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Abstract

Rationale and Objectives: Breast segmentation using the U-net architecture was implemented 

and tested in independent validation datasets to quantify fibroglandular tissue volume in breast 

MRI.

Materials and Methods: Two datasets were used. The training set was MRI of 286 patients 

with unilateral breast cancer. The segmentation was done on the contralateral normal breasts. The 

ground truth for the breast and fibroglandular tissue (FGT) was obtained by using a template-

based segmentation method. The U-net deep learning algorithm was implemented to analyze the 

training set, and the final model was obtained using 10-fold cross-validation. The independent 

validation set was MRI of 28 normal volunteers acquired using four different MR scanners. Dice 

Similarity Coefficient (DSC), voxel-based accuracy and Pearson’s correlation were used to 

evaluate the performance.

Results: For the 10-fold cross-validation in the initial training set of 286 patients, the DSC range 

was 0.83-0.98 (mean 0.95±0.02) for breast and 0.73-0.97 (mean 0.91±0.03) for FGT; and the 

accuracy range was 0.92-0.99 (mean 0.98±0.01) for breast and 0.87-0.99 (mean 0.97±0.01) for 

FGT. For the entire 224 testing breasts of the 28 normal volunteers in the validation datasets, the 

mean DSC was 0.86±0.05 for breast, 0.83±0.06 for FGT; and the mean accuracy was 0.94±0.03 

for breast and 0.93±0.04 for FGT. The testing results for MRI acquired using 4 different scanners 

were comparable.
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Conclusions: Deep learning based on the U-net algorithm can achieve accurate segmentation 

results for the breast and FGT on MRI. It may provide a reliable and efficient method to process 

large number of MR images for quantitative analysis of breast density.

1. INTRODUCTION

Breast density is an established risk factor for the development of breast cancer. 

Measurement of breast density is mostly performed on two-dimensional (2D) 

mammography. While two quantitative volumetric analysis tools (Volpara and Quantra) are 

commercially available to measure dense tissue volume, studies have found that they tend to 

underestimate the percent breast density in women with dense breast (1, 2). Furthermore, 

differences between Volpara and Quantra alone have been found to be as high as 14% (1). A 

fundamental limiting factor of all mammography-based density quantification methods is the 

characteristic 2D overlapping tissues on mammography.

Breast MRI is an established clinical imaging modality for high-risk screening, diagnosis, 

preoperative staging and neoadjuvant therapy response evaluation. The most common 

clinical indication was diagnostic evaluation (40.3%), followed by screening (31.7%) (2). 

Passage of the breast density notification law has had a major impact on MRI utilization, 

showing increases from 8.5% to 21.1% in non-high-risk women after the law in California 

went into effect (3). Furthermore, as early results of the abbreviated MRI protocols are 

promising, this may reduce the cost of MRI for patients allowing for wider use in women 

with dense breasts and women with mild to moderate cancer risk for screening (4).

The increasing popularity of breast MRIs have led to the fast accumulation of large breast 

MRI database. This offers a great opportunity to address some clinical questions regarding 

the use of breast density, e.g. whether the volumetric density can be incorporated into risk 

models to improve the prediction accuracy (5), or be used as a surrogate biomarker to 

predict hormonal treatment efficacy (6, 7). Since MRI is a three-dimensional (3D) imaging 

modality with distinctive tissue contrast, it can be used to measure the fibroglandular tissue 

(FGT) volume. However, because many imaging slices are acquired in one MRI, an 

efficient, objective, and reliable segmentation method is needed. Various semi-automatic (8) 

and automatic (9-11) breast MRI segmentation methods have been developed in T1 

weighted (12) or Dixon-based images (12, 13). Although the results are promising, errors 

due to blurred contrast and bias-field are common and manual inspection and correction is 

often needed to ensure accuracy.

In recent years, deep learning algorithms have been widely applied for classification 

applications, and they also provided an efficient method for organ and tissue segmentation, 

including the brain (14, 15), head and neck (16), chest and heart (17, 18), abdomen and 

pelvis (19-21), breast (22-24), and bone and joint (25). Since most medical images have high 

resolutions, patch-based approach is commonly employed for segmentation, where images 

are divided into small patches with a specified size as the input of the neural network (24, 

26, 27). This method can fully utilize the local information of the focused area. However, for 

large structures like the entire organ, a large receptive field for pixel classification is required 

(28). The Fully-Convolutional Residual Neural Network (FC-RNN), commonly noted as U-
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net, is another algorithm that can search a large area (16, 22, 23, 25). and has been shown 

suitable for segmenting the whole breast and FGT (22, 23).

The purpose of this study was to develop and validate a deep-learning segmentation method 

based on the U-net architecture, first for breast segmentation within whole image, and then 

for FGT segmentation within the breast. The developed model using a training dataset was 

tested in independent validation datasets acquired using four different MR systems.

2. MATERIALS AND METHODS

2A. Training dataset

The initial dataset used for training included 286 patients with unilateral estrogen receptor 

positive, HER2-negative, lymph node-negative invasive breast cancer (median age, 49 years; 

range, 30–80 years), as reported in a recent publication (29). In this study only the 

contralateral normal breast was analyzed. MRI was performed on a 3T Siemens Trio-Tim 

scanner (Erlangen, Germany), and the pre-contrast T1-weighted images without fat 

suppression were used for segmentation. The Institutional Review Board approved this 

retrospective study and requirement for informed consent was waived.

2B. Independent validation datasets

The validation dataset included 28 healthy volunteers (age 20–64, mean 35 years old), as 

described in a previous paper (30). These women were recruited to participate in a non-

contrast breast density study. Each subject was scanned using four different MR scanners in 

two institutions, including GE Signa-HDx 1.5T, GE Signa-HDx 3T (GE Healthcare, 

Milwaukee, WI), Philips Achieva 3.0T TX (Philips Medical Systems, Eindhoven, 

Netherlands) and Siemens Symphony 1.5T TIM (Siemens, Erlangen, Germany). Non-

contrast T1-weighted images without fat suppression were used for segmentation. Since both 

left and right breasts were normal, they were analyzed separately, so there was a total of 56 

breasts. The validation was done using the 56 breasts acquired by each scanner first, and 

then using all 224 breasts acquired by all 4 scanners together. With a cases number of more 

than 200, it should be sufficient to do independent validation.

2C. Ground truth segmentation

The ground truth was generated using a template-based automatic breast segmentation 

method (9). In most breast MR scans, while breasts presented very different shapes and 

sizes, the chest region including the lung and the heart could be detected at similar locations 

with similar shape and intensity. These features were used to locate and segment out the 

chest region to isolate the breast. After the breast was segmented, the next step was to 

differentiate FGT from fat. A correction method combined Nonparametric Nonuniformity 

Normalization (N3) and Fuzzy C-means (FCM) algorithms was used to correct the field 

inhomogeneity (bias-field) within the imaging region (31). After the bias-field correction, K-

means clustering was used to separate FGT from fatty tissues on pixel levels, with the 

number of clusters determined by the operator (KTC) who was a research physician and had 

one year of experience in performing breast segmentation. Since our group has been 

devoting to the development of breast MRI segmentation methods since 2008 (32) and many 
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papers have been published, the operator knew the most likely clusters number to be used to 

accurately segment the fibroglandular tissue. In some cases, due to issues of tissue contrast, 

the mostly applied clusters number might need to be modified to produce the most accurate 

segmentation results. The segmentation results were then inspected by a radiologist, who 

had 12 years of experience in interpreting breast MR images, and if necessary, manually 

corrected. The manual correction, if needed, usually happened in the upper and lower 

margin of the breast tissue and in the breast areas showing inhomogeneous signal intensity. 

Not all subjects needed the correction. For those studies which needed correction, the 

number of slices ranged from 1 to 5 in each subject. This template-based segmentation has a 

very good reproducibility. The average interreader variability of breast and FGT were 3.7% 

and 3.9%, respectively (32).

The results were used as the ground truth for neural network training and independent 

validation.

2D. Deep learning using U-net architecture

The goal was to use U-net to separate three-class labels on each MR image, including (1) fat 

tissue and (2) FGT inside the breast, and (3) all non-breast tissues outside the breast. The 

first U-net was used to segment the breast from the entire image. Then, within the obtained 

breast mask, the second U-net was used to differentiate fat and FGT. The left and right 

breasts were separated using the centerline, and a square matrix containing one breast was 

cropped and used as the input. The pixel intensity on the cropped image was normalized to 

z-score maps (mean=0, and standard deviation = 1).

The U-net is a fully connected convolutional residual network (Figure 1) (28), which 

consists of convolution and max-pooling layers at the descending part (the left component of 

U), and convolution and up-sampling layers at ascending part (the right component of U). In 

the down-sampling stage, the input image size is divided by the size of the max-pooling 

kernel size at each max-pooling layer. In the up-sampling stage, the input image size is 

increased by the operations, which are performed and implemented by convolutions, where 

kernel weights are learned during training. The arrows between the two components of the U 

show the incorporation of the information available at the down-sampling stage into the up-

sampling stage, by copying the outputs of convolution layers from descending components 

to the corresponding ascending components. In this way, fine-detailed information captured 

in descending part of the network is used at the ascending part. The output images share the 

same size of the input images.

In this study, there were four down-sampling and four up-sampling blocks. In each 

downsampling block, two convolutional layers with a kernel size of 3 × 3 were each 

followed by a rectified-linear unit (ReLu) for nonlinearity (33), and then followed by a max-

pooling layer with 2 × 2 kernel size. In the up-sampling blocks, the image was up-convolved 

by a factor of two using nearest neighbor interpolation, followed by a convolution layer with 

a kernel size of 2 × 2. The output of the corresponding down-sampling layer was 

concatenated. Then, two convolutional layers, each followed by a ReLu, was applied to this 

concatenated image. During the training process, the He initialization method was used to 

initialize the weights of the network and the optimizer was Adam with a learning rate = 
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0.001 (34). Finally, a convolutional and a sigmoid unit layer was added to produce 

probability maps for each class which correspond to the input image size. A threshold of 0.5 

was utilized to determine the final segmented mask. The training processes included a total 

of 60,000 iterations before convergence. L2 regularization was used to prevent overfitting. 

Also, some background noise was added into the original images to do the image 

augmentation. Software code for this study was written in Python 3.5 using the open-source 

TensorFlow 1.0 library (Apache 2.0 license). Experiments were performed on a GPU-

optimized workstation with a single NVIDIA GeForce GTX Titan X (12GB, Maxwell 

architecture).

2E. Evaluation

In the initial training set of 286 patients, a 10-fold cross-validation was used to evaluate the 

performance of the U-net model. The final model was developed by training the 286 patient 

dataset with the hyperparameters which were optimized from the 10-fold cross-validation. 

The obtained model was then applied to segment the MRI of 28 healthy volunteers in the 

independent validation datasets. The ground truth for each case was available for 

comparison, and the segmentation performance was evaluated using the Dice Similarity 

Coefficient (DSC) and the overall accuracy based on all pixels(35). For example, the pixel 

accuracy of FGT segmentation was the correct classified pixel number over all pixel number 

of FGT. The algorithm was tested using 10-fold cross validation, so 10 accuracies could be 

calculated. The mean accuracy was the mean value of these 10 values. In addition, the 

Pearson’s correlation was applied to evaluate the correlation between the U-net prediction 

output and the ground truth volume.

3. Results

In the 10-fold cross-validation performed in the training dataset, the DSC range for breast 

segmentation was 0.83-0.98 (mean 0.95±0.02) and accuracy range was 0.92-0.99 (mean 

0.98±0.01). For the FGT segmentation, the DSC range was 0.73-0.97 (mean 0.91±0.03) and 

accuracy range was 0.87-0.99 (mean 0.97±0.01). Figures 2 and 3 show the segmentation 

results from two women with different breast morphology and density. The correlation 

between the U-net prediction output and ground truth for breast volume and FGT volume are 

shown in Figure 4.

The final model obtained from the training set was applied to the independent datasets 

acquired from the 28 healthy women using 4 different scanners. The processing time for one 

case was within 10s. The DSC and accuracy for each scanner was calculated separately, and 

then combined for all 4 scanners together. The results are shown in Table 1. Figures 5 and 6 

illustrate the segmentation results of two women with different breast morphology. The 

correlation between the U-net prediction output and ground truth for breast volume is shown 

in Figure 7. The obtained results for four different scanners were similar. The correlation 

coefficient r was high, in the range of 0.96-0.98. In each figure, the fitted line was very close 

to the unity line, and the slope was close to 1. The segmentation result for FGT volume is 

shown in Figure 8. The FGT segmentation results for MRI acquired using 4 different 

scanners were similar. The correlation coefficient r was very high, in the range of 0.97-0.99. 
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However, using the unity line as reference, the U-net segmented FGT volume was lower 

compared to the ground truth, as in the two case examples demonstrated in Figures 5 and 6.

4. Discussion

In this study, a deep-learning method based on the U-net architecture (28), for breast and 

FGT segmentation on MRI was implemented. To objectively test the performance of the 

developed method, we used independent validation datasets from MRI acquired using four 

scanners at two different institutions. The results showed that for both the breast and the 

fibroglandular tissue segmentation, high accuracy was achieved (0.98±0.01 and 0.97±0.01, 

respectively). When the model was applied to independent datasets for validation, the 

performance was also very good (accuracy >0.92). The results suggest that deep learning 

segmentation using U-net is feasible to perform fully automatic segmentation for the breast 

and FGT and yield reasonable accuracy compared to the ground truth segmented by using a 

template-based method verified by a radiologist.

Over the last decade, segmentation of the breast and FGT on MRI has been studied using 

semiautomatic (9, 32), to automatic approaches with some operator inputs (31). Recently, 

fully automatic breast segmentation methods have been reported and shown feasible (36-38). 

but still with unsatisfactory FGT segmentation (39). The processing time for these methods 

varies from minutes to more than half an hour, which is partially due to the need for the 

post-segmentation correction. In the present study, the results were compared against the 

ground truth for each case. Furthermore, testing independent validation datasets allows us to 

evaluate whether the developed segmentation method can be applied widely to other MRI 

datasets acquired using different imaging protocols on different MR scanners.

Unlike 2D mammography, 3D MRI provides genuine volumetric assessment of the FGT for 

quantification of breast density, thus it may be used to assess small changes in density over 

time following hormonal or chemotherapy (7, 40). Three-dimensional MR density can also 

be used to study breast symmetry (41), and peritumoral environment (42). Additionally, 3D 

MR breast and FGT segmentation method is necessary for the quantitative measurement of 

background parenchymal enhancement (BPE) (43, 44), which has shown to be related to the 

aggressiveness of the tumor, treatment response, prognosis, and breast cancer risk (45). 

Quantitative measurement of dense tissue volume may also be incorporated into risk 

prediction models to improve the accuracy of breast cancer risk predicted for each individual 

woman. Currently, some models have already included mammographic density as a risk 

factor. The value of MR density has also been proven in two large scale studies (46, 47). 

King et al (46) specifically states an association of increased FGT on MRI and breast cancer 

risk. Because of accurate fully automatic FGT segmentation in T1-weighted imaging, the 

quantified assessment of BPE is possible, and both King and Dontchos' work (46, 47) shows 

that increased quantified BPE is associated with increased breast cancer risk. With more and 

more large MRI datasets gradually becoming available, this will allow studies to investigate 

whether the inclusion of MR volumetric density into the risk models outperforms other 

models. Since a very large dataset needs to be analyzed, an efficient segmentation tool that 

can provide precise information about breast density is required.
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Different deep learning approaches have been applied for automatic segmentation of normal 

tissues or organs (14, 15). A patch-based approach is commonly employed for segmentation, 

where images are divided into small patches with specified size as the input of neural 

network (24, 26, 27). This method can fully utilize the local information of the focused area. 

When an unsupervised approach was used for mammographic density segmentation, the 

DSC for dense tissue and fatty tissue was 0.63 and 0.95, respectively (24). However, for 

large structures like the entire organ, a large receptive field for pixel classification is required 

(28). The U-net can search a large area. Several studies have utilized U-net for medical 

image applications and obtained satisfactory results (22, 23). Two studies using U-net to 

segment FGT on sagittal and axial view MR images obtained an accuracy of 0.813, (22) and 

0.85 (23), respectively.

In this present study, 286 cases were used as the initial training dataset, and ten-fold cross-

validation was used to adjust the hyperparameters of the neural networks. One noticeable 

problem, generally seen in this study, showed that the FGT was under-segmented by the U-

net (Figure 8). From other literature, the issue of the underestimation in FGT segmentation 

has not been addressed. Hence, this should not be the flaw of U-net. As this trend was 

consistent for all 4 scanners, this appeared to be a systematic bias problem, and not due to 

sporadic variations. The ground truth in FGT segmentation was performed by the operator, 

who had to select the cluster numbers to differentiate FGT from fat based on their image 

intensities. For example, when using a total cluster number of 6 with 3 for FGT, the 

segmentation appeared reasonable. However, when using a total cluster number of 5 with 2 

for FGT, the segmentation quality was very likely to be reasonable as well, but this would 

result in a lower FGT volume. As shown in the two case examples illustrated in Figures 5 

and 6, the U-net segmented FGT volume was lower; however, when visually inspecting the 

segmentation results separately, both appeared reasonable. Therefore, although U-net FGT 

volume was lower than manually segmented volume, this did not mean that there was an 

error. In fact, we believe that the fully automatic method using deep learning can provide an 

objective method not affected by the operator’s judgment, and it has a potential to replace 

the semi-automatic method and eliminate the operator’s input.

Another strength of deep learning was the ability to handle field inhomogeneity, or bias-

field. Intensity inhomogeneity often presented as a smooth intensity variation across the 

image is mainly due to poor radio frequency (RF) coil uniformity, gradient-driven eddy 

currents, and patient’s anatomy inside and outside the field of view (48). For conventional 

segmentation algorithms, retrospective correction methods including filtering (39), or bias 

field estimation (31), were commonly used. However, for medical images with high noise 

level or severe intensity inhomogeneity, this problem could not be completely eliminated. In 

our experience, the images at caudal and cranial ends of an MRI volume often had a low 

signal intensity, and the bias-field correction was very important for segmentation on these 

slices. Our results showed that U-net methods were minimally affected by the bias field, 

although no specific bias-field correction was applied as a prior step. This indicated that U-

net was able to learn the bias field and make corrections. However, other studies (22) found 

that bias field correction would improve the segmentation results and had shown specific 

examples. Ha et al. (22) used smaller dataset and different modality. Thus the importance of 

the bias field correction cannot be evaluated based on different datasets. We believe if the 

Zhang et al. Page 7

Acad Radiol. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inhomogeneity is very high or higher than the mean intensity, bias field correction will 

definitely improve the results.

Some limitations existed in our study. First, we only analyzed the non-fat-suppressed T1-

weighted MR images, and the developed segmentation method cannot be directly applied to 

images acquired using other sequences, such as Dixon-based images (12, 13). Second, all 

datasets in this study were from Asian women who were known to have denser breast with 

different morphological features compared to Western women. To increase the model 

robustness, datasets from Caucasian and other ethnic groups of women need to be tested. 

The current U-net model was for 2D segmentation using each individual slices as inputs. In 

the future, the architecture can be extended for 3D segmentation which will involve more 

trainable parameters, but more subjects are required.

5. CONCLUSION

In summary, we presented deep-learning approaches based on the U-net architecture for 

breast and FGT segmentation on MRI. This method showed good segmentation accuracy, 

and there was no need to do the post-processing correction. With further refinement of the 

methodology and validation, this deep learning-based segmentation method may provide an 

accurate and efficient means to quantify FGT volume for evaluation of breast density.
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Figure 1. 
Architecture of the Fully-Convolutional Residual Neural Network “U-net”. The input of the 

network is the normalized image and the output is the probability map of the segmentation 

result. The U-net consists of convolution and max-pooling layers at the descending phase 

(the initial part of the U), as down-sampling stage. At the ascending part of the U network, 

up-sampling operations are performed. The arrows between the two parts show the 

incorporation of the information available at the down-sampling steps into the up-sampling 

operations performed in the ascending part of the network.
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Figure 2. 
Segmentation results from a 62-year-old woman with moderate breast density. A: The 

original non-fat-suppressed T1-weighted image. B: The ground truth breast segmentation 

result obtained by using template-based method, shown in green. C: The breast segmentation 

result generated by U-net (green). D: The generated FGT probability map by the U-net. E: 

The ground truth FGT segmentation result within the breast obtained by using K-means 

clustering after bias-field correction (shown in red). F: The FGT segmentation result 

generated by U-net (red). For breast segmentation, DSC is 0.99 and accuracy is 0.99. For 

FGT segmentation, DSC is 0.97 and accuracy is 0.99.
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Figure 3. 
Segmentation results from a 55-year-old woman with fatty breast. A: The original non-fat-

suppressed T1-weighted image. B: The ground truth breast segmentation result obtained by 

using template-based method, shown in green. C: The breast segmentation result generated 

by U-net (green). D: The generated FGT probability map by the U-net. E: The ground truth 

FGT segmentation result within the breast obtained by using K-means clustering after bias-

field correction (shown in red). F: The FGT segmentation result generated by U-net (red). 

For breast segmentation, DSC is 0.99 and accuracy is 0.99. For FGT segmentation, DSC is 

0.94 and accuracy is 0.98.
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Figure 4. 
Correlation of breast volume (A) and FGT volume (B) between the ground truth obtained by 

using the template-based segmentation and the U-net prediction.
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Figure 5. 
Images of a 43-year-old woman with heterogeneous breast morphology acquired using the 

GE 1.5T, GE 3.0T, Philips 3.0T, and Siemens 1.5T systems. The top row shows the original 

images. The center row shows the ground truth obtained by using the template-based 

segmentation method. The bottom row shows the U-net prediction results. The FGT volume 

segmented by U-net is smaller compared to the ground truth.
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Figure 6. 
Images of a 29-year-old woman with dense breast acquired using the GE 1.5T, GE 3.0T, 

Philips 3.0T, and Siemens 1.5T systems. The top row shows the original images. The center 

row shows the ground truth obtained by using the template-based segmentation method. The 

bottom row shows the U-net prediction results.
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Figure 7. 
Correlation of breast volume between the ground truth obtained from the template-based 

segmentation method and the U-net prediction. (A) GE 1.5 T, (B) GE 3T, (C) Philips 3T, (D) 

Siemens 1.5T. The red line is the trend line, and the dashed black line is the unity line as 

reference.
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Figure 8. 
Correlation of FGT volume between the ground truth obtained from the template-based 

segmentation method and the U-net prediction. (A) GE 1.5 T, (B) GE 3T, (C) Philips 3T, (D) 

Siemens 1.5T. The red line is the trend line, and the dashed black line is the unity line as 

reference. The volume segmented by U-net is smaller compared to the ground truth.

Zhang et al. Page 19

Acad Radiol. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 20

Table 1.

The dice similarity coefficient (DSC) and the accuracy for the segmentation of breast and FGT in different MR 

scanners.

GE 1.5T GE 3T Philips 3T Siemens 1.5T All MRI

Dice Similarity Coefficient

Breast
Mean ± stdev 0.86 ± 0.06 0.87 ± 0.04 0.86 ± 0.05 0.87 ± 0.06 0.86 ± 0.05

Range 0.56 – 0.95 0.54 – 0.95 0.50 – 0.95 0.58 – 0.97 0.50 – 0.97

FGT
Mean ± stdev 0.84 ± 0.05 0.81 ± 0.07 0.86 ± 0.05 0.84 ± 0.07 0.83 ± 0.06

Range 0.61 – 0.96 0.53 – 0.94 0.64 – 0.94 0.61 – 0.94 0.53 – 0.96

Accuracy

Breast
Mean ± stdev 0.95 ± 0.03 0.92 ± 0.03 0.92 ± 0.03 0.96 ± 0.04 0.94 ± 0.03

Range 0.73 – 0.98 0.72 – 0.98 0.69 – 0.98 0.73 – 0.99 0.69 – 0.90

FGT
Mean ± stdev 0.92 ± 0.03 0.93 ± 0.03 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.04

Range 0.74 – 0.98 0.71 – 0.97 0.75 – 0.97 0.74 – 0.97 0.71 – 0.98
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