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ABSTRACT
Background: The Dietary Approaches to Stop Hypertension
(DASH) dietary pattern is recommended for cardiovascular disease
risk reduction. Assessment of dietary intake has been limited
to subjective measures and a few biomarkers from 24-h urine
collections.
Objective: The aim of the study was to use metabolomics to identify
serum compounds that are associated with adherence to the DASH
dietary pattern.
Design: We conducted untargeted metabolomic profiling in serum
specimens collected at the end of 8 wk following the DASH diet
(n = 110), the fruit and vegetables diet (n = 111), or a control
diet (n = 108) in a multicenter, randomized clinical feeding study
(n = 329). Multivariable linear regression was used to determine
the associations between the randomized diets and individual
log-transformed metabolites after adjustment for age, sex, race,
education, body mass index, and hypertension. Partial least-squares
discriminant analysis (PLS-DA) was used to identify a panel of
compounds that discriminated between the dietary patterns. The area
under the curve (C statistic) was calculated as the cumulative ability
to distinguish between dietary patterns. We accounted for multiple
comparisons with the use of the Bonferroni method (0.05 of 818
metabolites = 6.11 × 10−5).
Results: Serum concentrations of 44 known metabolites differed
significantly between participants randomly assigned to the DASH
diet compared with both the control diet and the fruit and vegetables
diet, which included an amino acid, 2 cofactors and vitamins
(n = 2), and lipids (n = 41). With the use of PLS-DA, component
1 explained 29.4% of the variance and component 2 explained
12.6% of the variance. The 10 most influential metabolites for
discriminating between the DASH and control dietary patterns were
N-methylproline, stachydrine, tryptophan betaine, theobromine,
7-methylurate, chiro-inositol, 3-methylxanthine, methyl glucopyra-
noside, β-cryptoxanthin, and 7-methylxanthine (C statistic= 0.986).
Conclusions: An untargeted metabolomic platform identified a
broad array of serum metabolites that differed between the DASH
diet and 2 other dietary patterns. This newly identified metabolite
panel may be used to assess adherence to the DASH dietary
pattern. This trial was registered at http://www.clinicaltrials.gov as
NCT03403166. Am J Clin Nutr 2018;108:243–255.
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metabolomics

INTRODUCTION

The Dietary Approaches to Stop Hypertension (DASH) diet
is a dietary pattern that is rich in fruit, vegetables, and low-fat
dairy products; moderate in meat, fish, poultry, nuts, and beans;
and low in sugar-sweetened beverages, sweets, and red meat.
In the original DASH feeding study, the reduction in systolic
blood pressure was 2.8 mm Hg for the fruit and vegetables only
diet and 5.5 mm Hg for the DASH diet compared with the
control diet, with even greater blood pressure reductions among
individuals with hypertension (1). Epidemiologic studies have
subsequently shown that higher adherence to the DASH diet
was associated with a multitude of favorable health outcomes,
including a reduced risk of hypertension, cardiovascular disease,

CMR is supported by a Mentored Research Scientist Development
Award from the National Institute of Diabetes and Digestive and Kidney
Diseases (K01 DK107782). This research was supported in part by a pilot
and feasibility grant (Principal Investigator: CMR) from the Mid-Atlantic
Nutrition and Obesity Research Center (NORC), which is funded by the
National Institute of Diabetes and Digestive and Kidney Diseases (P30
DK072488). This publication was also made possible by a Nexus Award
(Principal Investigator: CMR), a program supported by the Johns Hopkins
Institute for Clinical and Translational Research (ICTR), which is funded in
part by the National Center for Advancing Translational Sciences (NCATS;
UL1 TR001079), a component of the NIH and NIH Roadmap for Medical
Research. Its contents are solely the responsibility of the authors and do not
necessarily represent the official view of the Johns Hopkins ICTR, NCATS,
or NIH. JC is partially supported by the Chronic Kidney Disease Biomarkers
Consortium funded by the National Institute of Diabetes and Digestive and
Kidney Diseases (U01 DK085689).
Supplemental Figure 1 is available from the “Supplementary data” link in

the online posting of the article and from the same link in the online table of
contents at https://academic.oup.com/ajcn/.
Address correspondence to CMR (e-mail: crebhol1@jhu.edu).
Received October 31, 2017. Accepted for publication April 23, 2018.
First published online June 18, 2018; doi: https://doi.org/10.1093/ajcn/

nqy099.

Am J Clin Nutr 2018;108:243–255. Printed in USA. © 2018 American Society for Nutrition. All rights reserved. 243

http://www.clinicaltrials.gov
https://academic.oup.com/ajcn/
mailto:crebhol1@jhu.edu


244 REBHOLZ ET AL.

kidney disease, and mortality (2–5). The DASH diet has been
recommended as a healthy dietary pattern for the general
population by the US Department of Health and Human Services
and the US Food and Drug Administration in the US Dietary
Guidelines for Americans as well as by the American Heart
Association for the prevention of cardiovascular disease (6, 7).

Biomarkers of dietary intake are useful as objective measures
of adherence to a dietary pattern that are not influenced by
recall bias, social desirability bias, accuracy of databases used
to analyze dietary data, and other types of systematic error
that accompany self-reported measures of dietary intake (8, 9).
Currently available biomarkers use 24-h urine collections and
assess individual nutrients (e.g., urea nitrogen to estimate dietary
intake of protein) (10). Metabolomic profiling is the detection
of small molecules as a representation of the overall biological
system that is influenced by dietary intake (11, 12). Thus, global,
untargeted metabolomics can be leveraged to identify novel and
established biomarkers of dietary intake, including overall dietary
patterns, as well as to characterize the range of metabolic changes
attributed to dietary intake (13–15).

The objective of this study was to identify metabolites
associated with the DASH dietary pattern by conducting
untargeted metabolomic profiling in serum specimens collected
from participants randomly assigned to the DASH diet, the fruit
and vegetables diet, or a control diet. Themain appeal and novelty
of our study are that we aimed to identified candidate biomarkers
of an overall dietary pattern, which is a more relevant exposure
given that nutrients do not act in isolation and given that specific
dietary patterns, including the DASH diet, are recommended for
health promotion (6, 7).

METHODS

Study design and population

The DASH trial was a multicenter, randomized feeding study
designed to test the effect of overall dietary patterns (rather than
individual nutrients) on blood pressure (1). The trial design and
methods have been previously published (16). In brief, after
a 3-wk run-in period with the control diet, participants were
randomly assigned to 1 of 3 diet interventions for 8 wk: the
DASH diet, the fruit and vegetables diet, or a control diet. Eligible
participants were men and women (≥22 y of age) with systolic
blood pressure <160 mm Hg and diastolic blood pressure of
80–95 mm Hg. Participants provided written informed consent.
The present study was approved by a Johns Hopkins Institutional
Review Board, and procedures were followed in accordance with
the ethical standards of the institutional review board.

In this study, we obtained stored serum specimens from theNa-
tional Health, Lung, and Blood Institute Biologic Specimen and
Data Repository Information Coordinating Center (BioLINCC)
(17–19). To characterize the metabolome in response to the diet
interventions, we used serum specimens collected at the end of
the 8-wk intervention. Among the 459 participants randomly
assigned to the DASH feeding study, 3 participants were not
included in the repository, 113 participants did not provide
informed consent for further use of their biological specimens,
10 participants did not attend the week 8 visit, and 4 participants
did not have a sufficient volume of serum available in the
repository (Supplemental Figure 1). Therefore, specimens from

329 participants were analyzed in the present study. This trial was
registered at http://www.clinicaltrials.gov as NCT03403166.

Dietary exposures

The DASH diet consisted of a high intake of fruit, vegetables,
and low-fat dairy products (1, 16). It included a wide range
of sources of protein, such as meat, fish, poultry, nuts, and
beans. Sugar-sweetened beverages, desserts, and red meat were
restricted. In terms of nutrients, the DASH diet had a high amount
of fiber and protein; low amounts of saturated fat, total fat, and
cholesterol; and intakes of potassium, magnesium, and calcium
at amounts close to the 75th percentile of US consumption based
on national survey data from the 1970s–1980s (20, 21). The fruit
and vegetables diet was similar to the DASH diet with respect to
consisting of a high amount of fiber and amounts of potassium
and magnesium close to the 75th percentile of US consumption.
Relative to the control diet, the fruit and vegetables diet contained
more fruit and vegetables and fewer carbohydrate-rich sweet
desserts and snacks. Otherwise, the fruit and vegetables diet was
similar to the control diet with regard to amounts of calcium (from
dairy products), protein, and fat as well as being similar in terms
of fat composition. For the control diet, macronutrient intake was
similar to average US consumption and intakes of potassium,
magnesium, and calcium were similar to the 25th percentile of
US consumption. Fat intake (saturated fat, in particular, as well as
monounsaturated fat) was lower in the DASH diet relative to both
the control diet and the fruit and vegetables diet. Sodium intake
was 3 g/d in each diet for all 3 diets. Food was provided at 1 of
4 calorie amounts (1600, 2100, 2600, or 3100 kcal/d), and meals
were standardized across centers. The nutrient composition of the
diets derived from chemical analyses of menus prepared during
the trial are presented at the 2100-kcal intake amount (Table 1).

Participants ate either lunch or dinner onsite during weekdays
and were provided with all other meals to be consumed off
site. With regard to beverages, those containing alcohol were
limited to 2 drinks/d and caffeinated beverages were limited to
3 servings/d.

Metabolomic profiling

Global, untargeted metabolomic profiling was performed by
using an untargeted, gas chromatography–mass spectrometry and
liquid chromatography–mass spectrometry protocol with Thermo
Scientific Orbitrap mass spectrometers by Metabolon (22).
Metabolite identification was achieved by matching retention
times, m/z, and related fragment spectra to reference compounds
that were included in each sample queue and characterized in
an extensive chemical library. The known metabolites identified
by this metabolomic panel are highly reproducible due to
the validation of the metabolites with the use of reference
standards to confirm compound structure. Samples were run
in a single batch and in random order and were not ordered
by intervention group. Laboratory technicians worked with de-
identified samples, which lacked any indication of intervention
group or other sample characteristics. The median CV for this
platform was 18.9% (25th–75th percentile: 12.3–32.9%). The
number of metabolites for which the CVwas<10%was 179, and
the number of metabolites for which the CV was <20% was 592.

http://www.clinicaltrials.gov
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TABLE 1
Daily nutritional composition of the randomized diet interventions1

Nutrient
Control
diet

Fruit and
vegetables
diet

DASH
diet

Energy intake, kcal 2084.7 2105.6 2094.4
Carbohydrate, % of energy 49.8 52.3 58.2
Protein, % of energy 14.1 15.2 18.2
Fat, % of energy 36.8 36.7 27.3
SFAs, % of energy 14.4 13.0 7.4
MUFAs, % of energy 12.6 14.0 10.5
PUFAs, % of energy 7.1 6.9 7.6
Sodium, mg 2922.5 2834.3 2880.9
Calcium, mg 446.0 467.9 1220.1
Magnesium, mg 169.2 416.4 464.7
Potassium, mg 1742.8 4433.5 4589.1
Phosphorus, mg 939.7 1007.1 1481.1
Fiber, g/1000 kcal 5.1 14.7 14.3
Cholesterol, mg/1000 kcal 118.0 89.4 67.1
Vitamin A, IU 6192.3 14,409.1 14,020.0
Thiamin (vitamin B-1), mg 1.8 1.7 1.5
Riboflavin (vitamin B-2), mg 1.5 1.3 1.9
Niacin (vitamin B-3), mg 23.1 22.4 22.6
Pantothenic acid (vitamin B-5), mg 3.0 3.8 4.7
Vitamin B-6, mg 1.4 2.7 2.5
Vitamin B-12, μg 2.9 3.1 4.2
Vitamin C, mg 132.8 201.8 266.2
Vitamin E 7.6 10.8 12.7
Folate, μg 168.2 348.2 390.3
Iron, mg 15.6 17.8 20.2
Zinc, mg 7.6 9.9 10.4
Caffeine, mg 2.3 0.0 0.0

1Nutrients at the 2100-kcal intake amount were derived from chemical
analyses of menus prepared during the trial. DASH, Dietary Approaches to
Stop Hypertension.

A total of 1238 metabolites were identified by the untargeted
metabolomic panel. Metabolites with >80% missing in the
serum specimens were excluded (n = 21). For the remaining
metabolites, missing values were imputed to the minimum
detected level. Metabolites were then re-scaled to a median of
1 and log transformed. Metabolites with a variance <0.01 on
the log scale were excluded (n = 11). Values were capped at
5 SDs. After this data-cleaning process, we further excluded
unknown compounds (n = 388). The present study focused on
the remaining 818 standardized known metabolites.

Statistical analysis

Baseline characteristics of the study population are presented
with the use of descriptive statistics according to randomized
diet intervention group. Linear regression was used to assess the
association between the randomized diet intervention groups (ex-
posure) and the individual standardized metabolites (outcome).
Crude regression models as well as multivariable regression
models adjusted for age (continuous), sex (male or female), race
(minority or nonminority), total energy intake (continuous), and
BMI (continuous) were conducted. The primary analysis was
conducted by randomization arm, allowing for approximately
equal distribution of known and unknown confounders across
groups. Because the analytic sample for the present study was

a subset of the randomly assigned participants in the DASH trial,
we adjusted for baseline covariates in order to increase precision
(23).

In addition to analyzing the individual metabolites, partial
least-squares discriminant analysis was used to detect a panel of
metabolites representative of the DASH diet relative to the other
2 diet intervention groups. As a measure of the cumulative ability
to distinguish between diets, we calculated the AUC (C statistic)
for the addition of the panel of 10 metabolites to participant
characteristics (age, sex, race, total energy intake, and BMI) in
a logistic regression model with randomly assigned diet group as
the outcome (24).We calculated C statistics after fitting themodel
on a random sample of two-thirds of the analytic sample and then
validated in the remaining one-third of the sample. Bonferroni
correction was used as a conservative method to account
for multiple testing due to the large number of metabolites
(α-level = 0.05/818 metabolites = 6.11 × 10−5) (25).

RESULTS

In the analytic study population (n = 329), approximately
half of the participants were women (47%), approximately half
were from a minority racial group (57%), and approximately
one-quarter had hypertension (26%) (Table 2). The majority of
study participants were aged 31–55 y (69%). The mean BMI
(in kg/m2) was 28 and the mean blood pressure was 130/84
mm Hg. Baseline characteristics were generally similar for those
randomly assigned to the control diet, the fruit and vegetables
diet, and the DASH diet.

Serum concentrations of 97 known metabolites differed
significantly between participants who were randomly assigned
to the DASH diet compared with participants randomly assigned
to the control diet at the Bonferroni-corrected threshold and after
adjustment for age, sex, race, education, BMI, and hypertension
(Table 3). The majority of these 97 significant metabolites were
lipids (n = 64; 66%). The other categories of metabolites that
were significantly different between those randomly assigned
to the DASH compared with the control diet included amino
acids (n = 15); xenobiotics, which include food components
(n = 10); cofactors and vitamins (n = 6); carbohydrate (n = 1);
and nucleotides (n = 1). The majority of the amino acids had
positive coefficients (12 out of 15), representing higher serum
concentrations of amino acid metabolites in the DASH diet
compared with the control diet. In contrast, the majority of the
lipids had negative coefficients (54 out of 64), indicating lower
concentrations of lipid metabolites in participants randomly
assigned to the DASH diet relative to the control diet. The
smallest P values for the association with the DASH compared
with the control diet were observed for amino acids, vitamins and
cofactors, and xenobiotics (food components) (Figure 1A).

There were a total of 67 serum metabolites that were
significantly different between participants randomly assigned to
the DASH diet compared with participants randomly assigned to
the fruit and vegetables diet at the Bonferroni-corrected threshold
and after adjustment for age, sex, race, education, BMI, and
hypertension, the majority of which were lipids (n = 56; 84%)
followed by amino acids (n = 7), xenobiotics (n = 2), and
cofactors and vitamins (n = 2) (Table 4). All of the amino
acids, xenobiotics, and cofactors and vitamins had positive
coefficients representing higher serum concentrations in the
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TABLE 2
Baseline characteristics according to randomized diet interventions1

Control diet
(n = 108)

Fruit and vegetables
diet (n = 111)

DASH diet
(n = 110) Total (n = 329)

Age category, % (n)
18–30 y 14.8 (16) 11.7 (13) 9.1 (10) 11.9 (39)
31–55 y 63.0 (68) 68.5 (76) 75.5 (83) 69.0 (227)
≥56 y 22.2 (24) 19.8 (22) 15.5 (17) 19.2 (63)

Female sex, % (n) 42.6 (46) 45.1 (50) 52.7 (58) 46.8 (154)
Minority race, % (n) 54.6 (59) 55.0 (61) 60.9 (67) 56.8 (187)
Household income,2 % (n)

<$29,999 34.9 (37) 30.6 (33) 30.9 (34) 32.1 (104)
$30,000–$59,999 43.4 (46) 38.0 (41) 47.3 (52) 42.9 (139)
≥$60,000 21.7 (23) 31.5 (34) 21.8 (24) 25.0 (81)

Employment status,3 % (n)
Full time 76.6 (82) 70.9 (78) 80.0 (88) 75.8 (248)
Part time 7.5 (8) 8.2 (9) 5.5 (6) 7.0 (23)
Retired 7.5 (8) 9.1 (10) 3.6 (4) 6.7 (22)
Other 8.4 (9) 11.8 (13) 10.9 (12) 10.4 (34)

Educational level, % (n)
High school graduate or less 19.4 (21) 19.8 (22) 10.9 (12) 16.7 (55)
Some college 31.5 (34) 31.5 (35) 40.9 (45) 34.7 (114)
College graduate 25.0 (27) 21.6 (24) 31.8 (35) 26.1 (86)
Postgraduate work/degree 24.1 (26) 27.0 (30) 16.4 (18) 22.5 (74)

Current smoker,4 % (n) 26.8 (11) 34.0 (18) 15.6% (7) 25.9 (36)
Weight, kg 82.4 ± 15.0 81.3 ± 13.2 82.6 ± 14.7 82.1 ± 14.3
BMI, kg/m2 28.0 ± 3.9 27.9 ± 4.0 28.3 ± 3.9 28.1 ± 3.9
SBP, mm Hg 130.0 ± 12.5 130.6 ± 13.5 129.9 ± 11.9 130.1 ± 12.6
DBP, mm Hg 85.2 ± 6.8 84.3 ± 7.0 83.7 ± 7.0 84.4 ± 6.9
Ever used BP medication,5 % (n) 46.9 (23) 62.0 (31) 46.2 (24) 48.3 (73)
Hypertension status, % (n) 26.9 (29) 27.9 (31) 24.6 (27) 26.4 (87)

1Values are percentages (n) for categorical variables and means ± SDs for continuous variables. BP, blood pressure; DASH, Dietary Approaches to Stop
Hypertension; DBP, diastolic blood pressure; SBP, systolic blood pressure.

2Five study participants had missing information on household income.
3Two study participant had missing information on employment status.
4One hundred ninety study participants had missing information on cigarette smoking status.
5One hundred seventy-eight study participants had missing information on BP medication use.

DASH diet than in the fruit and vegetables diet. Although a
majority of lipids had negative coefficients, representing lower
serum concentrations with the DASH diet relative to the fruit
and vegetables diet, 8 lipids had positive coefficients, including
diacylglycerol, phosphotidylcholine, phosphotidylethanolamine,
and a metabolite of phospholipid metabolism (trimethylamine
N-oxide). The smallest P value for the association between the
DASH diet compared with the fruit and vegetables diet was
observed for an amino acid, 2-methylserine (Figure 1B).

A total of 44 metabolites differed significantly between the
DASH diet and control diet (Table 3) as well as the DASH diet
and the fruit and vegetables diet (Table 4), including an amino
acid (trans-4-hydroxyproline), vitamin A metabolites (2 isomers
of carotene diol), and lipids (ceramides, diacylglycerols, a fatty
acid, acyl carnitines, lysoplasmalogen, phosphotidylcholine,
phosphotidylethanolamine, plasmalogens, sphingolipids, and
cholesterol).

There was a clear differentiation in the serum metabolome
between the DASH diet and the control diet (Figure 2A).
Component 1 explained 29.4% of the variance and component
2 explained 12.6% of the variance. The differentiation in the
serummetabolome for theDASHdiet comparedwith the fruit and
vegetables diet was less clear (Figure 2B). The first 2 components

explained a slightly smaller proportion of the variance (21.9%
and 11.2%, respectively).

According to Variable Importance in Projection scores, the
10 most influential metabolites distinguishing the DASH diet
from the control diet were as follows: N-methylproline, stachy-
drine, tryptophan betaine, theobromine, 7-methylurate, chiro-
inositol, 3-methylxanthine, methyl glucopyranoside (α and β),
β-cryptoxanthin, and 7-methylxanthine (Figure 3A). Serum
concentrations of N-methylproline, stachydrine, tryptophan be-
taine, chiro-inositol, methyl glucopyranoside (α and β), and β-
cryptoxanthin were higher among those randomly assigned to the
DASH diet than those randomly assigned to the control diet. In
contrast, serum concentrations of theobromine, 7-methylurate, 3-
methylxanthine, and 7-methylxanthine were lower among those
randomly assigned to the DASH diet than in those randomly
assigned to the control diet. These 10 compounds represent a
broad array of metabolic pathways and categories of metabolites,
including amino acids (metabolism of arginine, proline, and
tryptophan), xanthine metabolism, vitamin A metabolism, lipids,
and xenobiotics or food components.

The C statistic for the cumulative ability of these 10
metabolites and participant characteristics (age, sex, race, total
energy intake, and BMI) to predict the DASH diet or the control
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TABLE 3
Full list of 97 metabolites significantly associated with the DASH diet relative to the control diet1

Category and Metabolic Pathway Metabolite β2 SE P

Amino acid
Histidine metabolism N-acetyl-1-methylhistidine −0.45867 0.087168 3.51 × 10−7

Leucine, isoleucine and valine metabolism 2,3-Dihydroxy-2-methylbutyrate 0.595027 0.070507 5.19 × 10−15

Leucine, isoleucine, and valine metabolism β-Hydroxyisovalerate −0.26521 0.05604 4.07 × 10−6

Lysine metabolism Pipecolate 0.694017 0.070502 4.84 × 10−19

Methionine, cysteine, SAM, and taurine metabolism S-methylmethionine 0.782472 0.150277 4.57 × 10−7

Phenylalanine metabolism Phenylalanine 0.068449 0.016297 3.94 × 10−5

Tryptophan metabolism Tryptophan betaine 1.616693 0.1609 1.20 × 10−19

Tyrosine metabolism Dopamine 3-O-sulfate 0.410064 0.072556 5.14 × 10−8

Tyrosine metabolism Gentisate 0.573119 0.126856 1.04 × 10−5

Urea cycle; arginine and proline metabolism N-methylproline 1.943721 0.115198 <1.00 × 10−40

Urea cycle; arginine and proline metabolism trans-4-Hydroxyproline −0.32266 0.038192 4.90 × 10−15*
Urea cycle; arginine and proline metabolism N-δ-acetylornithine 0.550054 0.070972 3.87 × 10−13

Urea cycle; arginine and proline metabolism Argininate 0.309273 0.058899 3.70 × 10−7

Urea cycle; arginine and proline metabolism N2,N5-diacetylornithine 0.369682 0.076189 2.38 × 10−6

Urea cycle; arginine and proline metabolism Urea 0.148103 0.032773 1.04 × 10−5

Carbohydrate
Fructose, mannose and galactose metabolism Galactonate 0.891876 0.187847 3.80 × 10−6

Cofactors and vitamins
Nicotinate and nicotinamide metabolism Trigonelline (N’-methylnicotinate) 0.511047 0.120622 3.39 × 10−5

Tocopherol metabolism γ -Tocopherol/β-tocopherol −0.43779 0.065436 1.99 × 10−10

Vitamin A metabolism β-Cryptoxanthin 1.069524 0.093892 1.02 × 10−23

Vitamin A metabolism Carotene diol (2) 0.557063 0.06252 2.47 × 10−16*
Vitamin A metabolism Carotene diol (1) 0.572143 0.065107 5.50 × 10−16*
Vitamin A metabolism Carotene diol (3) 0.318296 0.068018 5.15 × 10−6

Lipid
Carnitine metabolism Carnitine −0.10746 0.02037 3.29 × 10−7

Ceramides Glycosyl-N-tricosanoyl-sphingadienine (d18:2/23:0) −0.41433 0.046622 2.87 × 10−16*
Ceramides Glycosyl-N-stearoyl-sphingosine (d18:1/18:0) −0.32315 0.03929 2.03 × 10−14*
Ceramides Ceramide (d18:1/17:0, d17:1/18:0) −0.34967 0.059958 2.05 × 10−8

Ceramides Glycosyl-N-behenoyl-sphingadienine (d18:2/22:0) −0.23 0.040415 4.21 × 10−8*
Ceramides Glycosyl ceramide (d18:1/20:0, d16:1/22:0) −0.21128 0.037143 4.27 × 10−8*
Ceramides N-stearoyl-sphingosine (d18:1/18:0) −0.25309 0.047169 2.12 × 10−7

Ceramides N-palmitoyl-sphingosine (d18:1/16:0) −0.1422 0.029282 2.34 × 10−6

Ceramides Glycosyl-N-palmitoyl-sphingosine (d18:1/16:0) −0.13029 0.031797 5.96 × 10−5

Diacylglycerol Linoleoyl-docosahexaenoyl-glycerol (18:2/22:6) [1] 0.750572 0.090322 1.18 × 10−4*
Diacylglycerol Linoleoyl-linolenoyl-glycerol (18:2/18:3) [2] 0.874337 0.129321 1.33 × 10−10*
Diacylglycerol Linoleoyl-linolenoyl-glycerol (18:2/18:3) [1] 0.496667 0.097542 7.87 × 10−7*
Diacylglycerol Linoleoyl-linoleoyl-glycerol (18:2/18:2) [1] 0.293617 0.061658 3.57 × 10−6*
Fatty acid, branched 17-Methylstearate (i19:0) −0.22335 0.049733 1.17 × 10−5

Fatty acid, branched 15-Methylpalmitate (i17:0) −0.25101 0.059751 3.93 × 10−5

Fatty acid, dicarboxylate Heptenedioate (C7:1-DC) −0.49793 0.079246 1.88 × 10−9*
Fatty acid, dicarboxylate Octadecenedioate (C18:1-DC) 0.407662 0.074999 1.51 × 10−7

Fatty acid metabolism (acyl carnitine) Margaroylcarnitine (C17) −0.39482 0.04743 1.08 × 10−14*
Fatty acid metabolism (acyl carnitine) Stearoylcarnitine (C18) −0.33796 0.043196 2.47 × 10−13*
Fatty acid metabolism (acyl carnitine) Arachidoylcarnitine (C20) −0.30085 0.058364 5.85 × 10−7*
Fatty acid metabolism (acyl carnitine) Myristoylcarnitine (C14) −0.30075 0.060395 1.33 × 10−6*
Fatty acid metabolism (acyl carnitine) Palmitoylcarnitine (C16) −0.15729 0.037251 3.60 × 10−5

Fatty acid metabolism (acyl carnitine) Adipoylcarnitine (C6-DC) −0.36867 0.087552 3.77 × 10−5*
Fatty acid, monohydroxy 2-Hydroxydecanoate 0.266559 0.062563 3.08 × 10−5*
Inositol metabolism Chiro-inositol 1.221824 0.166378 4.51 × 10−12

Lysophospholipid 1-Oleoyl-GPC (18:1) −0.11774 0.021036 6.76 × 10−8

Lysophospholipid 1-Arachidonoyl-GPE (20:4n–6) −0.13501 0.030852 1.90 × 10−5

Lysoplasmalogen 1-(1-Enyl-stearoyl)-GPE (P-18:0) −0.23956 0.049415 2.43 × 10−6

Lysoplasmalogen 1-(1-Enyl-palmitoyl)-GPC (P-16:0) −0.16751 0.03463 2.55 × 10−6*
PC 1-Stearoyl-2-oleoyl-GPC (18:0/18:1) −0.22556 0.030072 1.76 × 10−12

PC 1-Palmitoyl-2-stearoyl-GPC (16:0/18:0) −0.12019 0.024556 1.96 × 10−6

PC 1-Stearoyl-2-docosahexaenoyl-GPC (18:0/22:6) 0.15169 0.031927 3.75 × 10−6*
PC 1-Palmitoyl-2-oleoyl-GPC (16:0/18:1) −0.10351 0.022223 5.67 × 10−6

PC 1-Myristoyl-2-palmitoyl-GPC (14:0/16:0) −0.25447 0.059347 2.75 × 10−5

PE 1-Oleoyl-2-docosahexaenoyl-GPE (18:1/22:6) 0.567689 0.112733 1.02 × 10−6

PE 1-Stearoyl-2-docosahexaenoyl-GPE (18:0/22:6) 0.301512 0.062704 2.90 × 10−6*
(Continued)
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TABLE 3 (Continued)

Category and metabolic Pathway Metabolite β2 SE P

Plasmalogen 1-(1-Enyl-stearoyl)-2-linoleoyl-GPE (P-18:0/18:2) −0.37684 0.043281 9.29 × 10−16

Plasmalogen 1-(1-Enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1) −0.38933 0.046662 9.55 × 10−15

Plasmalogen 1-(1-Enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) −0.2533 0.030894 2.39 × 10−14*
Plasmalogen 1-(1-Enyl-palmitoyl)-2-linoleoyl-GPE (P-16:0/18:2) −0.30174 0.041238 5.29 × 10−12*
Plasmalogen 1-(1-Enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4) −0.27658 0.039892 4.98 × 10−11*
Plasmalogen 1-(1-Enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1) −0.23614 0.040243 1.70 × 10−8*
Plasmalogen 1-(1-Enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) −0.16259 0.031136 4.25 × 10−7*
Plasmalogen 1-(1-Enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1) −0.16479 0.032647 9.67 × 10−7*
Plasmalogen 1-(1-Enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/20:4) −0.1884 0.037447 1.05 × 10−6

Sphingolipid metabolism Sphingomyelin (d18:0/18:0, d19:0/17:0) −0.41936 0.06287 2.22 × 10−10*
Sphingolipid metabolism Sphingomyelin (d18:1/18:1, d18:2/18:0) −0.18252 0.028076 5.71 × 10−10*
Sphingolipid metabolism Sphingomyelin (d18:2/18:1) −0.25827 0.039801 6.11 × 10−10*
Sphingolipid metabolism N-stearoyl-sphinganine (d18:0/18:0) −0.67919 0.107103 1.37 × 10−9*
Sphingolipid metabolism Myristoyl dihydrosphingomyelin (d18:0/14:0) −0.21392 0.034377 2.61 × 10−9*
Sphingolipid metabolism Sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1) −0.17172 0.029436 2.03 × 10−8*
Sphingolipid metabolism Sphingomyelin (d17:1/16:0, d18:1/15:0, d16:1/17:0) −0.148 0.025569 2.56 × 10−8*
Sphingolipid metabolism Sphingomyelin (d18:2/21:0, d16:2/23:0) −0.19818 0.034674 3.72 × 10−8*
Sphingolipid metabolism Tricosanoyl sphingomyelin (d18:1/23:0) −0.16936 0.030439 7.99 × 10−8*
Sphingolipid metabolism Sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0) −0.1602 0.029845 2.10 × 10−7*
Sphingolipid metabolism Sphingomyelin (d18:2/14:0, d18:1/14:1) −0.20796 0.03884 2.24 × 10−7*
Sphingolipid metabolism Sphingomyelin (d18:2/16:0, d18:1/16:1) −0.09578 0.018582 5.86 × 10−7*
Sphingolipid metabolism Sphingomyelin (d18:1/19:0, d19:1/18:0) −0.1705 0.03531 2.64 × 10−6*
Sphingolipid metabolism Sphingomyelin (d18:1/14:0, d16:1/16:0) −0.11207 0.023445 3.29 × 10−6

Sphingolipid metabolism Sphingomyelin (d17:2/16:0, d18:2/15:0) −0.17955 0.038941 6.97 × 10−6

Sphingolipid metabolism Stearoyl sphingomyelin (d18:1/18:0) −0.13337 0.029426 9.78 × 10−6*
Sphingolipid metabolism Sphingomyelin (d18:0/20:0, d16:0/22:0) −0.30627 0.06768 1.01 × 10−5*
Sphingolipid metabolism Palmitoyl sphingomyelin (d18:1/16:0) −0.06746 0.016341 5.27 × 10−5*
Sterol Cholesterol −0.13843 0.030192 7.79 × 10−6*

Nucleotide
Pyrimidine metabolism, uracil containing 3-Ureidopropionate 0.238775 0.053182 1.18 × 10−5

Xenobiotics
Benzoate metabolism Catechol sulfate 0.347247 0.080657 2.56 × 10−5

Chemical 2-Aminophenol sulfate 0.525099 0.109775 3.24 × 10−6

Food component/plant Stachydrine 1.839321 0.103578 <1.00 × 10−40

Food component/plant Methyl glucopyranoside (α + β) 1.065195 0.085152 3.39 × 10−27

Food component/plant Homostachydrine −0.31801 0.051036 2.49 × 10−9

Xanthine metabolism Theobromine −1.48162 0.206626 1.25 × 10−11

Xanthine metabolism 3-Methylxanthine −1.08958 0.154741 2.67 × 10−11

Xanthine metabolism 7-Methylxanthine −0.93264 0.144281 7.01 × 10−10

Xanthine metabolism 3,7-Dimethylurate −0.79681 0.126677 1.81 × 10−9

Xanthine metabolism 7-Methylurate −1.37944 0.22019 2.08 × 10−9

1Significance was determined at the Bonferroni-adjusted threshold (P < 6.11 × 10−5). *Significant for both comparisons (DASH diet compared with the
control diet and DASH diet compared with the fruit and vegetables diet). DASH, Dietary Approaches to Stop Hypertension; GPC, glycerophosphorylcholine;
GPE, glycerophosphorylethanolamine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; SAM, S-Adenosyl methionine.

2β-Coefficients represent the serum metabolite concentration associated with the DASH diet compared with the control diet in the multivariable linear
regression model adjusted for age, sex, race, education, BMI, and hypertension. Positive β-coefficients indicate that the metabolite was higher among those
randomly assigned to the DASH diet compared with those randomly assigned to the control diet. Conversely, negative β-coefficients indicate that the metabolite
was lower among those randomly assigned to the DASH diet compared with those randomly assigned to the control diet. Metabolites are sorted by category
and metabolic pathway.

diet was 0.986; when the model was fit on a two-thirds random
sample and validated in the other one-third of the sample, the C
statistics were 0.994 and 0.961, respectively.

The correlation between the 10 most influential metabolites
discriminating between theDASHdiet and the control diet ranged
from –0.24 to 0.94 (Table 5). The strongest correlations were
observed between N-methylproline and stachydrine (P = 0.94),
between 3-methylxanthine and 7-methylxanthine (P= 0.94), and
between theobromine and 3-methylxanthine (P = 0.91). There
was an approximately equal distribution between negative (P< 0;

24 of 45= 53%) and positive (P> 0; 21 of 45= 47%) correlation
coefficients.

The 10 most influential metabolites for distinguishing be-
tween the DASH diet and the fruit and vegetables diet
included 6 metabolites that were higher among those randomly
assigned to the DASH diet [2-methylserine, S-allylcysteine,
4-allylphenol sulfate, linoleoyl-linolenoyl-glycerol (18:2/18:3)
[1], linoleoyl-linolenoyl-glycerol (18:2/18:3) [2], and linoleoyl-
docosahexaenoyl-glycerol (18:2/22:6)] and 4 metabolites that
were lower among those randomly assigned to the DASH diet
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FIGURE 1 Plot of −log10 P values for the adjusted association between serum known metabolites and the DASH diet compared with the control diet (A)
and fruit and vegetables diet (B). P values were calculated from multivariable regression models adjusted for age, sex, minority race, educational level, BMI,
and hypertension status. The analysis was conducted in the 110 participants randomly assigned to the DASH diet and the 108 participants randomly assigned to
the control diet in panel A and among 110 participants randomly assigned to the DASH diet and 111 participants randomly assigned to the fruit and vegetables
diet in panel B. DASH, Dietary Approaches to Stop Hypertension.

[heptenedioate (C7:1-DC), suberoylcarnitine (C8-DC), adipoyl-
carnitine (C6-DC), and 3-methylglutarylcarnitine] compared
with those randomly assigned to the fruit and vegetables diet
(Figure 3B). These compounds represented metabolism of amino
acids, diacylglycerols, fatty acids, acylcarnitines, and xenobi-
otics. For the 10 most influential metabolites for discriminating
between the DASH diet and the fruit and vegetables diet, the
correlations ranged from –0.25 to 0.76 (Table 6).

DISCUSSION

In this feeding trial that enrolled adults with pre- or stage 1
hypertension, an untargeted metabolomic platform identified
a broad array of 44 serum metabolites that were significantly
different between the DASH and control dietary patterns and
between the DASH and the fruit and vegetables dietary patterns
after adjustment for participant characteristics and accounting for
multiple comparisons. The metabolites that were significantly
associated with the DASH diet represented a wide range of
compounds, including lipids, amino acids, food components and
other xenobiotics, cofactors and vitamins, carbohydrates, and
nucleotides. The top 10 metabolites that were most influential
with a high cumulative ability to predict the DASH diet compared
with the control diet, which constitute the panel of candidate
biomarkers of the DASH diet, were as follows: N-methylproline,
stachydrine, tryptophan betaine, theobromine, 7-methylurate,
chiro-inositol, 3-methylxanthine, methyl glucopyranoside,
β-cryptoxanthin, and 7-methylxanthine. The most influential
metabolites for discriminating between the DASH diet
and the fruit and vegetables diet were 2-methylserine, S-
allylcysteine, 4-allylphenol sulfate, linoleoyl-linolenoyl-
glycerol (2 isomers), linoleoyl-docosahexaenoyl-glycerol,
heptenedioate, suberoylcarnitine, adipoylcarnitine, and 3-
methylglutarylcarnitine.

Our study findings address a pressing need in nutritional
epidemiology for objective biomarkers of dietary intake without

the type of error that threatens the validity of estimated
dietary intake assessed by using food-frequency questionnaires,
24-h dietary recalls, and diet records. It has been proposed that
biomarkers of dietary intake, identified by metabolomic profiling
and other methods, could replace or be combined with self-
reported dietary assessment tools to improve the ascertainment
of diet exposures and increase the precision of diet-disease
estimates of association in nutrition studies (26–28). The few
available biomarkers of dietary intake are recovery biomarkers
that rely on 24-h urine collections and reflect limited aspects of
the mineral content of the diet—namely, sodium, potassium, and
urea nitrogen as indicators of sodium, potassium, and protein
intake, respectively (29, 30).

To the best of our knowledge, only 1 study has examined
alterations in the metabolomic profile in response to the DASH
diet (31). In this feeding trial, 13 participants with both
hypertension and heart failure received a low-sodium (50 mmol
Na/d) DASH diet for 21 d.With the use of a targetedmetabolomic
panel that identified 152 compounds, the investigators found
an increase in diglycerides, short-chain fatty acids (acetate,
butyrate, valerate, and heptanoate), total carnitine, and short-
chain carnitines (acetyl, butryl, and propionyl), and a decrease in
triglycerides, cholesterol esters, saturated long-chain fatty acids,
propionate, and isovalerate from the beginning to the end of the
low-sodium DASH diet intervention. The authors postulated that
the increase in short-chain acyl residues with the low-sodium
DASH diet resulted from intestinal production of short-chain
fatty acids due to an increase in dietary intake of fiber or resulted
from the oxidation of branched-chain amino acids.

Similarly, in our study, we observed significantly higher
concentrations of diglycerides (also known as diacylglycerols)
and lower concentrations of long-chain fatty acids and cholesterol
with the DASH diet compared with both the control diet and the
fruit and vegetables diet. Despite substantial alterations in the
lipid profile when the metabolites were analyzed individually
in our study, chiro-inositol was the only lipid that was included
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TABLE 4
Full list of 67 metabolites significantly associated with the DASH diet relative to the fruit and vegetables diet1

Category and metabolic pathway Metabolite β2 SE P

Amino acid
Glutamate metabolism Carboxyethyl-GABA −0.26855 0.063499 3.48 × 10−5

Glycine, serine, and threonine metabolism 2-Methylserine 0.775158 0.052307 1.29 × 10−34

Leucine, isoleucine, and valine metabolism 3-Methylglutarylcarnitine (2) −0.48628 0.094783 6.49 × 10−7

Leucine, isoleucine, and valine metabolism 3-Hydroxy-2-ethylpropionate −0.21344 0.04753 1.16 × 10−5

Methionine, cysteine, SAM, and taurine metabolism S-methylcysteine sulfoxide −0.24825 0.054271 8.11 × 10−6

Methionine, cysteine, SAM, and taurine metabolism Methionine sulfone −0.20213 0.048863 5.07 × 10−5

Urea cycle; arginine and proline metabolism trans-4-Hydroxyproline −0.26211 0.043879 9.64 × 10−9*
Cofactors and vitamins

Vitamin A metabolism Carotene diol (2) 0.261687 0.060962 2.68 × 10−5*
Vitamin A metabolism Carotene diol (1) 0.27648 0.066347 4.48 × 10−5*

Lipid
Ceramides Glycosyl-N-tricosanoyl-sphingadienine (d18:2/23:0) −0.32621 0.045899 1.76 × 10−11*
Ceramides Glycosyl-N-stearoyl-sphingosine (d18:1/18:0) −0.25529 0.039805 9.04 × 10−10*
Ceramides Glycosyl-N-behenoyl-sphingadienine (d18:2/22:0) −0.22449 0.040319 7.72 × 10−8*
Ceramides Glycosyl ceramide (d18:1/20:0, d16:1/22:0) −0.20899 0.038724 1.80 × 10−7*
Ceramides Ceramide (d18:1/17:0, d17:1/18:0) −0.27873 0.060998 8.28 × 10−6*
Diacylglycerol Linoleoyl-docosahexaenoyl-glycerol (18:2/22:6) [1] 0.684538 0.096634 2.01 × 10−11*
Diacylglycerol Linoleoyl-linolenoyl-glycerol (18:2/18:3) [2] 0.80546 0.127795 1.66 × 10−9*
Diacylglycerol Linoleoyl-linolenoyl-glycerol (18:2/18:3) [1] 0.62017 0.10245 6.32 × 10−9*
Diacylglycerol Linoleoyl-linoleoyl-glycerol (18:2/18:2) [1] 0.327509 0.066506 1.69 × 10−6*
Fatty acid, amino 2-Aminooctanoate −0.35515 0.073398 2.51 × 10−6

Fatty acid, dicarboxylate Heptenedioate (C7:1-DC) −0.64989 0.089294 6.42 × 10−12*
Fatty acid metabolism (acyl carnitine) Stearoylcarnitine (C18) −0.29912 0.042352 2.28 × 10−11*
Fatty acid metabolism (acyl carnitine) Adipoylcarnitine (C6-DC) −0.55124 0.079592 5.04 × 10−11*
Fatty acid metabolism (acyl carnitine) Arachidoylcarnitine (C20) −0.40633 0.060272 1.45 × 10−10*
Fatty acid metabolism (acyl carnitine) Margaroylcarnitine (C17) −0.32726 0.052189 1.97 × 10−9*
Fatty acid metabolism (acyl carnitine) Suberoylcarnitine (C8-DC) −0.61373 0.099598 3.54 × 10−9

Fatty acid metabolism (acyl carnitine) Lignoceroylcarnitine (C24) −0.2794 0.053731 4.67 × 10−7

Fatty acid metabolism (acyl carnitine) Octadecanedioylcarnitine (C18-DC) −0.32593 0.063603 6.68 × 10−7

Fatty acid metabolism (acyl carnitine) Myristoylcarnitine (C14) −0.28495 0.060824 4.99 × 10−6*
Fatty acid metabolism (acyl carnitine) 5-Dodecenoylcarnitine (C12:1) −0.32105 0.075642 3.27 × 10−5

Fatty acid, monohydroxy 2-Hydroxyoctanoate −0.35607 0.058764 6.13 × 10−9

Lysoplasmalogen 1-(1-Enyl-palmitoyl)-GPC (P-16:0) −0.13628 0.033048 5.34 × 10−5*
PC 1-Stearoyl-2-docosahexaenoyl-GPC (18:0/22:6) 0.180569 0.031036 2.16 × 10−8*
PC 1-Palmitoyl-2-docosahexaenoyl-GPC (16:0/22:6) 0.101766 0.022672 1.17 × 10−5

PE 1-Stearoyl-2-docosahexaenoyl-GPE (18:0/22:6) 0.277821 0.062915 1.6 × 10−5*
Phospholipid metabolism Trimethylamine N-oxide 0.418681 0.093599 1.25 × 10−5

Plasmalogen 1-(1-Enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) −0.22599 0.030174 1.81 × 10−12*
Plasmalogen 1-(1-Enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1) −0.32627 0.046166 2.22 × 10−11

Plasmalogen 1-(1-Enyl-stearoyl)-2-linoleoyl-GPE (P-18:0/18:2) −0.30648 0.044454 6.05 × 10−11

Plasmalogen 1-(1-Enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1) −0.2358 0.039634 1.09 × 10−8*
Plasmalogen 1-(1-Enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1) −0.16364 0.029343 7.38 × 10−8*
Plasmalogen 1-(1-Enyl-palmitoyl)-2-linoleoyl-GPE (P-16:0/18:2) −0.21172 0.040592 4.33 × 10−7*
Plasmalogen 1-(1-Enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0) −0.13749 0.028368 2.42 × 10−6

Plasmalogen 1-(1-Enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4) −0.19195 0.03993 2.89 × 10−6*
Plasmalogen 1-(1-Enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) −0.14101 0.032593 2.33 × 10−5*
Sphingolipid metabolism Sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0,

d19:1/24:0)
−0.37356 0.046177 4.50 × 10−14

Sphingolipid metabolism Tricosanoyl sphingomyelin (d18:1/23:0) −0.18925 0.028603 2.93 × 10−10*
Sphingolipid metabolism Sphingomyelin (d18:1/17:0, d17:1/18:0, d19:1/16:0) −0.17426 0.028035 2.65 × 10−9*
Sphingolipid metabolism Sphingomyelin (d17:1/16:0, d18:1/15:0, d16:1/17:0) −0.14147 0.024534 2.82 × 10−8*
Sphingolipid metabolism Sphingomyelin (d18:0/18:0, d19:0/17:0) −0.34152 0.06282 1.48 × 10−7*
Sphingolipid metabolism Sphingomyelin (d18:1/18:1, d18:2/18:0) −0.13973 0.025814 1.66 × 10−7*
Sphingolipid metabolism Sphingomyelin (d18:2/23:0, d18:1/23:1, d17:1/24:1) −0.14678 0.027995 3.80 × 10−7*
Sphingolipid metabolism Behenoyl sphingomyelin (d18:1/22:0) −0.10655 0.021701 1.81 × 10−6

Sphingolipid metabolism Sphingomyelin (d18:0/20:0, d16:0/22:0) −0.32968 0.067794 2.24 × 10−6*
Sphingolipid metabolism N-stearoyl-sphinganine (d18:0/18:0) −0.51683 0.106722 2.46 × 10−6*
Sphingolipid metabolism Sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0) −0.15608 0.03224 2.48 × 10−6

Sphingolipid metabolism Sphingomyelin (d18:2/16:0, d18:1/16:1) −0.08372 0.017642 3.82 × 10−6*
Sphingolipid metabolism Sphingomyelin (d18:1/19:0, d19:1/18:0) −0.17133 0.036743 5.50 × 10−6*
Sphingolipid metabolism Sphingomyelin (d18:2/14:0, d18:1/14:1) −0.16539 0.037094 1.33 × 10−5*

(Continued)
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TABLE 4 (Continued)

Category and metabolic pathway Metabolite β2 SE P

Sphingolipid metabolism Lignoceroyl sphingomyelin (d18:1/24:0) −0.12772 0.028749 1.43 × 10−5

Sphingolipid metabolism Stearoyl sphingomyelin (d18:1/18:0) −0.12459 0.028233 1.62 × 10−5*
Sphingolipid metabolism Sphingomyelin (d18:2/18:1) −0.15205 0.034619 1.77 × 10−5*
Sphingolipid metabolism Palmitoyl sphingomyelin (d18:1/16:0) −0.06346 0.014721 2.48 × 10−5*
Sphingolipid metabolism Sphingomyelin (d18:2/21:0, d16:2/23:0) −0.14808 0.034627 2.87 × 10−5*
Sphingolipid metabolism Myristoyl dihydrosphingomyelin (d18:0/14:0) −0.14976 0.035167 3.09 × 10−5*
Sterol Cholesterol −0.13444 0.030218 1.39 × 10−5*

Xenobiotics
Food component/plant 4-Allylphenol sulfate 0.567194 0.098491 2.93 × 10−8

Food component/plant S-allylcysteine 0.813047 0.189377 2.67 × 10−5

1Significance was determined at the Bonferroni-adjusted threshold (P < 6.11 × 10−5). *Significant for both comparisons (DASH diet compared with the
control diet and DASH diet compared with the fruit and vegetables diet). DASH, Dietary Approaches to Stop Hypertension; GABA, γ -aminobutyric acid; GPC,
glycerophosphorylcholine; GPE, glycerophosphorylethanolamine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; SAM, S-Adenosyl methionine.

2β-Coefficients represent the serum metabolite concentration associated with the DASH diet compared with the control diet in the multivariable linear
regression model adjusted for age, sex, race, education, BMI, and hypertension. Positive β-coefficients indicate that the metabolite was higher among those
randomly assigned to the DASH diet compared with those randomly assigned to the control diet. Conversely, negative β-coefficients indicate that the metabolite
was lower among those randomly assigned to the DASH diet compared with those randomly assigned to the control diet. Metabolites are sorted by category
and metabolic pathway.

FIGURE 2 Scores plot of principal components 1 and 2 for discriminating between the DASH diet and the control diet (A) and between the DASH diet and
the fruit and vegetables diet (B). Plots were created from a partial least-squares discriminant analysis of 110 participants randomly assigned to the DASH diet
and the 108 participants randomly assigned to the control diet in panel A and among 110 participants randomly assigned to the DASH diet and 111 participants
randomly assigned to the fruit and vegetables diet in panel B. DASH, Dietary Approaches to Stop Hypertension.

in the panel of 10 most influential metabolites and was found
to be at higher serum concentrations with the DASH diet than
with the control diet. Inositol is a component of structural
lipids (phosphatidylinositol) of cell membranes. A derivative
of inositol with 6 phosphate groups, called phytic acid, is
found in fruit, beans, grains, nuts, and seeds (32–36). Six
lipid-related metabolites were among the most influential
metabolites for differentiating between the DASH diet and the
fruit and vegetables diet, including diacylglycerols [2 isomers

of linoleoyl-linolenoyl-glycerol (18:2/18:3), linoleoyl-
docosahexaenoyl-glycerol (18:2/22:6)], a fatty acid [heptene-
dioate (C7:1-DC)], and acyl carnitines [adipoylcarnitine (C6-
DC), suberoylcarnitine (C8-DC)]. This observation reflects the
main difference between these 2 diet interventions, which was the
lower amount of fat with the DASH diet (saturated fat, in partic-
ular, as well as monounsaturated fat) compared with the fruit and
vegetables diet. In a metabolomic analysis of the Prevención con
DietaMediterránea study, higher concentrations of acylcarnitines
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FIGURE 3 VIP scores for the top 10 serum metabolites for discriminating between the DASH diet and the control diet (A) and between the DASH diet
and the fruit and vegetables diet (B). VIP scores were calculated from a partial least-squares discriminant analysis among 110 participants randomly assigned
to the DASH diet and the 108 participants randomly assigned to the control diet in panel A and among 110 participants randomly assigned to the DASH
diet and 111 participants randomly assigned to the fruit and vegetables diet in panel B. Red boxes for the DASH diet (and green boxes for the control diet)
indicate that serum concentrations of the metabolite were higher among those randomly assigned to the DASH diet compared with those randomly assigned
to the control diet. Green boxes for the DASH diet (and red boxes for the control diet) indicate that serum concentrations of the metabolite were lower among
those randomly assigned to the DASH diet compared with those randomly assigned to the control diet. DASH, Dietary Approaches to Stop Hypertension; VIP,
Variable Importance in Projection.

(we observed higher concentrations with the fruit and vegetables
diet compared with the DASH diet) were associated with a
higher risk of cardiovascular disease and stroke (37).

Our findings are consistent with previous studies that detected
biomarkers of dietary intake, including those which related
metabolites to self-reported dietary intake in observational
studies (38, 39). We found that serum concentrations of
N-methylproline, stachydrine, tryptophan betaine, and methyl
glucopyranoside (α and β) were higher among those who
consumed the DASH diet than those who consumed the control
diet. In 2 cancer case-control studies with metabolomic profiling,
serum concentrations of N-methylproline were found to be
positively associated with dietary intake of citrus fruit and juice
as assessed on a food-frequency questionnaire (38, 39). N-
methylproline and other proline derivatives were detected in
citrus fruit samples (40). Stachydrine, also known as proline
betaine, is another proline derivative that has been proposed
as a biomarker for citrus fruit intake (41–43). Tryptophan
betaine, which is also referred to as lenticin or hypaphorine,
has been identified in extracts of lentils and, as such, has
been proposed as a biomarker of legume consumption (44, 45).
Glucopyranoside is a component of cereals and cereal products
(46). In a metabolomics study of 5 cancer case-control studies
nested within the Alpha-Tocopherol, Beta-Carotene Cancer
Prevention (ATBC) Study that were pooled together, methyl-β-
glucopyranoside was positively associated with total fruit intake
estimated by using a food-frequency questionnaire (13).

One of the candidate biomarkers of the DASH dietary pattern
was in the cofactors and vitamins category, and more specifically
involved in the vitamin A metabolic pathway: β-cryptoxanthin.
β-Cryptoxanthin is a type of a provitamin A carotenoid and
xanthophyll with a natural red pigment that is found in fruit
and vegetables such as red peppers, corn, and citrus (47–50). In
the body, β-cryptoxanthin is converted to the bioactive form of
vitamin A. We also observed that 2 isomers of carotene diols

(carotenoids found in fruit and vegetables) were higher with
the DASH diet than with the control diet as well as the fruit
and vegetables diet. Previous research suggests that multiple
biomarkers would be appropriate to use to represent dietary
intake of fruit and vegetables (51, 52).

Four compounds involved in the xanthine metabolic pathway
were significantly lower in the DASH diet relative to the control
diet: 7-methylxanthine, 3-methylxanthine, 7-methylurate, and
theobromine. These metabolites were highly correlated with
each other in our study. Methylated purines (methylxanthine and
methylurate) are derived from the metabolism of theobromine,
theophylline, and caffeine (53, 54). The lower serum
concentrations of caffeine metabolism byproducts detected
by the metabolomic platform among those following the DASH
diet are consistent with the lack of caffeine in chemical analyses
of the DASH diet administered during the trial. In a metabolomic
study conducted in the Prostate, Lung, Colorectal, and Ovarian
(PLCO) Cancer Screening Trial, serum concentrations of
theobromine were associated with chocolate consumption
and lower diet quality score, as assessed by using a food-
frequency questionnaire (39). In the PLCO Cancer Screening
Trial and another cancer case-control study, 1-methylxanthine
was positively associated with coffee consumption and
3-methylxanthine and 7-methylxanthine were positively
associated with desserts (38, 39). This case-control study also
reported that serum concentrations of 3-methylglutarylcarnitine
(which we observed at lower concentrations in the DASH diet
compared with the fruit and vegetables diet) were positively
associated with sugar-sweetened beverages (38).

Themain strength of the present study is the use of stored spec-
imens collected from a well-designed and rigorously conducted
randomized feeding study. Because food was provided to the
study participants with meals provided onsite and the remaining
meals sent home with participants, one can be relatively certain
that participants followed the assigned diet intervention. Another
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strength of the design is the random assignment of participants to
diet interventions, which allows for equal distribution of known
and unknown confounders across groups. The present study was
conducted in a subset of trial participants. As such, it is possible
that there was some imbalance in confounders between groups.
However, there were no substantial differences in baseline
characteristics, and we adjusted for key explanatory factors in
the multivariable regression model. Last, a key feature of our
study design is that metabolomic profiling for the identification
of biomarkers was conducted in serum specimens, the collection
of which is less burdensome for study participants than the
collection of multiple urine specimens over 24-h periods of
time. The serum metabolome is an indirect measure of dietary
intake, but it captures a physiologically relevant internal dose
and suggests metabolic pathways that may mediate the health
benefits of the DASH dietary pattern. Furthermore, it has been
previously shown that the metabolomic profile of usual dietary
intake in serum is similar to that in urine specimens (38).

A limitation of the present study is the lack of an independent
population for the replication of our results. Further research
is necessary to validate this proposed panel of 10 metabolites
as biomarkers of adherence to the DASH diet. However,
we used the conservative Bonferroni method to adjust for
multiple comparisons and to reduce the likelihood of false-
positive findings. The global metabolomic platform obtained
relative estimates of metabolites. Future studies should use
targeted assays to obtain quantitative results for these novel
biomarkers. Another limitation is the use of biospecimens that
were stored for an extended period of time (20 y). However,
degradation of metabolites over time would be expected to be
nondifferential by randomized diet group. Given the relatively
short duration of the DASH trial (8 wk), we were unable
to assess the stability of the plasma biomarker concentrations
over time. The stability of these metabolites over an extended
period of time, as diet varies, is uncertain and would be a
worthwhile future research direction. It is warranted to conduct
metabolomic profiling at multiple time points over an extended
period of time in a study with repeated assessments of dietary
intake and with a wider range of adherence to the DASH
dietary pattern. Our findings are limited to the dietary patterns
investigated in the DASH trial. Further research is necessary
to examine the specificity of the candidate biomarkers for the
DASH diet compared with dietary patterns that vary in terms of
macronutrients (protein, carbohydrate, fat).

In summary, conducting untargeted metabolomic profiling
on serum specimens collected during a randomized, controlled
feeding study showed that the DASH diet was characterized by
altered serum concentrations of compounds from a spectrum of
metabolic pathways relative to both the control diet and the fruit
and vegetables diet. We detected 10 metabolites that were able to
distinguish between the DASH diet (representing a heart-healthy
dietary pattern) and the control diet (typical of the US diet), which
are candidate biomarkers for assessing adherence to the DASH
diet in future nutrition research studies.
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