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Alzheimer’s disease is a heterogeneous disorder. Understanding the biological basis for this heterogeneity is key for developing

personalized medicine. We identified atrophy subtypes in Alzheimer’s disease dementia and tested whether these subtypes are

already present in prodromal Alzheimer’s disease and could explain interindividual differences in cognitive decline. First we

retrospectively identified atrophy subtypes from structural MRI with a data-driven cluster analysis in three datasets of patients

with Alzheimer’s disease dementia: discovery data (dataset 1: n = 299, age = 67 � 8, 50% female), and two independent exter-

nal validation datasets (dataset 2: n = 181, age = 66 � 7, 52% female; dataset 3: n = 227, age = 74 � 8, 44% female). Subtypes

were compared on clinical, cognitive and biological characteristics. Next, we classified prodromal Alzheimer’s disease partici-

pants (n = 603, age = 72 � 8, 43% female) according to the best matching subtype to their atrophy pattern, and we tested

whether subtypes showed cognitive decline in specific domains. In all Alzheimer’s disease dementia datasets we consistently

identified four atrophy subtypes: (i) medial-temporal predominant atrophy with worst memory and language function, older

age, lowest CSF tau levels and highest amount of vascular lesions; (ii) parieto-occipital atrophy with poor executive/attention

and visuospatial functioning and high CSF tau; (iii) mild atrophy with best cognitive performance, young age, but highest CSF

tau levels; and (iv) diffuse cortical atrophy with intermediate clinical, cognitive and biological features. Prodromal Alzheimer’s

disease participants classified into one of these subtypes showed similar subtype characteristics at baseline as Alzheimer’s

disease dementia subtypes. Compared across subtypes in prodromal Alzheimer’s disease, the medial-temporal subtype

showed fastest decline in memory and language over time; the parieto-occipital subtype declined fastest on executive/attention

domain; the diffuse subtype in visuospatial functioning; and the mild subtype showed intermediate decline in all domains.

Robust atrophy subtypes exist in Alzheimer’s disease with distinct clinical and biological disease expression. Here we observe

that these subtypes can already be detected in prodromal Alzheimer’s disease, and that these may inform on expected

trajectories of cognitive decline.
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Introduction
Alzheimer’s disease is a heterogeneous neurodegenerative

disorder: patients differ in age of dementia onset, genetic

risk factors, clinical presentation, and rate and type of cog-

nitive decline (Lam et al., 2013). Heterogeneity in clinical

presentation and trajectories of cognitive decline already

manifests in the prodromal stage of Alzheimer’s disease

(Vos et al., 2015), i.e. patients with mild cognitive impair-

ment and biomarker evidence of Alzheimer’s pathology

(Dubois et al., 2014). Understanding the biological mechan-

isms that underlie heterogeneity in cognitive symptoms and

trajectories of decline is crucial to help clinicians determine

prognosis and an important step towards precision medicine

in Alzheimer’s disease.

Cognitive subtypes of Alzheimer’s disease dementia (ADD)

have been observed in several independent patient cohorts

and also in autosomal dominant Alzheimer’s disease, which

suggests that clinical heterogeneity has a biological basis

(Tang et al., 2016; Scheltens et al., 2017). Post-mortem stu-

dies also point towards the existence of biological heterogen-

eity by showing neuropathological subtypes consisting of

typical Alzheimer’s disease, limbic predominant, and hippo-

campal sparing, which were associated with differences in

ante-mortem clinical presentation (Murray et al., 2011).

Studying brain atrophy patterns provides an opportunity to

examine biological heterogeneity in vivo (Whitwell et al.,

2012). Imaging studies classifying patients with ADD based

on a priori definitions of heterogeneity have shown that at-

rophy subtypes can explain part of the variability in clinical

and cognitive characteristics, including a medial-temporal at-

rophy variant with predominant memory dysfunction and a

subtype with relative hippocampal sparing with young age of

onset and more pronounced non-memory presentation

(Möller et al., 2013; Byun et al., 2015; Ferreira et al.,

2017; Persson et al., 2017; Risacher et al., 2017). Data-

driven methods provide an unbiased approach to detect at-

rophy subtypes that do not depend on predefined choices,

and so may yield a more refined description of heterogeneity

in Alzheimer’s disease. A few data-driven (Noh et al., 2014;

Hwang et al., 2016; Zhang et al., 2016; Park et al., 2017;

Poulakis et al., 2018) or semi-supervised (Dong et al., 2017;

Varol et al., 2017) imaging studies have detected atrophy

subtypes in patients with probable ADD. However, those

studies used clinical criteria without biomarker confirmation

to select ADD patients, and therefore the possibility cannot

be excluded that subgroups reflect non-Alzheimer pathology.

In addition, most previous studies employed clustering meth-

ods that rely on determining the global similarity of atrophy

patterns amongst individuals, which may not capture particu-

lar atrophy patterns that are present in only a subset of

individuals. Non-negative matrix factorization (NMF) is a

statistical approach that decomposes data into non-negative

parts, and allows us to simultaneously cluster features (e.g.

cortical atrophy) and individuals into subgroups (Lee and

Seung, 1999). A particularly strong aspect of the parts-

based approach of NMF is that it enables identifying subsets

of atrophy features that are correlated in a subset of individ-

uals, but not in other subgroups: such non-linear associations

cannot be detected by methods that depend on global simi-

larity values. As such, this technique is particularly suitable

for atrophy subtype discovery.

Furthermore, it remains unclear when heterogeneity in

atrophy patterns arises during the disease. We hypothesize

that if heterogeneity in atrophy patterns reflects true patho-

physiological subtypes of Alzheimer’s disease, then such

atrophy subtypes should be detectable in prodromal

stages of the disease, and might predict the type of symp-

toms that a patient will develop (Schuff et al., 2012; Leung

et al., 2013). To our knowledge, only one previous study

investigated this question, of which the results supported

the hypothesis that data-driven derived subtypes may

already be present in predementia stages of Alzheimer’s

disease (Zhang et al., 2016). But, as the previous study

had no replication data available, the robustness of these

subtypes remains unclear. Furthermore, it remains un-

known whether such subtypes in prodromal Alzheimer’s

disease show differences in their rates of clinical and cog-

nitive decline, and whether subtypes show decline in spe-

cific cognitive domains.
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In the present study, we used a data-driven clustering ap-

proach to identify and replicate in two external independent

datasets atrophy subtypes in patients with ADD and bio-

marker evidence of amyloid pathology. We compared pa-

tients of the different atrophy subtypes on clinical,

biological and cognitive characteristics that are known to be

associated with Alzheimer’s disease [i.e. CSF total tau (t-tau)

and phosphorylated tau (p-tau), white matter hyperintensities

(WMHs) on MRI, and apolipoprotein E (APOE) e4 genotype

(Van Der Flier et al., 2011; Jack et al., 2013; Lee et al.,

2016)]. Next, we validated our results further and studied

the potential practical use of data-driven derived subtypes,

by classifying participants with prodromal Alzheimer’s disease

into the atrophy subtypes that best matched with their re-

gional grey matter volumes. We examined whether the atro-

phy subtypes in this earlier disease stage showed similar

clinical and biomarker profiles compared to subjects with de-

mentia, and whether atrophy subtypes would show decline in

specific cognitive domains.

Materials and methods

Datasets

We included participants with a good quality 3D T1-weighted
structural MRI based on research criteria for ADD, i.e. having a
clinical diagnosis of ADD and evidence for amyloid pathology in
CSF or on amyloid PET (Supplementary material); or prodromal
Alzheimer’s disease, i.e. clinical diagnosis of mild cognitive impair-
ment and evidence of amyloid pathology (Dubois et al., 2014).
Participants were included from two large cohorts: the Amsterdam
Dementia Cohort (ADC) (van der Flier et al., 2014) and the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (www.adni-
info.org). We first identified atrophy subtypes in a discovery data-
set consisting of ADD patients from the ADC who were scanned
on the same 3 T scanner (ADCd; n = 299). We then assessed
whether we could identify the same clusters in an independent
validation set consisting of ADD patients from the ADC scanned
on either of two different 3 T scanners (ADCv; n = 181). Finally,
we identified clusters in another external validation set consisting
of ADD patients from ADNI (n = 227). Participants with pro-
dromal Alzheimer’s disease from ADC (n = 160) and ADNI
(n = 443) were grouped into one dataset. As per inclusion criteria
for this study, all participants had CSF amyloid-b1-42 or PET
amyloid available, and the majority additionally had CSF t-tau
and p-tau, as well as WMH, and APOE genotype (Table 1 and
Supplementary material). APOE e4 genotype was dichotomized
by the presence of at least one APOE e4 allele.

The ADC consists of participants attending the memory
clinic of the VU University Medical Centre Amsterdam. The
VU University Medical Centre institutional review board
approved the ADC study protocol. All participants gave writ-
ten informed consent for their clinical data to be used for
research purposes. Within the ADNI, participants were re-
cruited over 50 sites throughout the USA and Canada. We
used data of baseline or screening visits from ADNI phase-1,
phase-2, and GO. These data were obtained from the ADNI
database (adni.loni.usc.edu). The ADNI study was approved

by the Institutional Review Boards of all of the participating
institutions. All patients gave written informed consent.

Neuropsychological assessments

In ADC and ADNI the neuropsychological assessment covered
similar cognitive domains, although the cohorts differed in the
specific tests used (Petersen et al., 2010; van der Flier et al.,
2014). To aid comparability between cohorts, we combined
test scores into four domains: memory, language, visuospatial,
and attention/executive. We grouped the attention and executive
domain, as ADNI does not have enough tests available to split
these domains. Details of the neuropsychological tests in each
domain are presented in the Supplementary material. Before
grouping tests in domains, missing values were estimated
using multiple imputation (Supplementary material). All test
scores were z-transformed within each cohort to remove mea-
suring scale, and inverted when necessary such that lower values
represent worse performance. Within each cognitive domain, z-
transformed scores were averaged to obtain the composite
scores. For prodromal Alzheimer’s disease participants, follow-
up z-scores were determined relative to baseline scores.

MRI acquisition and processing

For the ADC, anatomical 3D T1-weighted images were acquired
as part of regular patient care on three different MRI 3 T scan-
ners using an 8-channel head coil. Participants in the ADCd were
all scanned on a single GE Signa scanner and participants in the
ADCv were scanned on one of two scanners: Toshiba Titan 3 T
or Philips Ingenuity PET/MRI. Details on acquisition parameters
are provided in the Supplementary material. In ADNI, 3D T1-
weighted scans were performed on 1.5 T (ADNI-1) or 3 T
(ADNI-2 and ADNI-GO) scanners using previously described
standardized protocols at each site (Jack et al., 2008).

Structural 3D T1 images were segmented into grey matter,
white matter, and CSF using Statistical Parametric Mapping
12 (SPM12) software (Wellcome Trust Centre for
Neuroimaging, University College London, UK) running in
MATLAB 2011a (MathWorks Inc., Natick, MA, USA). The
quality of all segmentations was visually inspected and five
were excluded because of erroneous segmentation. Next, we
defined 1024 cortical and subcortical anatomical areas in the
native space grey matter segmentation of each participant using
a brain parcellation that was generated by randomly subdivid-
ing the automated anatomical labelling atlas (Tzourio-Mazoyer
et al., 2002) into equal-sized regions (Zalesky et al., 2010). This
atlas was warped from standard space to subject space using
inverted parameters that were calculated by non-linear normal-
ization of subject images to standard MNI space. For each
region, grey matter volume was defined as the sum of grey
matter estimates across the voxels multiplied by voxel volume,
and all volumes were normalized by total grey matter volume.

Cluster analysis

To examine atrophy subtypes, we used NMF in R (v.3.3.1,
NMF v.0.20.6) (Gaujoux and Seoighe, 2010), in each of the
three ADD patient datasets. NMF is a data-driven dual-clus-
tering approach that identifies clusters of features (in our study
atrophy patterns) and participants at the same time (Fig. 1).
Participants are grouped into a subtype based on the best fit of
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their data on the identified atrophy clusters. We characterized
each atrophy cluster based on the top 100 cluster-defining fea-
tures (i.e. regions of interest) in each dataset. Spatial corres-
pondence of atrophy cluster solutions across datasets was
assessed with the Dice coefficient (see Supplementary Table 3
and Supplementary Fig. 2 for comparison containing the top
200 features) (Dice, 1945).

Classification of prodromal
Alzheimer’s disease participants

For each of the identified atrophy clusters, we derived a cluster
signature by computing the average grey matter volume in the
cluster-defining regions of interest (across datasets) from all
ADD participants classified into that subtype (Fig. 1).

We then classified participants with prodromal Alzheimer’s
disease based on the lowest absolute minimal distance between
their own regional grey matter values and each of the cluster
signatures.

Statistical analysis

Subtypes were compared on demographic, clinical, neuropsy-
chological, genetic, and biomarker measures with ANOVA,
Kruskal Wallis, or chi-square tests where appropriate. We per-
formed comparisons between subtypes for each dataset separ-
ately, and pooled across datasets. Prior to pooling, variables
that were measured at different scales (i.e. CSF biomarkers,
WMH) were z-transformed. For composite neuropsychological
scores, results were pooled over imputed datasets using
Rubins’s rules as implemented in the R package MICE

Figure 1 NMF in ADD patients and classification of prodromal Alzheimer’s disease participants. Grey matter segmentations were

extracted from structural MRI and parcellated into 1024 equally-sized regions of interest, from which regional grey matter volumes were derived

(for illustrative purposes only eight regions of interest are shown). In ADD patients, NMF, a dual-clustering approach, was used to identify clusters

of features (in this case atrophy patterns) and participants at the same time. Top right: The regions of interest are clustered into distinct atrophy

patterns. Each row represents a region of interest and each column an atrophy cluster. The warmer the colour, the more that region of interest

contributes to the atrophy cluster. Middle: Subjects are grouped into subtypes based on the best fit of their region of interest volumes to each of

the atrophy clusters. Each row represents one participant and the warmer the colour, the better the fit of that participants’ region of interest

volumes to the region of interest volumes of that atrophy cluster. For each of the atrophy clusters, we made a cluster signature by computing the

average volume in each of the top cluster-defining regions of interest across all ADD patients classified as that atrophy subtype. We classified

prodromal Alzheimer’s disease participants based on the lowest absolute minimal distance between their own region of interest volumes and that

of the cluster-signatures. AD = Alzheimer’s disease; CL = cluster; ROI = region of interest.
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Figure 2 Cluster features across datasets. (A) In each dataset we visualized the top 100 most important cluster-defining features. The

bottom row represents the combined important cluster features across datasets: colour bars indicate whether the top 100 cluster-defining features

were observed in 1/3, 2/3 or 3/3 datasets. Right hemisphere is displayed on the left side and vice versa. (B) Subtype-specific biomarker profiles:

mean � standard error (SE) of normalized values (z-scores) of CSF levels of amyloid-b1-42 (abeta42), t-tau and p-tau and WMH. (C) Subtype-

specific cognitive profiles: mean � SE of normalized values (z-scores) of neuropsychological composite scores for memory, language, visuospatial

and executive/attention domains.
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(van Buuren and Groothuis-Oudshoorn, 2011). Voxel-based
morphometry was used to compare patterns of grey matter
loss between the atrophy subtypes, and for reference with a
control group of participants with normal amyloid markers
and normal cognition (264 cognitively normal from ADNI;
88 subjective cognitive decline from ADC) (Supplementary
material). In prodromal Alzheimer’s disease participants, we
also characterized longitudinal trajectories of cognitive decline
in two ways. First, time to dementia (dependent variable) was
compared between subtypes (predictor variable) with a Cox
proportional hazard model with the ‘survival’ package (version
2.41-3) in R. Second, linear mixed models were used to evalu-
ate baseline cognition and decline over time in the cognitive
domains of prodromal Alzheimer’s disease participants classi-
fied in the subtypes using the ‘lme4’ package (version 1.1-12)
in R. Time from baseline (years), subtype, and their interaction
were included as fixed effects. Subject intercepts and slopes
were modelled as random effects. We repeated the linear
mixed model with covariates age, gender and education.
Finally, we analysed point estimate differences between sub-
types in cognitive functioning after 3 years follow-up for a
subset of prodromal Alzheimer’s disease individuals (n = 352,
63%).

Data availability

The ADNI data used is this study were obtained from the
ADNI database (adni.loni.usc.edu). The ADC data used in
this study are available from the corresponding author, upon
reasonable request.

Results

Dataset characteristics

On average, ADD patients were 69 � 8 years old, with the

ADCd and ADCv participants being ~10 years younger

than ADNI participants (P 5 0.0001; Table 1). All patients

had mild to moderate ADD; participants in ADNI had

slightly higher Mini-Mental State Examination (MMSE)

scores (mean 23.3 � 2.0) than participants in ADCd

(21.8 � 3.3) and ADCv (22.3 � 2.0) (P 5 0.001 for

ADCd and P = 0.009 for ADCv).

Subtype identification in Alzheimer’s
disease dementia participants with
NMF

In each of the dementia datasets, four clusters showed an

optimal fit of the data, with high stability of the cluster

solutions (Supplementary Table 1) and explaining more vari-

ance in the data than random partitions (Supplementary

Table 2).

Figure 2 shows the top 100 cluster-defining regions of

interest (i.e. the regions of interest that contribute the

most to that cluster) for each of the four clusters for each

dementia dataset. In each dataset, participants were

grouped into subtypes based on the correspondence of

their regional grey matter values to one of the four atrophy

clusters (Supplementary Fig. 1). On average 19% (range

19–19%) of participants were classified in subtype 1,

which showed temporal-dominant cluster regions, also

including the insula. On average 28% (range 27–30%) of

participants were classified as subtype 2, which showed

parieto-occipital dominant cluster regions. On average

34% (range 33–37%) of participants were classified as sub-

type 3, which showed a dispersed pattern of cluster-defin-

ing regions, amongst which was the motor cortex. The

fourth subtype, including on average 18% (range 16–

21%) of participants, showed most distinctly from the

other subtypes involvement of the lateral and medial fron-

tal lobes, and lateral temporal cortex.

The Dice overlap, assessing the similarity of the cluster-

defining regions of interest across datasets, was reasonable-

to-good for most of the atrophy clusters ranging from 0.29

to 0.72 (Supplementary Table 3). Since the atrophy clusters

showed similar features across datasets (Fig. 2), we pooled

participants of each subtype across datasets for further ana-

lysis. For the same reason, we pooled cluster-defining fea-

tures across the three datasets to compute the cluster

signatures to classify prodromal Alzheimer’s disease

participants.

Atrophy characterization of subtypes

Compared to cognitively normal controls, all subtypes

showed widespread atrophy (Fig. 3A and Supplementary

Table 4). Pairwise comparisons between the dementia sub-

types are presented in Fig. 3B. Subtype 1 had most pro-

nounced medial-temporal atrophy. Subtype 2 had

predominant parieto-occipital atrophy. Subtype 3 had

the mildest atrophy compared to the other subtypes.

Subtype 4 had a diffuse atrophy pattern involving the

temporal and frontal lobes, without strong regional

differences.

Cognitive, genetic and biological
characterization of atrophy subtypes

Participants of the first subtype, with medial-temporal pre-

dominant atrophy, were the oldest and had unequal sex

distribution, with relatively more males (Table 2; see

Supplementary Tables 5 and 6 for dataset-specific results).

They had the lowest CSF t-tau and p-tau levels, and the

highest WMH load (Figs 2B and 4A). They had low

memory and language scores (Figs 2C and 4B). Parieto-oc-

cipital atrophy subtype participants were young and scored

lowest on the MMSE and on visuospatial and executive/

attention domains. They had the second highest t-tau and

p-tau levels, and the lowest amount of WMH. Mild atro-

phy subtype participants were youngest, performed best on

global cognition (highest MMSE) and in all cognitive do-

mains, and had the highest CSF t-tau and p-tau levels.

Finally, the diffuse atrophy subtype participants had inter-

mediate clinical, cognitive and biological features.
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Figure 3 Atrophy patterns in each subtype. (A) Voxel-based morphometry comparison between atrophy subtypes and control (cognitively

normal, amyloid negative) participants. (B) Voxel-based morphometry comparison between atrophy subtypes. Top row: In yellow-red regions

where each subtype has most atrophy compared to all other clusters. Rows 2–5: In yellow-red pairwise comparisons between subtypes. Bottom

row: In blue regions where each subtype has least atrophy (most grey matter) compared to all other subtypes. Colour bar represents t-statistic.

Data are presented at voxel-level PFWE5 0.05. Right hemisphere is displayed on the left side and vice versa. ST1 = subtype 1 (medial-temporal

dominant atrophy); ST2 = subtype 2 (parieto-occipital atrophy); ST3 = subtype 3 (mild atrophy); ST4 = subtype 4 (diffuse atrophy).
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Participants with this subtype had somewhat lower

memory scores and average scores on the other domains.

They had intermediate levels of t-tau, p-tau, and WMH.

Subtypes showed similar levels of CSF amyloid-b1-42 (over-

all P = 0.05), but there was a trend towards lowest amyloid-

b1-42 concentrations in the diffuse subtype. The subtypes

showed similar distributions of APOE e4 genotype.

Classification of prodromal
Alzheimer’s disease participants

Clinical, biological and cognitive characteristics of pro-

dromal Alzheimer’s disease participants can be found in

Supplementary Table 7. Most prodromal Alzheimer’s dis-

ease participants were classified into the mild atrophy sub-

type (55%; Table 3), followed by the parietal-occipital

cortical atrophy (26%), medial-temporal predominant atro-

phy (11%) and diffuse cortical (8%). In the prodromal

stage, subtypes largely showed similar characteristics as

observed in the dementia stage (Table 3, Fig. 4C and D),

apart from CSF tau levels, which were highest for the par-

ieto-occipital subtype (instead of second highest in the de-

mentia datasets). Some prodromal Alzheimer’s disease

subjects (n = 124, 21%) showed a similar match to multiple

subtypes. When repeating analyses taking these subjects as

an additional ‘less well matching’ group, we observed simi-

lar clinical and biological characteristics for the four sub-

types. Subjects with prodromal Alzheimer’s disease who

were less well-matching had intermediate clinical and bio-

marker profiles (data not shown).

Atrophy subtypes and cognitive
decline in prodromal Alzheimer’s
disease

Prodromal Alzheimer’s disease participants of the diffuse cor-

tical subtype had a higher probability of progressing to de-

mentia compared to prodromal participants of the mild

atrophy subtype (hazard ratio: 1.50; 95% confidence interval:

1.01–2.2, P = 0.046) within a mean follow-up period of

2.6 � 1.6 years (range 0.4–10.0) (Fig. 5A). The other two

subtypes had intermediate hazard ratios, which did not stat-

istically differ from the former subtypes. Linear mixed models

showed that the medial-temporal and diffuse subtypes had

lower baseline scores in the language domain, compared to

the mild atrophy subtype (Figs 4C and 5B). Prodromal

Alzheimer’s disease participants of the parieto-occipital sub-

type had worse baseline scores in the executive/attention and

visuospatial domains compared to participants in the mild

atrophy subtype. No baseline group differences in global cog-

nition (MMSE) or in the memory domain were observed

(Supplementary Table 8 and Fig. 5B). All prodromal

Alzheimer’s disease participants showed a longitudinal decline

in global cognition (MMSE) and in each of the cognitive

domains (Fig. 5B). Prodromal Alzheimer’s disease participantsT
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in the medial-temporal subtype showed steeper longitudinal

decline on the MMSE and in the memory domain compared

to participants in the mild atrophy subtype, even though

there were no significant differences at baseline. Prodromal

Alzheimer’s disease participants in the parieto-occipital

atrophy subtype showed the steepest decline over time on

the executive/attention domain. Effect size remained largely

similar after additionally correcting for age, gender and edu-

cation (Supplementary Tables 8 and 9). Point estimates at

3 years follow-up illustrated that the medial-temporal

subtype showed about half a standard deviation worse

language impairment than the parieto-occipital atrophy

subtype (�1.03 � 0.30 versus �0.57 � 0.20, P = 0.008;

Supplementary Table 10), and the parieto-occipital atrophy

subtype showed worse impairment in attention/executive

functioning than the mild and diffuse subtypes (all P 5 0.05).

Discussion
In this study we identified four atrophy subtypes in partici-

pants with ADD using an unbiased data-driven clustering

approach in three independent datasets that differed in pa-

tient populations (e.g. memory clinic versus multicentre

research cohort, geographical location) and imaging

acquisition protocols (single scanner versus multiple scan-

ners). Atrophy subtypes showed distinct clinical, neuropsy-

chological, and biomarker characteristics. Moreover,

atrophy subtypes were already apparent in the prodromal

stage of Alzheimer’s disease, and were associated with de-

cline in subtype-specific cognitive domains.

In line with previous studies, we found a medial-temporal

dominant subtype with the worst memory and language per-

formance, a parieto-occipital subtype in which patients had

poor visuospatial and executive functioning, and a diffuse

cortical atrophy subtype, with intermediate cognitive scores

(Van Der Flier et al., 2011; Noh et al., 2014; Dong et al.,

2017; Hwang et al., 2016; Zhang et al., 2016; Park et al.,

2017; Scheltens et al., 2017; Varol et al., 2017; Poulakis

et al., 2018). We extend the literature further by showing

that atrophy subtypes can be robustly detected across three

independent patient datasets, suggesting that these reflect true

pathophysiological subtypes of Alzheimer’s disease. In line

with this, the atrophy subtypes showed distinct clinical and

biomarker profiles. The medial-temporal subtype was the

oldest and had the highest amount of WMH, suggesting

concomitant small vessel disease. This subtype might be simi-

lar to the limbic-predominant subtype identified in a previous

neuropathological study that was also older and showed

more vascular pathology on autopsy (Murray et al., 2011).

Figure 4 Biomarker and cognitive profile comparisons between subtypes. Data are presented as mean � SE normalized values

(z-scores). P-values are based on ANOVA tests. For neuropsychology, composite scores are presented. Abeta42 = amyloid-b1-42. (A) Biomarker

profile comparisons between subtypes in ADD. (B) Cognitive profile comparisons between subtypes in ADD. (C) Biomarker profile comparisons

between subtypes in prodromal Alzheimer’s disease. (D) Cognitive profile comparisons between subtypes in prodromal Alzheimer’s disease.

Subtype 1 = medial-temporal atrophy; subtype 2 = parieto-occipital atrophy; subtype 3 = mild atrophy; subtype 4 = diffuse cortical atrophy.
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The parieto-occipital cluster might reflect the hippocampal

sparing subtype defined with neuropathology, as partici-

pants of this subtype were also younger and more often

showed an atypical presentation (Murray et al., 2011). In

addition to these three subtypes, we found a fourth sub-

type that was characterized by medial temporal and cor-

tical atrophy compared to control participants, but this

atrophy was relatively mild compared to the other

Alzheimer’s disease subtypes. Two other studies previously

identified a mild atrophy subtype (Dong et al., 2017;

Poulakis et al., 2018), but because those studies did not

include evidence of amyloid pathology in their clustering

analyses, it could not be excluded whether mild atrophy

may have reflected a non-Alzheimer pathology. In add-

ition, Dong et al. (2017) included participants with mild

cognitive impairment without evidence of amyloid path-

ology in their clustering analyses, and so it remained un-

clear whether that mild atrophy may have reflected an

earlier disease stage. Since we only included ADD partici-

pants with biomarker evidence of underlying amyloid

pathology, we minimized the possibility that subtypes re-

flect non-ADD, and we are able to show that this mild

atrophy cluster is a true subtype of ADD. Furthermore,

the mild atrophy cluster showed the highest CSF p-tau and

t-tau levels. This finding is unexpected, since CSF tau has

been hypothesized to increase prior to brain atrophy (Jack

et al., 2013), and both tau and atrophy are associated

with disease progression. Current classification schemes

for disease staging allow us to use CSF tau proteins and

atrophy on MRI interchangeably as markers for neuronal

injury (Vos et al., 2015). Our results suggest, however,

that CSF tau and atrophy may reflect different patho-

logical processes. Future research in which both in vivo

MRI and post-mortem data are available is needed to

examine how our atrophy subtypes relate to neuropatho-

logical characteristics.

We observed atrophy subtypes further in participants

with prodromal Alzheimer’s disease. This finding sup-

ports the idea that different aetiologies may cause disease

heterogeneity in Alzheimer’s disease and that this is al-

ready apparent in the predementia stage. One other study

could also detect atrophy subtypes in the predementia

stage of Alzheimer’s disease (Zhang et al., 2016); how-

ever, although that study observed differences in rate of

decline, it did not find a clear early distinction in the

development of specific symptoms, which may have

been due to the number of subtypes studied (three

versus four, the latter providing a separation of a poster-

ior and frontal atrophy pattern). In the current study, all

prodromal Alzheimer’s disease individuals showed decline

in cognitive functioning, which is in line with the notion

that individuals with mild cognitive impairment and ab-

normal amyloid are at considerable increased risk to

show clinical progression to dementia (Vos et al., 2015)

We observed differences in the rate of decline amongst

subtypes, as well as the type of cognitive domain

that showed more pronounced decline. Although theT
a
b

le
3

C
h

a
ra

c
te

ri
st

ic
s

o
f

p
ro

d
ro

m
a
l

A
lz

h
e
im

e
r’

s
d

is
e
a
se

p
a
rt

ic
ip

a
n

ts
a
ft

e
r

su
b

ty
p

e
c
la

ss
ifi

c
a
ti

o
n

S
T

1
:

m
e
d

ia
l-

te
m

p
o

ra
l

(n
=

6
8
)

S
T

2
:

p
a
ri

e
to

-

o
c
c
ip

it
a
l

(n
=

1
5
5
)

S
T

3
:

m
il
d

(n
=

3
2
9
)

S
T

4
:

d
if

fu
se

(n
=

5
1
)

P
(o

v
e
ra

ll
)

S
T

1

v
e
rs

u
s

S
T

2

S
T

1

v
e
rs

u
s

S
T

3

S
T

1

v
e
rs

u
s

S
T

4

S
T

2

v
e
rs

u
s

S
T

3

S
T

2

v
e
rs

u
s

S
T

4

S
T

3

v
e
rs

u
s

S
T

4

D
e
m

o
g
ra

p
h

ic
s

A
ge

,
ye

ar
s

7
6
�

6
7
3
�

7
7
0
�

8
7
4
�

7
5

0
.0

0
0
1

0
.0

0
6

5
0
.0

0
0
1

0
.5

3
0
.0

0
9

0
.4

8
0
.0

0
2

Se
x
,

fe
m

al
e

(%
)

1
8

(2
9
)

4
5

(3
8
)

1
4
2

(4
8
)

2
0

(4
4
)

0
.0

0
3
4

0
.0

8
9

5
0
.0

0
0
1

0
.1

4
0
.0

5
3

0
.9

5
0
.3

6

E
d
u
ca

ti
o
n
,

ye
ar

s
1
5
.5
�

3
.4

1
4
.7
�

3
.8

1
4
.8
�

3
.3

1
4
.8
�

3
.7

0
.4

9
–

–
–

–
–

–

G
lo

b
a
l

c
o

g
n

it
io

n

M
M

SE
2
7
.4
�

1
.8

2
7
.5
�

1
.9

2
7
.3
�

2
2
7
.3
�

1
.8

0
.8

5
–

–
–

–
–

–

A
P

O
E

g
e
n

o
ty

p
e

A
PO

E
e4

ca
rr

ie
r

(%
)

3
8

(5
6
)

1
0
1

(6
5
)

2
1
8

(6
6
)

2
9

(5
7
)

0
.1

4
–

–
–

–
–

–

D
at

a
ar

e
p
re

se
n
te

d
as

n
(%

)
o
r

m
e
an
�

SD
.P

-v
al

u
e
s

ar
e

b
as

e
d

o
n

ch
i-
sq

u
ar

e
,
A

N
O

V
A

o
r

K
ru

sk
al

l-
W

al
lis

te
st

s
w

h
e
n

ap
p
ro

p
ri

at
e
.
ST

1
=

su
b
ty

p
e

1
(m

e
d
ia

l-
te

m
p
o
ra

ld
o
m

in
an

t
at

ro
p
hy

);
ST

2
=

su
b
ty

p
e

2
(p

ar
ie

to
-o

cc
ip

it
al

at
ro

p
hy

);
ST

3
=

su
b
ty

p
e

3
(m

ild
at

ro
p
hy

);
ST

4
=

su
b
ty

p
e

4
(d

iff
u
se

at
ro

p
hy

).

Atrophy subtypes in Alzheimer’s disease BRAIN 2018: 141; 3443–3456 | 3453



differences in cognitive decline are subtle, recognizing this

phenotypic variation in atrophy subtypes in participants

with prodromal Alzheimer’s disease might aid clinicians

in providing a more accurate prognosis for individual pa-

tients. Our results might in the future also have an impli-

cation for clinical trial design in prodromal Alzheimer’s

disease. The existence of atrophy subtypes that show

specific trajectories of cognitive decline may require

subtype-specific outcome measures tailored to the

expected rate of decline in different cognitive domains.

In the prodromal Alzheimer’s disease group, relatively

more participants were classified in the third, mild atrophy

subtype compared to the ADD group. Various explanations

can be postulated for this finding. First, prodromal

Alzheimer’s disease subjects have generally less atrophy

than ADD patients, and although within the ADD datasets

Figure 5 Disease progression in prodromal Alzheimer’s disease for each of the four atrophy subtypes. (A) Progression curves for

time to dementia onset within 3 years. (B) Decline over time in cognitive functioning in memory, language, visuospatial functioning and executive/

attention plotted per subtype. Subtype 1 = medial-temporal atrophy; subtype 2 = parieto-occipital atrophy; subtype 3 = mild atrophy; subtype 4 =

diffuse cortical atrophy.
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it can be argued that the ‘mild atrophy’ reflects a true sub-

type of ADD, this is more difficult for prodromal subjects

for whom mild atrophy may also reflect their earlier disease

stage. Second, the prodromal Alzheimer’s disease partici-

pants studied here may potentially be (in part) a different

population than the ADD subjects examined. For example,

the prodromal participants are the same age or slightly

older than the ADD patient datasets. Longitudinal studies

are needed to examine whether and how atrophy patterns

of these subtypes will change during the course of

Alzheimer’s disease.

This study has several potential limitations. First, we did

not have pathological data available and so the possibility

of misdiagnosis cannot be excluded. However, we used

biomarker evidence for amyloid aggregation, which pro-

vides strong in vivo support for the presence of underlying

Alzheimer’s pathology (Blennow et al., 2015). Second, loss

to follow-up may have resulted in an underestimation of

cognitive trajectories in prodromal Alzheimer’s disease, in

that participants who were followed for more than 2 years

were slightly younger, had higher MMSE scores and lower

CSF tau levels compared to participants who were followed

for a shorter period of time (Supplementary Table 11).

Third, an alternative interpretation of our atrophy clusters

might be that these represent differences in disease stage, as

subtypes showed differences in MMSE scores. If that were

the case then the subtype showing the lowest MMSE scores

(parieto-occipital subtype) would be expected to show the

most severe atrophy, as well as highest tau levels, and

worse performance in all cognitive domains. In contrast,

our subtypes showed distinct demographics, biomarker

profiles, and cognitive symptoms, suggesting that these at-

rophy subtypes exist in parallel and do not merely reflect

staging. Fourth, some ADD patients did not have a high

cluster membership probability (Supplementary Fig. 1). It is

plausible that some of these participants are a combination

of more than one subtype, which is not captured by dis-

cretizing subtype membership. Future research should fur-

ther investigate more refined subtype definitions based on

continuous membership probability values. Finally, apart

from WMHs, we were not able to examine the influence

of other co-morbid disease, as this information is not read-

ily available from the subjects of the ADC. This would be

an interesting topic for future research.

In conclusion, we have robustly identified four different

atrophy subtypes amongst patients with Alzheimer’s disease

using a data-driven clustering approach. The subtypes

showed distinct demographic, cognitive, and biomarker

profiles. Understanding the causes of this heterogeneity is

an important step towards precision medicine for

Alzheimer’s disease.
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