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Omadacycline is a novel aminomethylcycline antimicrobial and semisynthetic derivative of tetracycline. In vitro, omadacycline
displays potent activity against gram-positive and many gram-negative bacteria, including methicillin-resistant Staphylococcus aureus,
Streptococcus pneumoniae, B-hemolytic streptococci, vancomycin-resistant Enterococcus, and Enterobacteriaceae. Omadacycline is
also active against atypical and anaerobic pathogens, including Legionella pneumophila, Mycoplasma spp., Ureaplasma spp., Bacteroides
spp., and Clostridioides difficile. This review outlines the microbiology and preclinical studies of omadacycline, including its mech-
anism of action; spectrum of activity; protein binding; activity in the presence of surfactant, serum, normal, and pH-adjusted urine,
or bacterial biofilms; postantibiotic effect; pharmacodynamic properties; and in vitro and in vivo efficacy. The results of in vitro and in
vivo animal studies support the observations made in phase III clinical trials and the clinical development of omadacycline.

Keywords.

antimicrobial; omadacycline; pharmacodynamics; spectrum of activity; tetracyclines.

Omadacycline is an aminomethylcycline antimicrobial of the
tetracycline class, approved in the United States for the treat-
ment of community-acquired bacterial pneumonia and acute
bacterial skin and skin structure infections (ABSSSI) in adults
[1]. Omadacycline has demonstrated in vitro activity against re-
sistant gram-positive pathogens, including methicillin-resistant
Staphylococcus aureus (MRSA), penicillin- and macrolide-
resistant  Streptococcus pneumoniae, vancomycin-resistant
Enterococcus (VRE), and Clostridioides difficile, pathogens that
have been recognized by the US Centers for Disease Control
and Prevention as urgent or serious threats [2]. The efficacy of
omadacycline as monotherapy for serious community-acquired
bacterial infections, including ABSSSI and community-
acquired bacterial pneumonia, has been demonstrated in phase
III clinical trials [3-5]. Ongoing clinical trials are investigating
omadacycline for the treatment of urinary tract infections.

MECHANISM OF ACTION

Omadacycline is a semisynthetic tetracycline derivative and
displays the same mechanism of action as the tetracycline class.
Like tetracyclines, omadacycline inhibits bacterial protein syn-
thesis by binding the primary tetracycline binding site on the
30S subunit of the bacterial ribosome [6]. As demonstrated
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by whole-cell, macromolecular synthesis, omadacycline di-
rectly inhibits bacterial protein synthesis while sparing bac-
terial DNA, RNA, and peptidoglycan synthesis [7]. Through
modifications at the C-7 and C-9 positions of the tetracycline
D-ring, omadacycline is able to overcome common tetracycline
resistance mechanisms, including tetracycline-specific efflux
pumps and ribosomal protection (Figure 1). The C-7 modi-
fication circumvents the tetracycline-specific efflux pump re-
sistance mechanism, whereas the C-9 modification overcomes
the ribosomal protection resistance mechanism. Although the
binding of omadacycline to the primary bacterial ribosome
site is similar to that of other tetracyclines, dimethyl sulfate
chemical probing and Fenton cleavage studies have revealed
that omadacycline, tetracycline, and tigecycline have unique,
nonspecific interactions with the 16S rRNA [6]. The unique
interaction of omadacycline with the bacterial ribosome may
help to explain its ability to overcome the standard tetracycline
resistance mechanisms. Omadacycline retains activity against
gram-positive pathogens that carry resistance genes for ribo-
somal protection (ie, tetM, tetO, and tetS) and tetracycline ef-
flux (ie, tetK and fetL) [7, 8]. Thus, omadacycline remains active
against tetracycline-resistant bacterial strains. To date, the resist-
ance mechanisms that have been found to inhibit the activity of
omadacycline include multidrug efflux pumps (MexXY-OprM
and MexAB-OprM) [9] and the tetracycline monooxygenase
TetX (Paratek Pharmaceuticals, Inc.; data on file). Although
TetX has been shown to inactivate all known tetracyclines, it is
not a widespread resistance determinant [10, 11].

SPECTRUM OF ACTIVITY

Omadacycline has been evaluated in a range of studies, in-
cluding centralized US clinical isolate surveillance studies that
began in 2010. Consistency in the spectrum of omadacycline
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Figure 1. Chemical structures of tetracycline, tigecycline, and omadacycline [6].

activity over time has been examined by comparing the min-
imum inhibitory concentrations (MICs) from isolates col-
lected during different surveillance periods. The MIC,
values of omadacycline were similar for S. pneumoniae isolates
collected in 2010 (0.06/0.12 pg/mL), 2014 (0.06/0.06 pg/mL),
and 2016 (0.06/0.12 pug/mL) surveillance programs [12, 13].
Omadacycline has also remained highly active against clinical
isolates of S. aureus across studies from 2010 (MIC, 0.25 ug/
mL), 2014 (MIC,, 0.12 pg/mL), and 2016 (MIC, 0.25 ug/
mL) [13, 14]. Similarly, the MIC,
against isolates of Legionella pneumophila remained un-
changed from 1995 (0.25/0.25 ug/mL) to 2014 (0.25/0.25 pg/
mL) [15]. Omadacycline has been shown to be active against

values of omadacycline

the category A biothreat pathogens Bacillus anthracis (MIC,
0.06 ug/mL) and Yersinia pestis (MIC, 1 ug/mL) [16]. Like
other tetracyclines, omadacycline displays no notable activity
against Proteus spp. (MIC, 232 ug/mlL), Providencia spp.
(MIC,, >16 ug/mL), Morganella spp. (MIC,, >16 pg/mL), or
Pseudomonas spp. (MIC,, >16 ug/mL) [13, 17]. In general,
omadacycline has potent activity against atypical bacterial

pathogens and gram-positive aerobes, and a range of activities
against gram-negative pathogens.

Gram-positive Aerobes

Omadacycline has potent in vitro activity against gram-posi-
tive aerobes, including antimicrobial-resistant pathogens such
as MRSA (MIC,, 0.25 pg/mL) and penicillin- or macrolide-
resistant S. pneumoniae (MIC, 0.12 pg/mL; Table 1; breakpoints
available from the US Food and Drug Administration [FDA])
[13, 18]. Omadacycline MIC values have been determined to be
comparable for healthcare- and community-associated MRSA
[14, 19]. Omadacycline is also active against VRE, with an MIC,
of 0.25 pg/mL for vancomycin-resistant Enterococcus faecalis
and of 0.12 pg/mL for vancomycin-resistant Enterococcus
faecium. It also retains activity against tetracycline-resistant
gram-positive bacteria, including S. aureus (MIC,, 0.5 ug/
mL), E. faecalis (MIC, 0.25 ug/mL), E. faecium (MIC, 0.12 ug/
mL), S. pneumoniae (MIC, 0.12 pg/mL), and B-hemolytic
streptococci (MIC,; 0.25 pg/mlL; Table 1) [13].

Gram-negative Aerobes

Omadacycline has in vitro activity against species of
Enterobacteriaceae, including Escherichia coli (MIC,, 2 pg/
mL), Klebsiella pneumoniae (MIC,, 8 ug/mL), Klebsiella oxytoca
(MIC,, 2 pg/mL), Citrobacter spp. (MIC, 4 pg/mL), and
Enterobacter cloacae (MIC, 4 ug/mL; Table 2; breakpoints avail-
able from the FDA) [13, 18]. Omadacycline is also active against
Haemophilus influenzae (MIC, 1 ug/mL; breakpoints available
from the FDA) and Moraxella catarrhalis (MIC,, 0.25 pg/mL;
Table 2) [13, 18]. Omadacycline is not a substrate for extended-
spectrum (-lactamases (ESBLs). It displays the same MIC,
values against E. coli (2 ug/mL) and K. pneumoniae (8 pug/mL),
whether ESBL negative or positive [20].

Atypical Bacteria and Anaerobes

Omadacycline displays potent in vitro activity against atyp-
ical bacteria, with an MIC, of 2 pg/mL for Mycobacterium
abscessus; 0.5 pg/mL for Mycobacterium fortuitum; 0.25 ug/
mL for Mycobacterium chelonae, Mycoplasma pneumoniae,
Chlamydia pneumoniae, and L. pneumophila; and 0.06 ug/mL
for Mycoplasma hominis (Table 3) [17, 21-23]. In addition,
omadacycline has in vitro activity against anaerobic pathogens,
including Bacteroides fragilis (MIC,, 4 ug/mL), Bacteroides
thetaiotaomicron (MIC, 4 ug/mL), Bacteroides vulgatus (MIC,
1 ug/mL), Bacteroides ovatus (MIC, 8 ug/mL), C. difficile
(MIC,, 0.5 pg/mL), Clostridium perfringens (MIC, 16 pg/mlL),
and anaerobic gram-positive cocci (MIC,, 1 pg/mL; Table 4)
[24].

FACTORS AFFECTING IN VITRO ACTIVITY

The in vitro activity of omadacycline against gram-positive and
gram-negative clinical isolates was examined in the presence of
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Table 3. In Vitro Activity of Omadacycline and Doxycycline Against Atypical Bacteria

Omadacycline Doxycycline
Bacteria (No. of Isolates) MIC,, (ng/mL) MIC,, (pg/mL) MIC Range (ng/mL) MIC,, (pg/mL) MIC,, (ug/mL)  MIC Range (png/mL)
Mycoplasma hominis (20) 0.03 0.06 0.016 to 0.12 0.06 2 0.016 to 2
Mycoplasma pneumoniae (20) 0.12 0.25 0.12t00.25 0.25 0.5 0.12t0 0.5
Ureaplasma spp.? (20) 1 2 0.25t02 0.25 4 0.06 to 4
Legionella pneumophila (100) 0.25 0.25 0.06 to 1 1 1 05t01
Chlamydia pneumoniae (15) 0.06 0.25 0.03t0 0.5 0.125 0.125 0.06 to 0.25
Mycobacterium abscessus (24) 1 2 0.06t0 8 >64 >64 0.25to 64
Mycobacterium chelonae (22) 0.125 0.25 0.015t0 0.25 32 64 16 to 64
Mycobacterium fortuitum (20) 0.125 0.50 0.03to 1 8 64 <0.06 to 64

Adapted from Kohlhoff et al [22], Villano et al [17], Waites et al [21], and Shoen et al [23].
Abbreviation: MIC, minimum inhibitory concentration.

®Includes Ureaplasma parvum (n = 10) and Ureaplasma urealyticum (n = 10).

either bovine lung surfactant or human or mouse serum [25].
As expected, MIC values of omadacycline against tetracycline-
susceptible and tetracycline-resistant strains of S. aureus,
S. pneumoniae, H. influenzae, and E. coli did not increase in the
presence of surfactant or serum. In these assays, the addition of
serum increased the MIC values of doxycycline, and the addi-
tion of surfactant increased the MICs of daptomycin. Studies
examining the in vitro protein binding of omadacycline have
shown that, over a concentration range of 10-10 000 ng/mL,
omadacycline displays low binding to human (21%), monkey
(21%), rat (26%), and mouse (15%) plasma proteins [26].

The pH is known to affect the activity of a range of antibiotics,
because of its effect on the charge of the molecules [27].
Compared with standard pH 7.4 medium, omadacycline MIC
values were unaffected by pH 8.0 medium, whereas MIC values
were several-fold higher when tested at pH 5.0-6.0 [28]. In ad-
dition, in unpublished observations, omadacycline retained ac-
tivity in pooled human urine (pH 6.6) and in pooled human
urine adjusted to pH 7.1 (Paratek Pharmaceuticals, Inc.; data
on file). In urine, omadacycline MIC values against E. coli and
Staphylococcus saprophyticus were either unaffected or up to
2-fold higher than MICs observed in standard pH 7.3 broth

medium. Overall, these assays demonstrate that omadacycline
retains activity in human urine.

Intracellular activity was evaluated for omadacycline against
both S. aureus and L. pneumophila. In assays of intracellular
activity, S. aureus-infected THP-1 human monocytes were
treated with 1, 2, 8, or 16 times the MIC of either omadacycline
or comparators (tigecycline, linezolid, ceftaroline, levofloxacin,
moxifloxacin, or azithromycin) [29]. At 24 hours, omadacycline
exhibited bactericidal activity against intracellular S. aureus
(methicillin-susceptible and methicillin-resistant ~strains)
with 299% growth reduction at 2-16 times the MIC, which
was similar to that of levofloxacin and moxifloxacin and was
more active than that of tigecycline (299% vs <99 to >290%),
linezolid (=99% vs <99 to =90%), ceftaroline (=99% vs <90%),
and azithromycin (=99% vs <90%). Similar studies carried out
with U937 human monocytes infected with erythromycin-
susceptible or erythromycin-resistant strains of L. pneumophila
serogroup 1 also demonstrated the robust intracellular activity
of omadacycline [30].

These studies demonstrate that omadacycline possesses low
binding to plasma proteins and that its activity is not signifi-
cantly affected by surfactant, serum, high pH, or urine. The

Table 4. In Vitro Activity of Omadacycline and Comparators Against Anaerobes

Omadacycline Tigecycline
Bacteria (No. of Isolates) MIC,, (ng/mL) MIC,, (ng/mL) MIC Range (ng/mL) MIC,, (ng/mL) MIC,, (ng/mL)  MIC Range (ng/mL)
Bacteroides fragilis (21) 0.5 4 0.25to 16 0.5 2 0.5t08
Bacteroides thetaiotaomicron (21) 1 4 0.12 to 16 1 8 0.25t0 16
Bacteroides vulgatus (21) 0.12 1 0.06 to 2 0.25 1 0.12to 2
Bacteroides ovatus (15) 0.5 8 0.06 to 16 0.5 8 0.03to0 16
Clostridioides difficile (21) 0.25 0.5 0.25t08 0.25 0.25 0.25t04
Clostridium perfringens (22) 4 16 0.12to 16 8 >16 0.25to 16
Peptostreptococcus spp.? (22) 0.12 1 0.06 to 2 0.12 2 0.06 to 4
Adapted from Villano et al [17] and Stapert et al [24].
Abbreviation: MIC, minimum inhibitory concentration.
®Includes Peptostreptococcus micros (n = 11) and Peptostreptococcus anaerobius (n = 11).

S10 « CID 2019:69 (Suppl1) « Karlowsky et al



human monocyte models demonstrate the intracellular pene-
tration of active omadacycline, which has clinical implications
for the treatment of pneumonia.

IN VITRO PHARMACODYNAMIC PROPERTIES

The in vitro pharmacodynamic properties of omadacycline have
been studied in a variety of ways. Omadacycline displays bac-
tericidal or bacteriostatic activity that is organism-dependent.
In a study examining 85 bacterial isolates, minimum bacteri-
cidal concentrations indicated that omadacycline has bacte-
ricidal activity (=3 log reduction of initial inoculum) against
S. pneumoniae, H. influenzae, and M. catarrhalis, and that it
displays bacteriostatic activity against enterococci, S. aureus,
and most isolates of E. coli [31].

In order to determine the residual activity of omadacycline
after antibiotic removal, the postantibiotic effect (PAE) was
evaluated. The growth inhibition of omadacycline following drug
removal has been examined for clinical isolates of S. aureus (in-
cluding 1 MRSA isolate), S. pneumoniae (including 1 penicillin-
resistant isolate), enterococci (including 1 vancomycin-resistant
isolate), and E. coli [32]. For these gram-positive and gram-neg-
ative aerobes, omadacycline had a PAE ranging from 1.4 to 3.3
hours (1 hour initial exposure at 5 times the MIC), which was
similar to that of tigecycline; with the exception of enterococci,
for which tigecycline displayed longer PAEs [32]. The activity of
omadacycline against E. coli biofilms was determined with the
minimum biofilm eradication concentration assay (Innovotech,
Edmonton, Alberta, Canada) [33]. Omadacycline displayed
dose-dependent activity against established biofilms, with a
reduction of ~2 log  units in biofilm-associated bacteria. At
concentrations near the MIC (1.13 pg/mL), omadacycline
significantly reduced the total E. coli bioburden. In addition,
E. coli biofilms were not propagated in the presence of sub-MIC
concentrations of omadacycline. This finding may have clinical
implications, as biofilm colonies are known to be resistant to
sub-MIC doses of most antibiotics [34].

The effect of omadacycline on the gut microflora and the po-
tential for omadacycline to induce C. difficile infections (CDI)
have been investigated in an in vitro human gut model [35].
In this model, the bacterial compositions of the proximal,
medial, and distal colon are simulated with a 3-stage contin-
uous system of temperature- and pH-controlled vessels [36].
Antimicrobials that are considered high risk for CDI have been
shown to induce simulated CDI in this in vitro human gut
model, whereas antimicrobials that are considered low risk for
CDI have not induced simulated CDI in this model [36-39].
The 3-vessel system was equilibrated following inoculation with
pooled feces from healthy volunteers, and then infected with
C. difficile spores, followed by omadacycline treatment [35].
Although omadacycline disrupted the gut microflora (declines
in Bifidobacteria, B. fragilis group spp., Lactobacillus spp.,

Enterococcus spp., Clostridium spp., and Enterobacteriaceae
populations), there was no evidence of simulated CDI (ie,
C. difficile germination, vegetative cell proliferation, or toxin
production). In contrast, moxifloxacin disrupted the gut mi-
croflora and induced simulated CDI in this study [35], which
supports the clinical finding that fluoroquinolones have one of
the highest incidences of CDI [40].

IN VIVO PHARMACODYNAMIC PROPERTIES

The in vivo pharmacodynamics of omadacycline have been
examined in 2 animal models: a neutropenic mouse model of
pneumonia and a neutropenic mouse thigh infection model
[41, 42] (Table 5). The primary pharmacokinetic/pharmacody-
namic target predictive of efficacy for omadacycline was noted
to be the ratio of the area under the plasma concentration-time
curve over 24 hours to the MIC (AUC/MIC). Omadacycline
AUC/MIC correlated with microbiological efficacy (r* = 0.74;
mean plasma 24-hour static dose AUC/MIC = 16-20) in
mice infected in the lungs with S. pneumoniae, including
those with strains with varying susceptibility to tetracyclines,
B-lactams, and macrolides [41]. Based on omadacycline con-
centration measurements in plasma and epithelial lining fluid,
omadacycline penetrated well into epithelial lining fluid [41].
In the mouse thigh infection model (which included 10 isolates
of S. aureus, including MRSA), the efficacy of omadacycline
was defined by the AUC/MIC (* = 0.92; mean plasma 24-hour
static dose AUC/MIC = 24) [42]. These findings are in agree-
ment with those for tetracyclines, as the AUC/MIC ratio is the
pharmacodynamic parameter that best correlates with treat-
ment efficacy for this class [43].

IN VIVO EFFICACY

The in vivo efficacy of omadacycline has been demonstrated
in a number of animal models (Table 5). Omadacycline,
administered as a single intravenous dose, displayed potent ef-
ficacy in a mouse model of intraperitoneal infection with E. coli
or tetracycline-susceptible and tetracycline-resistant strains of
S. aureus and S. pneumoniae [8] (Table 5). Overall in this model,
the efficacy of omadacycline was similar to, or greater than,
that of comparators. In a mouse intra-abdominal infection
model of postoperative polymicrobial peritonitis, 2 intravenous
doses of omadacycline showed increased 10-day survival over
comparators [44] (Table 5). In a urinary tract infection model,
mice were infected with E. coli directly into the bladder and
then given increasing single doses of omadacycline on day 4
postinfection. Omadacycline performed as well as minocycline
(50% effective dose, 4.3 vs 4.5 mg/kg) in this model [45] (Table
5). Against the biothreat pathogens—B. anthracis and Y. pestis—
omadacycline displayed in vivo efficacy in murine whole-body
aerosol infection models [16] (Table 5).
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.0004)

0%
Median survival (days)

Result
100%
2 (P =.0293)

40-day survival
90% (40 mg/kg dose group)

90% (40 mg/kg dose group)
12 (P

Antimicrobial

IP administration’
maximum effect; IR intraperitoneal; IV, intravenous; MIC, minimum inhibitory concentration; MRSA,

Oral administration’
methicillin-resistant Staphylococcus aureus; MSSA, methicillin-susceptible Staphylococcus aureus; SC, subcutaneous; TR, tetracycline-resistant; VR, vancomycin-resistant.

Omadacycline
Ciprofloxacin
Omadacycline
Vancomycin

Doxycycline
Vehicle

max’

Strain
Clostridioides difficile ATCC 43596

Yersinia pestis CO92

Animal Model
prophylaxis (female BALB/c mice, 10 mice/group)

Mouse whole-body aerosol infection model, postexposure
Syrian hamsters, 10 hamsters/group)

Hamster C. difficile infection model (male LGV Golden

'Omadacycline: 5, 10, 20, or 40 mg/kg; doxycycline: 5, 10, 20, or 40 mg/kg; ciprofloxacin: 15 mg/kg; vehicle: 0.2 mL saline. All treatments began 24 + 1 hours postinfection, and were given twice daily for 7 days.

hOmadacyc\ine: 15 mg/kg; doxycycline: 15 mg/kg; ciprofloxacin: 30 mg/kg; vehicle: 0.2 mL saline. All treatments began 48 + 1 hours postinfection, and were given twice daily for 14 days.

At least 4 dose levels per experiment, with doses typically ranging from 0.11 to 18 mg/kg (dose minimum-maximum, 0.08-54 mg/kg); only tigecycline comparator is shown.

Abbreviations: AUC, area under the plasma concentration—time curve; CFU, colony-forming units; Cl, confidence interval; ED,,, 50% effective dose; E

“There were 4 strains examined, with varying susceptibility to tetracyclines, p-lactams, and macrolides.

°Data are represented as means + standard deviations from 7 independent experiments.

"There were 4-fold increasing doses examined, from 0.1 to 25.6 mg/kg.
°Doses increased 4-fold every 12 hours, from 0.25 to 64 mg/kg.
Two doses of 10 mg/kg administered at 4 hours and 18 hours postsurgery.

Table 5. Continued

Kim et al [46]

9Increasing single doses on day 4 postinfection.
'Given for 5 days at 50 mg/kg/day.

Study

The in vivo efficacy of omadacycline has also been examined
in a hamster model of CDI [46] (Table 5). In this model, CDI
was induced in hamsters by the subcutaneous administration of
clindamycin 24 hours before infection with C. difficile by oral
gavage. At 24 hours postinfection, hamsters were treated with
oral omadacycline for 5 days. Omadacycline demonstrated ef-
ficacy in this model, with overall median survival of 12 days
in omadacycline-treated hamsters compared with 2 days in
vancomycin-treated hamsters.

In these in vivo models, omadacycline demonstrated efficacy
greater than, or similar to, comparator antimicrobials.

CONCLUSIONS

Unlike older tetracyclines, omadacycline is active against bacte-
rial isolates that express tetracycline-specific efflux pumps and/
or ribosomal protection resistance mechanisms. The in vitro
antimicrobial activity of omadacycline covers a wide range of
gram-positive and many gram-negative pathogens, including
MRSA, penicillin- and macrolide-resistant S. pneumoniae,
B-hemolytic streptococci, VRE, and Enterobacteriaceae, such
as E. coli and Klebsiella spp. In addition, omadacycline displays
in vitro antimicrobial activity against atypical and anaer-
obic organisms, including Mycoplasma spp., L. pneumophila,
Ureaplasma spp., and C. difficile.

Omadacycline remains active at pH 8.0 and in the presence of
serum, lung surfactant, or urine. In addition, omadacycline is active
against bacterial biofilms and does not propagate biofilm forma-
tion. It has low binding to plasma proteins, displays a PAE of 1.4-
3.3 hours (at 5 times the MIC, 1-hour exposure), and demonstrates
intracellular activity against S. aureus and L. pneumophila.

In vivo pharmacodynamic studies have shown that, sim-
ilar to other tetracyclines, omadacycline AUC/MIC has the
strongest correlation with bacteriological outcome. The efficacy
of omadacycline has been validated in a human gut model of
C. difficile infection (in vitro) and in animal models (in vivo),
including models of pneumonia, thigh infection, systemic in-
fection, intra-abdominal infection, urinary tract infection, and
CDI. Taken together, these studies demonstrate the activity of
omadacycline against bacterial pathogens commonly associ-
ated with serious, community-acquired bacterial infections, in-
cluding infections of the skin, lungs, and urinary tract.
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