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Abstract

Life sciences researchers using Artificial Intelligence are under pressure to innovate faster than 

ever. Large, multilevel, and integrated datasets offer the promise of unlocking novel insights and 

accelerating breakthroughs. Although more data are available than ever, only a fraction is being 

curated, integrated, understood, and analyzed. Artificial Intelligence focuses on how computers 

learn from data and mimic human thought processes. Artificial Intelligence increases learning 

capacity and provides decision support system at scales that are transforming the future of 

healthcare. This article is a review of machine learning applications in healthcare with a focus on 

clinical, translational, and public health applications with an overview of the important role of 

privacy, data-sharing, and genetic information.
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Introduction

Machine learning, a popular subdiscipline of Artificial Intelligence, utilizes large datasets 

and identifies interaction patterns among variables. These techniques can discover 

previously unknown associations, generate novel hypotheses and drive researchers and 

resources towards most fruitful directions.1 Machine learning can be applied in various 

fields, including financial, automatic driving, smart home, etc. In medicine, machine 

learning is widely used to build automated clinical decision systems.

Most machine learning approaches fall into two main categories: supervised and 

unsupervised methods. Supervised methods are great for classification and regression. 

Recent examples include: detection of a lung nodule from a chest x-ray;2 risk estimation 

models of anticoagulation therapy;3 implantation of automated defibrillators in 

cardiomyopathy;4 use in classification of stroke and stroke mimic;5 modeling of CD4+ T 

cell heterogeneity;6 outcome prediction in infectious diseases;7 detection of arrhythmia in 

electrocardiogram;8 and design and development of in silico clinical trial9 among others.

Unsupervised learning does not require labeled data. It aims to identify hidden patterns 

present in the data and is often used in data exploration and novel hypotheses generation.2 In 

three separate studies in heart failure with preserved ejection fraction among patients who 

had a heterogeneous condition with no proven therapies,10 researchers used unsupervised 

learning2 to revisit failed clinical trial such as treatment with spironolactone,11 enalapril,12 

and sildenafil13 versus placebo to identify a subclass of patients who might benefit from 

specific therapies, without human intervention.

There are other algorithms, such as reinforcement learning, which can be viewed as a 

combination of supervised and unsupervised learning to maximize the accuracy using trial 

and error.14 (table 1).

Deep learning is a subset of machine learning which mimics the operation of the human 

brain using multiple layers of artificial neuronal networks to generate automated predictions 

from training datasets. Models based on deep learning strategy tend to have multiple 

parameters and layers; thus, model over-fitting could lead to poor predictive performance. 

Increasing the training sample size, decreasing the number of hidden layers, and ensuring 

the data is well-balanced can help prevent overfitting. Overall, deep learning is compelling 

in image recognition15 as well as in modeling disease onset16 using temporal relations 

among events. A deep neural network was trained on more than 37,000 head computed 

tomography scans for intracranial hemorrhage and subsequently evaluated on 9,500 unseen 

cases, reducing time to diagnosis of new outpatient intracranial hemorrhage by 96% with an 

accuracy of 84%.17

Cognitive computing as a subset of artificial intelligence involves self-learning systems 

using pattern recognition, and natural language processing for semi, or unstructured data. 

Cognitive computing mimics the operation of human thought processes, with the goal of 

creating automated computerized models that can solve problems without human assistance. 

Examples include research in computer-brain-interface,18,19and commercial products such 

as the IBM Watson.20
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Although none of these approaches can rapidly and simultaneously consider different 

disease-related parameters in a user-independent fashion, they are promising venues and are 

changing the way medicine is practiced. Healthcare providers should be ready for the 

upcoming Artificial Intelligence age and embrace the added capabilities that would lead to 

more efficient and effective care. In this article, we review the applications and challenges as 

well as ethical consideration and perspectives of machine learning in medicine, translational 

research, and public health (table 2).

Clinical Application

Disease prediction and diagnosis:

Despite the increasing application of artificial intelligence in healthcare, the research mainly 

concentrates around cancer, nervous system, and cardiovascular diseases, because they are 

the leading causes of disability and mortality. However, infectious and chronic diseases (e.g., 

type 2 diabetes,21 inflammatory bowel disease,22 C. difficile infection9) have also been 

getting considerable attention. Early diagnosis can now be achieved for many conditions by 

improving the extraction of clinical insight and feeding such insight into a well-trained and 

validated system.23 For instance, the United States Food and Drug Administration (FDA) 

permitted applying of diagnosis software designed to detect wrist fractures in adult patients.
24 In another study on 1,634 images of cancerous and healthy lung tissue, the algorithm 

identified healthy cases and distinguished, as accurately as three pathologists, between two 

common types of lung cancer.25 In the United States, more than 6% of adult populations are 

affected by depression. Predicting major depressive disorder was 74% accurate by image 

heatmap pattern recognition.26

Several studies are looking at the potential of artificial intelligence in timely and precise 

disease diagnosis. Supervised methods are effective tools at capturing nonlinear 

relationships for complex and multifactorial disease classification. In a 260 patients cohort 

study, Abedi V. et al27 found that the model can better diagnose acute cerebral ischemia than 

trained emergency medical respondents. Although noisy data and experimental limitations 

reduce the clinical utility of the models, deep learning methods can address these limitations 

by reducing the dimensionality of the data through layered auto-encoding analyses. 

Examples include: analysis of more than 1,400 images from 308 histopathology region of 

skin to detect basal cell carcinoma and differentiate malignant from benign lesions, 

achieving a diagnostic accuracy of >90% compared with experts;28 or examination of more 

than 41,000 digital screening breast mammographic for identifying dense or non-dense 

breast tissue, where 94% of the 10,763 deep learning assessments were accepted by the 

interpreting radiologist.29

Treatment effectiveness and outcome prediction:

Treatment effectiveness and outcome prediction are also important areas with the potential 

clinical implication in disease management strategies and personalized care plans. A decade 

ago only molecular and clinical information was exploited to predict cancer outcomes. With 

the development of high-throughput technologies, including genomic, proteomic, and 

imaging technologies, new types of input parameters have been collected and used for 
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prediction. With a large sample size and integrated multi-modal data types, including 

histological or pathological assessments,30 these methods could considerably (15–25%) 

improve the accuracy of cancer susceptibility, outcome prediction, and prognosis.31

Electronic health records (EHRs) are effective tools for documenting and sharing healthcare 

information. Integrating machine learning-based modeling designed specifically for 

administrative datasets can facilitate the detection of potential complications, improve health 

care resource utilization, and outcome at a personalized level.32,33 Utilization of machine 

learning applied to EHR data has been shown to predict outcome in sepsis patients. Large 

scale machine learning-based mortality study in more than 170,000 patients with 331,317 

echocardiography by Manar Smad et al.34 achieved 96% accuracy to predict patients 

survival based on echocardiography combined with EHR data. In terms of algorithm 

improvement Stephen W. Smith et al.35 developed a deep neural network model for 12-lead 

ECG analysis compared to the conventional algorithm in emergency department ECGs, their 

result showed an accuracy of 92% for finding a major abnormality.

Artificial Intelligence analytics can be used in chronic disease management characterized by 

multi-organ involvement, acute variable events, and long illness progression latencies. For 

instance, retinopathy can be predicted using machine learning. Training two validation 

dataset using deep learning to detect and grade diabetic retinopathy and macular edema 

achieved a high specificity and sensitivity for detecting moderately severe retinopathy and 

macular edema after each image was graded by ophthalmologists between three and seven 

times.36

To improve care in congestive heart failure, one study used supervised machine learning on 

46 clinical variables from 397 patients with heart failure with preserved ejection fraction. 

Phenotypic heatmap predicted patient survival more accurately than commonly employed 

risk assessment tools.2

One of the goals of precision medicine in cancer is the accurate prediction of optimal drug 

therapies from the genomic data of individual patient tumors.37 In one study researchers 

present an open-access algorithm for the predictive response of cancers to seven common 

chemotherapeutic medications.38 Precision medicine success depends on algorithm ability to 

translate large compendia of -omics data into clinically actionable predictions. For example, 

Costello J. C. et al.39 analyzed 44 drug sensitivity prediction algorithms on 53 breast cancer 

cell lines with available genomic information to fulfill dose-response values of growth 

inhibition for each cell line exposed to 28 therapeutic compounds.

Translation Application

Drug discovery and repurposing:

About 25% of all discovered drugs were the result of a chance when different domains were 

brought together accidentally.40 Targeted drug discovery is preferred in pharmaceuticals due 

to the explicit mechanism, higher success rate, and lower cost when compared to traditional 

blind screening. Machine learning is now utilized in the drug discovery process due to the 

followings; 1) high costs of drug development; 2) increasing availability of three-
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dimensional structural information that can guide the characterization of drug targets, and 3) 

extremely low success rates in clinical trials.41 Machine learning can be used as a bridge to 

achieve cross-domain linkage. It can identify a newly approved drug by recognizing 

contextual clues like a discussion of its indication or side effects.20

Despite these novel approaches in drug discovery, there are important challenges, including 

data access and the fact that in general, different data sets are stored in a variety of 

repositories. Furthermore, raw data from clinical trials and other pre-clinical studies are 

typically not available. However, overall, artificial intelligence has been successful when 

applied to available sources, including the use of drug information to extract insight about 

mechanism-of-action by applying techniques such as similarity metrics across all diseases to 

find shared pathways.20 Another example includes the use of natural language processing 

for identification of hidden or novel associations that might be important in the detection of 

potential drug adverse effects based on scientific publications.42

Clinical trial and in silico clinical trials:

Clinical trial design has its roots in classical experimental design. However, the clinical 

investigators are not able to control various sources of variability. Ethical issues are 

paramount in clinical research. Subject enrollment can become lengthy and costly.43,44

Machine learning approach using in silico dataset was introduced to describe the numerical 

methods used in drug development in oncology by modeling biological systems in the 

setting of clinical trial studies and hospital databases, paving the way to predictive, 

preventive, personalized and participatory medicine.45 This approach gives the researchers 

the ability to partially replacing animals or humans in a clinical trial and generates virtual 

patients with specific characteristics to enhance the outcome of such studies. These methods 

are especially helpful for pediatric or orphan disease trials and can be applied in 

pharmacokinetics and pharmacodynamics from the preclinical phase to post-marketing.46, 46 

In a study, a large in silico randomized, placebo-controlled Phase III clinical trial study was 

designed where investigators used virtual treatments on synthetic Crohn’s disease patients. 

Results showed a positive correlation between the initial disease activity score and the drop 

in the disease activity score but with different medications efficacy.47 The model did not 

highly score the investigational drug GED-0301; this prediction was further validated when 

the company which was running the clinical trial on GED-0301, has stopped the phase III 

trial after it failed to clear an interim futility review.48 In silico clinical trials can have 

considerable potentials in design and discovery phases of biomedical product, biomarker 

identification, dosing optimization, or the duration of the proposed intervention.49

Public Health Relevance

Epidemic outbreak prediction:

The infectious disease distribution pattern between population groups with known 

probabilities are based on prior knowledge of ecological and biological features of the 

environment. Early prediction of the epidemic (such as peak and duration of infection) is 

possible if model parameters are partially known.50 Potential outbreak areas for filoviruses 

Noorbakhsh-Sabet et al. Page 5

Am J Med. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were predicted in West, Southwest and Central parts of Uganda which is related to bat 

distribution and previous outbreaks areas.51 In another study, Kesorn K. et al.52 predicted the 

morbidity rate of dengue hemorrhagic fever in central Thailand by estimating the infection 

rate in the female Aedes aegypti larvae mosquitoes and achieved a prediction accuracy of 

>95% and 88% in the training and test set, respectively.

Precision Health

Genetic and biomedical studies have continued investigation efforts with the goal of 

revealing connections between genes and human traits or diseases. Regularized logistic 

regression is an important tool for related applications. Many studies rely on large-scale 

sensitive genotype or phenotype data and sharing across institutions is paramount for the 

success of such studies.53

There are many such examples in recent years. For instance, in a recent case-control study 

with limited sample size, researchers developed an algorithm to integrate personal whole 

genome sequencing and EHR data and used this algorithm to study abdominal aortic 

aneurysm. They assess the effectiveness of modifying personal lifestyles given personal 

genome baselines, demonstrating the model’s utility as a personal health management 

model. Such studies have the potential to shed lights on the biological architecture of other 

complex diseases.54 In a recent review, Torkamani et al., examine the core disciplines that 

enable high-definition medicine given our recent technological advances and high-resolution 

data.55

Challenges and perspectives

Machine learning’s ultimate goal is to develop algorithms that are capable of self-improving 

with experience and continuously learning from new data and insights, to find answers to an 

array of questions. The compelling opportunities in precision medicine offered by complex 

algorithms are accompanied by computational challenges. In 2012 the Obama administration 

announced “Big Data Research and Development Initiative” investment to “help solve some 

of the Nation’s most pressing challenges”.56 The achievement of this potential requires 

novel approaches to address at least three technical challenges:57 1) volume – scale of data 

inputs, outputs, and attributes; this challenge can be addressed in part by using clusters of 

CPUs, data sharing system or cloud and deep learning methods; 2) variety – different 

formats of data (image, video, and text); this challenge can be partially addressed by using 

novel deep learning methods to integrated data from various sources; and, 3) velocity – 

speed of streaming data; to address this challenge, online learning approaches can be 

developed.

The ethical challenges presented by data science have also been an area of debate. These 

challenges can be mapped within the conceptual space and described by three branches of 

research: the ethics of data and privacy, the ethics and morality of algorithms, and the ethics 

and values of practices.58 Among those, privacy has been the center of attention. Privacy is 

defined as a fundamental human right in the Universal Declaration of Human Rights at the 

1948 United Nations General Assembly. Machine learning plays a key role in the 

development of precision medicine, whereby treatment is customized to the clinical or 
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genetic risk factors of the patient. These advances require collecting and sharing the massive 

amount of data and thus generate concern about privacy.59

At the same time, healthcare institutions need to communicate with the public and 

collaborate with scientific communities, as well as government agencies.60 In this situation, 

a privacy-preserving framework is necessary and should be applied to a large range of 

domains where the privacy and confidentiality of study participants and institutions is of 

concern.61 As standard practice, many institutions collaborate and use the de-identification 

process to share clinical data; or perform a meta-analysis, and each contributing site 

performs analysis in-house. These processes reduce the scope of clinical data sharing. For 

example, the DNAnexus clinical trial solution service powers the FDA’s platform for 

advancing regulatory standards.62 St. Jude Cloud is a data-sharing resource for the global 

research community.63 eMERGE is a national network organized and funded by the 

National Human Genome Research Institute (NHGRI) that combines DNA biorepositories 

with electronic medical record (EMR) systems for large-scale, high-throughput genetic 

research in support of implementing genomic medicine.64 In Europe, the UK Biobank is a 

national and international health resource with unparalleled research opportunities, open to 

all bona fide health researchers.65

The most important issue when developing machine learning in a clinical setting is the issue 

of trust when both clinicians and patients accept the recommendations provided by the 

system.66 The data is noisy, complex, high-dimensional with thousands of variables, and 

biased for the catchment area of the originating hospital systems where the model was 

trained. Furthermore, missing data is not at random. Missingness can be due to 

incompleteness, inconsistency, or inaccuracy.67,68 Imputation, predicting missing values, 

also has its unique challenges. Standardized techniques such as the MICE algorithm69 or 

novel imputation methods70 have been proposed. Other challenges in mining the EHR data 

includes: 1) different protocols and changes are introduced at various time period, without 

documentation for the research team; and 2) policy changes and reimbursement rules are 

introduced that may affect how patients seek care and how the treatment is re-designed 

based on their needs and their insurance coverage. Therefore, to develop models using EHR, 

the researchers must work closely with care providers and others within the healthcare 

system to increase the predictive power of the modeling-enabled discoveries.

Other limitations are lack of interoperability across technology platforms over time and 

massive expansion of structured and unstructured data elements. Natural language 

processing can be used to process and contextualizes different medical words and 

expressions.71 However; robust infrastructures have to be in place to be able to handle a 

large number of clinical notes. For instance, it is possible to use robust infrastructure to 

process millions of notes and identify patients who are in need of a follow-up appointment 

for preventive care in hospital settings.72

Today’s machine learning approaches are near to real-world conditions. Due to the rapid 

technological advancements, tasks previously limited to humans will be taken on by 

algorithms.73 Machine learning’s ability to transform data into insight will affect the field of 

medicine, displacing much of the work of radiologists and anatomical pathologists. 
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However, clinical medicine has always required doctors to handle huge amounts of data, 

from history and physical exam to laboratory and imaging studies and, newly genetic data. 

The ability to manage this complexity has always set good doctors apart.74
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Clinical Significance

Artificial intelligence increases learning capacity and provides decision support system at 

scales that are transforming the future of healthcare.

Artificial intelligence has been implemented in disease diagnosis and prognosis, 

treatment optimization and outcome prediction, drug development and public health.

Technological advances require collecting and sharing the massive amount of data and 

thus generate concern about privacy.
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Table1.

Three main machine learning strategies, their characteristics, scope, and limitations

ML types Algorithms Description Characteristics Limitation

Supervised 
Learning

Labeled dataset. System 
trained with human feedback

Applications include Classification, Regression, and 
Prediction; ideal for modeling disease prognosis or 
treatment outcome. Modeling algorithms include 
Artificial Neural Network (ANN), Support Vector 
Machine (SVM), Random Forest (RF)

Requires a large amount 
of labeled data for 
training; need validation 
in an independent cohort.

Unsupervised 
Learning

Non-labeled data by humans Applications include mainly pattern recognition; ideal 
for modeling disease mechanisms, identifying hidden 
patterns in genotype or phenotype data. Modeling 
algorithms include various clustering methods

Needs validation in 
several independent 
cohorts

Reinforcement 
Learning

Hybrid approach; The goal is 
to maximize accuracy by trial 
and error; especially useful in a 
complex environment

Applications include chemistry, robotics, games, 
resource management in computer clusters, 
personalized recommendations

Memory intensive
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Table 2.

Selected areas in medicine where machine learning has high potentials and implications

Field Application

Clinical Disease prediction and diagnosis

Treatment effectiveness and outcome prediction

Translation Drug discovery and repurposing

(In Silico) Clinical trial

Public health Epidemic outbreak prediction

Precision health
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