upstream 

Activating Sequence). In progeny containing both the GAL4 and UAS transgenes, GAL4 

binding to UAS results in the transcription of DNA cloned downstream of the UAS. This 

allows cell-specific expression of a wild-type or mutant Drosophila or mammalian gene. 

Alternatively, GAL4/UAS-driven transcription of an RNA that is processed into an 

interfering RNA (RNAi) allows cell-specific gene knockdown. B) Introduction of a 

temperature-sensitive GAL80 transgene allows temporal control: at 18 °C, GAL80 is active, 

and represses GAL4; at 28 °C, GAL80 is inactive, allowing GAL4 expression. For example, 

to achieve adult-specific gene knockdown or expression, flies are reared at 18 °C throughout 

development (GAL4 off), and then switched to 28 °C in adulthood (GAL4 on).
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Figure 2. Schematic of Drosophila iono- and osmoregulatory epithelia.
The two pairs of Malpighian tubules (anterior and posterior), together with the hindgut, 

regulate ionic and osmotic homeostasis in the fly. Urine is generated by the transepithelial 

movement of ions and water across the main segment of the anterior and posterior tubules, 

resulting in isosmotic secretion of potassium chloride-rich fluid; secreted fluid also contains 

sodium, and secretion can occur in potassium-free medium (22,25*–28). Urine then flows 

through the downstream lower segment, where ~30% of the potassium and water secreted by 

the main segment are reabsorbed (29). The urine then passes through the ureter and enters 

the hindgut, where further ion and water fluxes occur to match the composition of excreta to 

the animal’s physiological need (23–25*).
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Figure 3. Cell model of the fluid-secreting Malpighian tubule main segment.
Transporters and channels described in the text are shown in the cation-conducting principal 

cell and anion-conducting stellate cell. In addition, Nha1 and Nha2 are apically-expressed 

chloride/proton and sodium/proton exchangers, respectively (52,53); the potassium/proton 

exchanger is unknown. The apically-expressed pentameric ligand-gated chloride channel, 

pHCl-2, has a functional role in cAMP-stimulated fluid secretion (54). NKCC and the 

sodium/potassium-ATPase (Na+/K+-ATPase) are required for normal transepithelial 

potassium flux (28). The SLC4 family sodium-driven anion exchanger NDAE1 is localized 

to the basolateral membrane of the principal cell (55,56). Basolateral potassium and chloride 

conductances have been demonstrated (57); the identity of the chloride channel is unknown, 

while inwardly-rectifying potassium channels, Irk1 and Irk2, have a demonstrated functional 

role in transepithelial ion flux and fluid secretion (37). One study has demonstrated a small 

cell-to-bath driving force for potassium across the basolateral membrane (57), while others 

have suggested that basolateral potassium channels allow uptake of potassium from the 

hemolymph into the principal cells (32), as occurs in the Formica (ant) tubule when 

extracellular potassium is high (58,59). The direction of potassium flow through the 

basolateral potassium channels may therefore depend on extracellular potassium 

concentration, which in normal conditions is ~26 mM (60,61). Principal cell knockdown of 

Irk1 and Irk2 has additive effects with ouabain on decreasing fluid secretion and 
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transepithelial potassium flux, suggesting that these channels are not solely recycling 

potassium entering through the Na+/K+-ATPase (37).
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Table 1.

Malpighian tubule kidney stone models.

Model Stone type Chemical Analysis References

High oxalate feeding Calcium oxalate X-ray diffraction 132

Bathing tubules in Na oxalate (ex 
vivo)

Calcium oxalate Not done 137

Ethylene glycol feeding Calcium oxalate Energy-dispersive X-ray spectroscopy 133

Melamine feeding Chemically complex 
(carbon, oxygen, 
phosphate, chloride, 
calcium)

Energy-dispersive X-ray spectroscopy 133, 134

Knockdown of xanthine 
dehydrogenase or allopurinol feeding

Xanthine, hypoxanthine, 
and hydroxyapatite

Fourier transform infrared spectroscopy, high 
performance liquid chromatography-mass 
spectrometry, micro X-ray absorption near edge 
spectroscopy

135
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