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Abstract
Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and
linguistic comprehension. Current understanding of the neural mechanism underlying these reading comprehension
components is lacking, and whether and how neuroanatomical features can be used to predict these 2 skills remain largely
unexplored. In the present study, we analyzed a large sample from the Human Connectome Project (HCP) dataset and
successfully built multivariate predictive models for these 2 skills using whole-brain gray matter volume features. The results
showed that these models effectively captured individual differences in these 2 skills and were able to significantly predict these
components of reading comprehension for unseen individuals. The strict cross-validation using the HCP cohort and another
independent cohort of children demonstrated the model generalizability. The identified gray matter regions contributing to the
skill prediction consisted of a wide range of regions covering the putative reading, cerebellum, and subcortical systems.
Interestingly, there were gender differences in the predictive models, with the female-specific model overestimating the males’
abilities. Moreover, the identified contributing gray matter regions for the female-specific and male-specific models exhibited
considerable differences, supporting a gender-dependent neuroanatomical substrate for reading comprehension.

Key words: cross-validation, individual difference, linguistic comprehension, reading comprehension, reading decoding

Introduction
Reading is a unique skill to humans and is crucial for learning
and career achievement in modern societies. Individual reading
abilities differ greatly, and a number of neuroimaging studies
have been devoted to investigate the neural basis for these
individual differences (Shaywitz 1998; Hoeft et al. 2007; Richlan
et al. 2013). The results, however, are far from conclusive.

To explore individual differences in brain and cognition, the
majority of neuroimaging studies have chosen to correlate neu-
roimaging measures with cognitive scores across all recruited
individuals. However, this strategy is limited by the uncertainty
of whether the observed correlational result can be generalized
to unseen individuals (Gabrieli et al. 2015; Dubois and Adolphs

2016). To overcome this limitation, the cross-validation (CV)
approach can been applied, which inherently evaluates the
model’s ability to predict the outcome for a previously unseen
individual (Dosenbach et al. 2010; Ullman et al. 2014; Finn
et al. 2015; Rosenberg et al. 2015). In such an approach, a
neuroimaging-based predictive model for specific cognitive
scores is initially estimated using training samples and is sub-
sequently validated by independent testing samples. Once the
prediction performs well on the testing dataset, individual dif-
ferences in relevant cognition can be efficiently captured with
the estimated model. Furthermore, the predictive features
adopted by the model can be used as effective neuroimaging
markers for the corresponding cognition.
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To date, only one neuroimaging study has explored the CV
prediction for reading-related abilities, however, this study tar-
gets locating the reading-related brain regions by applying a
searchlight algorithm, rather than evaluating the individua-
lized prediction for the reading-related abilities per se (He et al.
2013). In particular, this study did not perform an analysis of
reading comprehension, an important reading ability necessary
to effectively comprehend information from the text input
(Gough and Tunmer 1986). Regarding this ability, the influential
model termed “Simple View of Reading” suggests that reading
comprehension is mainly the product of 2 components: decod-
ing ability and linguistic comprehension (Gough and Tunmer
1986; Hoover and Gough 1990). Whether and how neuroana-
tomical features can be used to predict these 2 crucial reading
comprehension components remain largely unexplored, par-
ticularly using the neuroimaging-based CV method.

Notably, there are well-observed gender differences in read-
ing skills, with females typically performing better than males
(Chiu and McBride-Chang 2006). In line with this, numerous
brain imaging studies have demonstrated significant gender
effects on the functional organization of the reading brain in
both adults (Shaywitz et al. 1995; Rossell et al. 2002) and chil-
dren (Burman et al. 2008). For example, greater bilateral brain
activation was observed among females, while relatively latera-
lized brain activation was observed in males (Shaywitz et al.
1995; Rossell et al. 2002; Burman et al. 2008). Therefore, it is
likely that there exists a significant gender effect on the
neuroimaging-based prediction of reading-related abilities,
including the 2 main reading comprehension abilities: reading
decoding and linguistic comprehension. However, this hypoth-
esis has never been empirically evaluated.

The recently released Human Connectome Project (HCP) data-
set provides an opportunity to explore these issues or hypoth-
eses, and a few recent studies have applied this dataset to
investigate the individualized prediction of fluid intelligence
(Finn et al. 2015) and impulsivity (Marquand et al. 2016).
Specifically, the HCP dataset includes high-quality magnetic res-
onance imaging (MRI) scans and a battery of cognitive tests for a
large number of healthy adults (Van Essen et al. 2012, 2013;
Barch et al. 2013). Importantly, 2 specific cognitive tests for meas-
uring the reading decoding and linguistic comprehension abil-
ities have been applied to each individual in this dataset, making
it possible to thoroughly study neuroimaging-based predictive
models for the 2 reading comprehension components.

In the present study, we sought to ascertain whether the
whole-brain gray matter (GM) volume (GMV) pattern could effect-
ively predict the 2 reading comprehension abilities in previously
unseen individuals. Specifically, the HCP dataset was applied,
and structural MRI data were used to extract GMV features for
each individual. An elastic-net penalized linear regression was
adopted to achieve a sparse model, and a strict 3-fold CV was
employed to evaluate the generalizability of the estimated model.
Particularly, our local center dataset, which consisted of 67
Chinese children, was further included to evaluate the model’s
generalizability. Finally, we explored gender effects on the pre-
dictive models by comparing gender-specific models for the 2
reading comprehension skills.

Materials and Methods
Participants

Three datasets were included: the HCP S500, HCP NEW400, and
Beijing Normal University (BNU) datasets.

HCP S500 Dataset
There are 520 subjects in the HCP S500 release. For all inclu-
sion/exclusion criteria, please see the study by Van Essen et al.
(2013). Thirteen subjects were excluded because 10 of them
lacked T1 structural images and the other 3 subjects had a
giant posterior cranial fossa arachnoid cyst. Finally, 507 sub-
jects (205 males; 22–35 years) were included in our current
study, and their HCP IDs were listed in Supplementary Table 1.

HCP NEW400 Dataset
The newly released HCP S900 dataset include all individuals of
the S500. There are 435 new individuals that were not included
in the S500, and 372 of them (180 males; 22–35 years) have T1

images. The set of these 372 individuals was referred to as the
NEW400 dataset, which was used to evaluate the generalizabil-
ity of the model derived from the HCP S500 dataset (see below).
The HCP IDs for the included individuals of the NEW400 data-
sets were listed in Supplementary Table 2.

BNU Dataset
A dataset of Chinese children that was collected in Beijing
Normal University, referred to as the BNU dataset, was used to
validate the generalizability of the model constructed using
HCP S500 dataset. Seventy-two Chinese primary school chil-
dren were included. Five children were excluded because of
severe head motion during MRI scanning (visually checking the
motion artifacts on the T1-weighted images). Finally, 67 subjects
(39 males; 8–13 years, mean age = 10.97 years) were analyzed, in
which there were 25 dyslexics and 42 typically developing chil-
dren. All participants were right-handed (Oldfield 1971) native
Mandarin speakers who attended school regularly. Normal or
corrected-to-normal vision and hearing were confirmed in
each subject. The participants’ parents reported no evidence
of current or past major neurological or psychiatric disorders
for any individual. All children had normal intelligence quoti-
ents, with scores above 85 on the Chinese version of the
Wechsler Intelligence Scale for Children (C-WISC) (Gong and
Cai 1993). Written informed consent was obtained from the
children and their parents after the details of the study were
comprehensively explained. The Institutional Review Board
of the Beijing Normal University Imaging Center for Brain
Research approved the protocol.

Behavioral Scores

HCP S500 and NEW400 Datasets
Two reading comprehension-related tests, that is, the Oral
Reading Recognition Test (ORRT, measuring the reading decod-
ing ability) and the Picture Vocabulary Test (PVT, measuring
the linguistic comprehension ability), were chosen from the
HCP cognitive battery. Specifically, the ORRT and PVT were
applied using the NIH Toolbox Cognition Battery (Gershon et al.
2013). In the ORRT, letters or words are visually presented on
the screen, and participants are required to pronounce them
accurately. In the PVT, participants hear a spoken word while
viewing 4 pictures, and they are asked to choose the picture
that best represents the meaning of the word. According to the
NIH Toolbox national norms, the raw scores of the 2 tests were
transferred into the age-adjusted score, with mean of 100 and
standard deviation of 15. In addition, the scores for fluid intelli-
gence and emotion processing were included as control mea-
surements. Specifically, fluid intelligence was tested with
Raven’s Progressive Matrices (Bilker et al. 2012), and emotion
processing was evaluated using the Penn Emotion Recognition
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Test (Gur et al. 2001). In S500 dataset, one male and one female
lack the fluid intelligence and emotion processing scores. In
NEW400 dataset, 4 females lack the fluid intelligence and emo-
tion processing scores.

BNU Dataset
This dataset did not receive the same reading tests as the HCP
dataset (i.e., ORRT and PVT). However, 2 related tests out of the
behavioral battery were used, that is, the Character Recognition
Test (CRT) and the Vocabulary Definition Test (VDT), which cor-
responded well to the ORRT and PVT, respectively.

CRT: This task consists of 150 single characters, which are
required to be learned by the end of primary school (Shu et al.
2003). All characters were arranged in increasing difficulty level
and decreasing frequency. Children were required to name the
characters with no time limit and were stopped when they failed
to recognize 15 consecutive items. The standard Z score was
used here. The character recognition ability is a widely used indi-
cator representing Chinese children’s reading decoding skill
(McBride-Chang and Kail 2002; Pan et al. 2011; Li et al. 2012).

VDT: This test was adopted from the C-WISC (Gong and Cai
1993). This subtest consists of 32 words, which are orally pre-
sented to the children. The task for the children is to provide
the definition for each word. Scoring was based on the scoring
scheme in the test manual. The full score for each item was 2.
The children’s answers were rated by 2 well-trained experi-
menters with high inter-rater reliability during pilot tests.
Again, the standard Z score was used. This task has been sug-
gested to be a reasonable proxy for linguistic knowledge in pre-
vious studies (McBride-Chang et al. 2005; Lervag and Aukrust
2010; Zhang et al. 2013).

MRI Acquisition

HCP S500 and NEW400 Datasets
High-resolution (0.7-mm isotropic voxels) structural T1-weighted
images were acquired using a customized Siemens Skyra 3-T
scanner with a 32-channel head coil. The preprocessed images
produced by the PreFreeSurfer pipeline were used. For details on
data acquisition and preprocessing, see the study by Glasser
et al. (2013).

BNU Dataset
All scans were performed using a 3-T Siemens Tim Trio MRI
scanner in the Imaging Center for Brain Research, Beijing
Normal University. Three-dimensional T1-weighted images
with high resolution were obtained using a 3D magnetization
prepared rapid gradient echo (MPRAGE) sequence with the fol-
lowing parameters: slice thickness, 1.33mm; no gap; 144 sagit-
tal slices; repetition time, 2 530ms; echo time, 3.39ms; flip
angle, 7°; acquisition matrix, 256 × 192; field of view, 256 ×
192mm2; and resolution, 1 × 1 × 1.33mm3. An experienced
radiologist reviewed all MR images to assess image quality and
ensure the absence of visible neurological anomalies.

Image Processing

A GMV map in the Montreal Neurological Institute (MNI) space
was generated for each individual using the SPM12 toolbox (http://
www.fil.ion.ucl.ac.uk/spm/). This processing procedure included
the following steps: 1) correcting for bias-field inhomogeneity; 2)
segmenting into GM, white matter and cerebrospinal fluid
density maps using the “new-segment” approach (Ashburner and
Friston 2005); 3) applying Diffeomorphic Anatomical Registrations

Through Exponentiated Lie Algebra (DARTEL) to generate a cus-
tom, study-specific template (Ashburner 2007); 4) warping each
subject’s GM density (GMD) image of the native space to the cus-
tomized template; 5) affine registering the resultant image to the
MNI space and standardizing the GMD map; 6) applying the
modulation by multiplying the resulting GMD map with the non-
linear components of Jacobian determinant, which resulted in
the GMV maps representing the local native-space GM volume
after correcting for individual differences in whole-brain size;
and 7) smoothing GMV maps using a 2-mm full-width at half-
maximum Gaussian kernel. The moderate 2-mm smoothing ker-
nel was chosen to make a balance between reserving anatomical
details and compensating for registration errors (Gardumi et al.,
2016). Finally, to create a GM mask, we smoothed GMD maps
with 2-mm kernel size, averaged all subjects’ resultant GMD
maps, and applied a threshold of 0.2 to this average map
(Krafnick et al. 2014; Xie et al. 2015). The GMV features were then
restricted to this GM mask.

Notably, for a given prediction model, only subjects in the
training set were used to estimate the DARTEL template and GM
mask. The GMD image for each testing subject was then warped
to this specific template, and the GMV features were extracted
within this specific GM mask (see Supplementary Fig. 1). This
ensures a complete isolation of the model training procedure
from the testing individuals. The specific DARTEL template and
GM mask based on all S500 subjects can be found at http://
gonglab.bnu.edu.cn/wp-content/S500_All_DARTEL_Template_
GMMask.rar.

Predictive Models

In the present study, we applied an elastic-net penalized linear
regression model to predict the ORRT/PVT scores. We will
briefly introduce the elastic-net algorithm and prediction
framework as described below.

Elastic-Net Penalized Linear Regression
A linear regression model was adopted to predict individual’s
reading comprehension scores using the voxel-wise GMV fea-
tures across the entire GM mask. The linear model can be for-
mulized as follows:

∑ β β= +
=

xy
i

p

i i
1

0

where y is the reading comprehension score of the individual, p
is the number of voxels in the GM mask, xi is the GMV value at
the voxel i and βi is the regression coefficient.

To avoid overfitting and improve the prediction accuracy,
penalization techniques have been frequently applied during
model fitting (Zou and Hastie 2005). There are 2 common penal-
ization techniques: 1) ridge regression and 2) least absolute
shrinkage and selection operator (LASSO). Specifically, the ridge
regression applies an L2-norm penalty, which minimizes the
sum of the square of the regression coefficients and retains all
features in the model (Hoerl and Kennard 1988). In contrast,
LASSO applies an L1-norm penalty, which minimizes the sum
of the absolute regression coefficients and retains only one rep-
resentative predictor from the correlated predictors. Therefore,
the LASSO will achieve a sparse model by excluding the major-
ity of features from the model (Tibshirani 1996). The sparsity of
the model is quite useful, as it can facilitate the optimization of
the predictors and reduce the model complexity (Wright et al.
2010). Notably, the LASSO can only select N features at most in
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the final model, where N is the sample size (Efron et al. 2004).
This, however, can be problematic for a regression with few
samples but large number of features, such as the present
study (i.e., 510 samples but more than 180 000 features). To
address this difficulty, elastic-net penalized linear regression
was proposed, which uses a weighted combination of L1-norm
and L2-norm penalties to allow for the number of the selected
features to be larger than the sample size, while achieving a
sparse model (Zou and Hastie 2005).

Specifically, the elastic-net penalty takes the following form:

⎜ ⎟⎛
⎝

⎞
⎠∑λ α β α β|| || + ( − )|| ||
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where βj is the regression coefficient for the jth feature and α is
a mixing parameter that controls the relative weighting of the
L1-norm and L2-norm contributions. The elastic-net is equiva-
lent to the ridge regression when α = 0 and is equivalent to the
LASSO when α = 1. The regularization parameter λ controls the
amount of shrinkage that was applied to βj. If λ = 0, the effect of
the elastic-net penalty is canceled. As λ increases from zero,
the coefficients are progressively shrunk.

Prediction Framework Within S500 Dataset
The schematic overview for our prediction framework is shown
in Figure 1 and Supplementary Figure 1. Specifically, for each
subject, the GMV values of all GM voxels were extracted to gen-
erate a feature vector. Then, we applied a nested 3-fold CV (3 F-
CV), with the outer 3 F-CV loop estimating the generalizability
of the model and the inner 3 F-CV loop determining the optimal
parameter set (α, λ) for the elastic-net model (Barretina et al.
2012). The outer 3 F-CV serves as the primary mechanism to
prevent overfitting, together with the inner 3 F-CV for model
selection. Here, we applied the scikit-learn library (version:
0.16.1) to implement the elastic-net penalized regression in the
present study (http://scikit-learn.org/) (Pedregosa et al. 2011).

Outer 3 F-CV: In the outer 3 F-CV, all subjects were divided
into 3 subsets. Particularly, we sorted the subjects according to
their behavioral scores and then assigned the individuals with
a rank of (1st, 4th, 7th, …, 508th) to the first, (2nd, 5th, 8th, …,
509th) to the second, and (3rd, 6th, 9th, …, 510th) to the third
subset. This approach ensured the same distribution of behav-
ioral scores for the 3 subsets and avoided random bias for the
division. Of the 3 subsets, 2 were used as the training set, and
the remaining one was used as the testing set. Each feature
was linearly scaled to the range of zero to one across the

Figure 1. Schematic overview of the prediction framework. (A) Each subject provided a behavioral score and a whole-brain GMV map. All GMV values of voxels within

the GM mask were extracted as the raw feature vector for each subject. (B) The whole dataset was partitioned into 3 subsets, 2 of which were used as the training sets

and the remaining one was used as the testing set. (C) Inner 3-fold CVs were applied to determine the optimal parameter set (α , λ ), and a prediction model was esti-

mated by applying the elastic-net penalized regression to the training samples. (D) Applying the model to predict the behavioral scores for each testing subject. This

figure was inspired by figure 1 reported in the study by Norman et al. (2006).
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training dataset, and the scaling parameters were also applied
to scale the testing dataset (Erus et al. 2015). The training and
testing procedures were repeated 3 times such that each subset
was used once as the testing set. Across the testing subjects for
each fold, the Pearson correlation r and mean absolute error
(MAE) between the actual reading comprehension scores and
predicted scores were computed to quantify the accuracy of the
prediction (Franke et al. 2010; Erus et al. 2015). The correlation r
or MAE was averaged across the 3-folds to produce the final
accuracy metrics.

Inner 3 F-CV: Within each loop of the outer 3 F-CV, we
applied an inner 3 F-CV to determine the optimal α and λ.
Specifically, the training set for each loop of the outer 3 F-CV
was further partitioned into 3 subsets according to their rank of
the behavioral scores, as like the outer loop. Two subsets were
selected to train the model under a given parameter set of
(α, λ), and the remaining subset was used to test the model.
Regarding the (α, λ) choices, we applied a grid search: the α was
chosen from 10 values in the range of [0.2, 1.0] and the λ was
set as λ = γe , where γ was chosen from 20 values in the range of
[−6, 5] (Barretina et al. 2012). This scheme resulted 200 (α, λ)
parameter sets in total. For each set of (α, λ), one MAE and one
correlation r were generated for each inner 3 F-CV loop, and a
mean value across the 3 inner loops was then obtained for the
MAE and correlation r, respectively. The sum of the mean cor-
relation r and reciprocal of the mean MAE was defined as the
inner prediction accuracy, and the (α, λ) set with the highest
inner prediction accuracy across the 200 inner 3 F-CVs was cho-
sen as the optimal parameter set. Notably, the mean correl-
ation r and reciprocal of the mean MAE cannot be summed
directly, because the scales of the raw values for these 2 mea-
sures are quite different. We therefore normalized the correl-
ation r and MAE across the 200 samples, respectively, and then
made the summation with the resultant normalized values.

Accordingly, each loop of the outer 3 F-CV ended up with a
specific optimal parameter set (α, λ). The 2D images showing the
normalized correlation r and MAE as a function of (α, λ) for each
outer loop were included as Supplementary Figures 2 and 3. The
optimal (α, λ) was then used to estimate the final elastic-net pre-
dictive model with the training set of that outer 3 F-CV loop.

The Python/Matlab scripts for our elastic-net analyses and
the resultant PVT/ORRT models estimated by using the HCP
S500 dataset have been made available online: https://github.
com/ZaixuCui/CC_Reading_Prediction.

Significance of Prediction Performance
The permutation test was applied to determine whether the
obtained final accuracy metrics (i.e., the mean correlation r or
mean MAE of the 3 outer 3 F-CV loops) were significantly better
than expected by chance (Dosenbach et al. 2010). Specifically, the
above prediction procedure was re-applied 1 000 times. For each
time, we permuted the behavioral scores across the training
samples without replacement. The P value of the mean correl-
ation r was calculated by dividing the number of permutations
that showed a higher value than the actual value for the real
sample by the total number of permutations (i.e., 1 000).
Similarly, the P value of the mean MAE was the portion of per-
mutations that showed a lower value than the actual value for
the real sample.

Specificity of the Predictive Model
To assess the specificity of the predictive models for reading
decoding and linguistic comprehension, we examined the

correlation between the predicted ORRT or PVT scores and their
actual scores, after adjusting for the fluid intelligence score.
Putatively, the predictive model will capture specific GMV fea-
tures that underlie individual differences for the 2 reading com-
prehension abilities rather than the general cognitive ability, if
the resultant correlation remains significant; this strategy has
been previously applied (Rosenberg et al. 2015). In addition, to
further evaluate the model’s specificity, we adopted the emo-
tional processing scores as a control measurement, and we
tested whether the predicted ORRT or PVT scores were signifi-
cantly correlated with this control measurement.

Gender-Specific Predictive Models

For either the male or female group of S500 dataset, we applied
the same nested 3 F-CV prediction framework to each group,
separately. Specifically, we trained and evaluated a female-
specific model using female subjects and a male-specific model
using male subjects for the 2 reading comprehension scores:
ORRT female-specific model, ORRT male-specific model, PVT
female-specific model, and PVT male-specific model. To evalu-
ate the gender effect on reading comprehension prediction, the
female-specific and male-specific models using all subjects of
each gender group were further applied to predict the scores
for the subjects in the other gender group, respectively. For
each gender group, the predicted scores between the 2 gender-
specific models were compared using a paired t-test.

Independent Validation Using HCP NEW400 Dataset

To evaluate the generalizability of predictive models, we
applied the acquired S500 models to predict the NEW400 sub-
jects. Specifically, for both ORRT and PVT scores, we trained a
predictive model using all S500 subjects (e.g., ORRT model and
PVT model). The resultant ORRT model and PVT model were
then applied to predict relevant scores for each of the NEW400
subjects (372 in total).

Like above, to validate the specificity of the acquired mod-
els, we correlated the predicted PVT/ORRT scores and their
actual scores, after controlling for the fluid intelligence score.
Also, we further tested whether the predicted PVT/ORRT scores
were significantly correlated with the emotion processing
scores.

Finally, for both ORRT and PVT, the acquired S500 male- or
female-specific models were applied to predict the scores for
NEW400 males or females, respectively.

Independent Validation Using BNU Dataset

To further evaluate the generalizability of the acquired S500
models to children and across centers, we applied the acquired
S500 models to predict relevant reading comprehension scores
in BNU dataset.

The ORRT model was applied to predict the CRT scores and
the PVT model was applied to predict the VDT scores of the
BNU children. The gender-specific models for PVT and ORRT of
S500 dataset were applied to predict the CRT and VDT scores
for the BNU boys and girls separately.

Contributing GM Voxels

The GM voxels with a nonzero regression coefficient/weight in
the models trained using all S500 subjects (i.e., ORRT model
and PVT model) can be deemed as the contributing voxels for
the ORRT and PVT prediction, as reported previously
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(Toiviainen et al. 2013; Khundrakpam et al. 2015). Similarly,
gender-specific models for PVT and ORRT of S500 dataset were
applied to locate the contributing GM voxels for gender-specific
prediction.

Notably, the L1-norm penalization of elastic-net algorithm
tends to select only a representative voxel from the correlated
relevant voxels (Zou and Hastie 2005; Carroll et al. 2009;
Grosenick et al. 2013), however, the correlated relevant voxels
could be also informative and includable when mapping the
behavior-related regions. To address this, for nonzero weighted
voxels identified by the regularized elastic-net model, we
searched out all possible voxels (with a zero weight according to
the regularized elastic-net model) that correlate tightly (r > 0.95)
with these voxels, and further assigned them the regression
coefficient/weight of the correlated nonzero weighted voxel.
Both these nonzero voxels and their tightly correlated voxels can
be considered as important voxels that relate to reading compre-
hension abilities. The absolute regression coefficient/weight of a
voxel represents the importance of the GMV feature to ORRT or
PVT (Dosenbach et al. 2010; Erus et al. 2015; Cui et al. 2016).

Results
Overall Prediction Accuracy Within HCP S500

For each CV fold, there were 338 training subjects and 169 testing
subjects. As shown in Figure 2A and B, the predicted ORRT/PVT
scores were highly correlated with the actual scores for all the
3 folds. The mean correlations of the 3 folds were 0.40 and 0.43
for the ORRT and PVT, respectively. According to the permuta-
tion tests, these correlations were significantly higher than those
expected by chance (P < 0.001). The mean MAEs for ORRT and
PVT were 11.73 and 11.16, which were significantly lower than
those expected by chance (permutation tests, P < 0.001).

Importantly, the predicted ORRT/PVT scores for all 3 folds
remained significantly correlated with the actual scores (ORRT,
mean r = 0.30; PVT, mean r = 0.32; permutation tests, both P <
0.001), even after controlling for the fluid intelligence score
(Fig. 2C,D). Furthermore, the predicted ORRT/PVT scores
showed no significant correlation with the emotion processing
scores in most folds (ORRT: first fold, r = −0.09, P = 0.27; second
fold, r = 0.29, P < 0.001; third fold, r = 0.15, P = 0.06; PVT: first
fold, r = 0.09, P = 0.26; second fold r = 0.18, P = 0.02; third fold,
r = 0.04, P = 0.60) (Fig. 2E,F). These results supported the cognitive
specificity of the acquired predictive model to the ORRT/PVT.

Gender-Specific Prediction

Using male or female subjects, gender-specific predictive mod-
els were generated, and both gender-specific models could sig-
nificantly predict the ORRT/PVT scores for subjects in the same
gender. In females, the mean r and MAE of the female-specific
model were 0.34 and 11.79 for the ORRT (Fig. 3A) and 0.43 and
10.37 for the PVT (Fig. 3C), respectively. In males, the mean r
and MAE of the male-specific model were 0.34 and 11.84 for the
ORRT (Fig. 3B) and 0.42 and 11.83 for the PVT (Fig. 3D), respect-
ively. According to the permutation tests, all these mean correl-
ation r were significantly higher than by chance (all P < 0.001),
and all these MAEs were significantly lower than by chance (all
P < 0.001).

Intriguingly, the males’ predicted scores using the female-
specific model were also significantly correlated with the actual
scores of males (ORRT: r = 0.40; PVT: r = 0.42; permutation tests,
both P < 0.001). (Fig. 3F,H). Notably, for both the ORRT and PVT,
the males’ predicted scores using the female-specific model

were significantly higher than the predicted scores using the
male-specific model (pair t-test, both P < 0.001) (Fig. 3J,L).

Likewise, the females’ predicted scores using the male-
specific model were significantly correlated with the actual
scores of females (ORRT: r = 0.32; PVT: r = 0.36; permutation
test, both P < 0.001) (Fig. 3E,G). For both the ORRT and PVT, the
females’ predicted scores using the male-specific model were
significantly lower than the predicted scores using the female-
specific model (pair t-test, both P < 0.001) (Fig. 3I,K).

Independent Prediction in NEW400 Dataset

The S500 models were applied to predict the ORRT and PVT
scores for subjects in NEW400 dataset. The predicted ORRT and
PVT scores were significantly correlated with the actual scores
(ORRT: r = 0.28; PVT: r = 0.34; permutation tests, both P < 0.001)
(Fig. 4A,B). The MAEs for ORRT and PVT were 11.58 and 11.07
(permutation tests, both P < 0.001). After controlling the fluid
intelligence, the prediction accuracy remained significant for
both ORRT (r = 0.16, permutation tests, P = 0.001) and PVT (r =
0.21, permutation tests, P < 0.001) (Fig. 4C,D). The predicted
scores for both ORRT and PVT did not correlate with the emo-
tion processing scores (ORRT: r = 0.04, P = 0.419; PVT: r = 0.01,
P = 0.853) (Fig. 4E,F). These results further support the model
generalizability and specificity to predict the ORRT/PVT.

The S500 male-specific model was used to predict the scores
of NEW400 males. The correlation r between the predicted
male’s scores and the actual scores was 0.22 (permutation test,
P = 0.003) for ORRT and 0.20 (permutation test, P = 0.007) for
PVT (Fig. 5C,D). The corresponding MAEs for ORRT and PVT
were 12.23 (permutation test, P = 0.002) and 12.16 (permutation
test, P = 0.76). Also, the S500 female-specific model can signifi-
cantly predict the scores of NEW400 females for both ORRT (r =
0.28, permutation test, P = 0.003; MAE = 11.69, permutation test,
P < 0.001) and PVT (r = 0.34, MAE = 11.30, permutation tests,
both P < 0.001) (Fig. 5A,B).

Independent Prediction in BNU Children

Given the ORRT-CRT and PVT-VDT correspondence, the S500
model was used to predict the CRT/VDT scores for the BNU
children. The resultant predicted ORRT and PVT scores for BNU
children were correlated with the actual CRT and VDT scores,
respectively. Strikingly, the predicted ORRT scores were signifi-
cantly correlated with the actual CRT scores across all children
(r = 0.24, permutation test, P = 0.024) (Fig. 6A), and there is a
trend for the correlation between the predicted PVT scores and
actual VDT scores (r = 0.20, permutation test, P = 0.062) (Fig. 6B).
Considering the significant differences between the HCP and
BNU cohort (e.g., subjects’ age range, MRI acquisition, and lan-
guage type), these results provide further support for the gener-
alizability of the acquired ORRT/PVT models. Notably, the scale
of the predicted scores is based on ORRT/PVT scores in HCP
dataset, therefore is quite different from the scale of actual
CRT/VDT scores in BNU dataset (Fig. 6A,B).

The male-specific and female-specific models also exhibited
decent generalizability. Specifically, the ORRT and PVT female-
specific models of the S500 dataset could significantly predict
the CRT (r = 0.55, permutation test, P = 0.002) and VDT (r = 0.41,
permutation test, P = 0.029) scores for the BNU girls (Fig. 6C,D).
The ORRT/PVT male-specific models also showed a trend for
predicting the CRT (r = 0.16, permutation test, P = 0.114) and
VDT (r = 0.17, permutation test, P = 0.084) scores for the BNU
boys (Fig. 6E,F).
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Contributing GM Voxels

Both nonzero weighted voxels of the elastic-net model and
their tightly correlated voxels were considered as important
voxels/features that relate to the predicted reading compre-
hension abilities. Given the very scattered distribution of

these voxels, we set a cluster-size threshold of 5 voxels, and
sorted clusters according to the regression coefficient value of
the cluster peak voxel. The most important 10 clusters for the
prediction (i.e., the top 10 clusters) were illustrated for both
ORRT and PVT (Fig. 7). The entire maps showing the spatial

Figure 2. Prediction performance of the estimated ORRT and PVT models using HCP S500 dataset. The predicted scores and actual scores for both the ORRT (A) and

PVT (B) models were significantly correlated across the testing samples in each fold of the CV. After regressing out the fluid intelligence scores, the correlations

remained significant for both the ORRT (C) and PVT (D). In contrast, the correlation between the emotion processing scores and the predicted scores of the ORRT (E) or

PVT (F) was not significant in most folds. The P values in (A–D) were calculated using permutation tests (i.e., 1 000 times).
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Figure 3. Prediction performance of gender-specific models for the ORRT and PVT using HCP S500 dataset. For each gender group, the predicted scores using the same

gender-specific model and actual scores for both ORRT (A, B) and PVT (C, D) were significantly correlated across the testing samples in each fold of the CV. For each

gender group, the correlations between the predicted scores using the other gender-specific model and the actual scores for both the ORRT (E, F) and PVT (G, H) were

also significant. For females, the predicted PVT/ORRT scores using the male-specific model were significantly lower than those predicted by the female-specific model

(K, I). For males, the predicted ORRT/PVT scores using the female-specific model were significantly higher than those predicted by the male-specific model (J, L). All

the P values of correlations were calculated using the permutation tests (i.e., 1 000 times).
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pattern of all prediction-relevant GM voxels are illustrated in
Supplementary Figure 4.

As shown in Figure 7 and Table 1, the most important GM
voxels for predicting the ORRT involved widespread regions
that mainly covered the putative reading system (e.g., lingual
gyrus, inferior temporal gyrus, inferior frontal gyrus, and mid-
dle frontal gyrus), cerebellum (cerebellar tonsil), uncus, and
postcentral gyrus. The most important GM voxels contributing
to PVT prediction also involved multiple regions within the

putative reading system (e.g., medial/middle frontal gyrus,
inferior frontal gyrus, and superior temporal gyrus), the cere-
bellum (cerebellar tonsil), uncus, and parahippocampus (Fig. 7
and Table 2).

For the ORRT female-specific model, the identified most
important GM voxels were mainly located around the inferior
frontal gyrus, postcentral gyrus, superior temporal gyrus,
cuneus, and posterior cingulate (Fig. 7 and Table 1). In contrast,
the male-specific model mainly involved the uncus, medial

Figure 4. Prediction performance of the HCP S500-based ORRT and PVT models in the HCP NEW400 dataset. The scores predicted by the S500-based ORRT/PVT model

and the actual scores were significantly correlated across the NEW400 samples (A, B). After regressing out the fluid intelligence scores, the correlations remained sig-

nificant for both the ORRT (C) and PVT (D). In contrast, the correlation between the emotion processing scores and the predicted scores of the ORRT (E) or PVT (F) was

not significant. The P values in (A–D) were calculated using permutation tests (i.e., 1 000 times).
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frontal gyrus, thalamus, inferior parietal lobule, fusiform gyrus,
and inferior temporal gyrus.

Regarding the PVT female-specific model, the most import-
ant GM contributing voxels were distributed around the middle
frontal gyrus, lingual gyrus, middle temporal gyrus, and inferior
frontal gyrus (Fig. 7 and Table 2). The male-specific model also
covered widely distributed regions, including the middle frontal
gyrus, superior frontal gyrus, cingulate gyrus, cerebellar tonsil,
and lingual gyrus.

Discussion
Using a large cohort of healthy adults in the HCP dataset, the
present study successfully built GMV feature-based multivari-
ate models that efficiently captured individual differences in
reading comprehension abilities (i.e., reading decoding and lin-
guistic comprehension) and could significantly predict these
abilities for unseen individuals. The CV using the HCP S500
cohort and another 2 independent testing datasets (i.e.,
NEW400 dataset and BNU cohort of children) demonstrated
decent generalizability of these models. Particularly, there was
a gender effect on the predictive models, with the female-
specific model overestimating the males’ reading comprehen-
sion abilities, while the male-specific model underestimated
the females’ abilities. Intriguingly, the GM regions contributing
to the prediction exhibited considerable differences between
the male-specific and female-specific models, suggesting

distinguished neuroanatomical substrates for reading compre-
hension between males and females.

Individualized Prediction of the Reading Decoding and
Linguistic Comprehension Abilities

To identify neuroimaging markers for capturing cognitive indi-
vidual differences, it has been recently advocated to push the
traditional correlational analysis across all samples to the indi-
vidualized prediction that naturally evaluates whether the
identified neuroimaging markers can be generalized and used
in practice (Gabrieli et al. 2015; Dubois and Adolphs 2016). In
line with this, the present study applied a strict 3-fold CV to
assess the GMV-based prediction for unseen individuals, and
significant prediction accuracies for the independent testing
subjects in NEW400 and BNU datasets were achieved.
Particularly, the estimated HCP S500 models were able to sig-
nificantly predict the corresponding scores for completely inde-
pendent individuals in the BNU dataset (collected in Beijing,
China), further supporting the models’ robustness and general-
izability across sites. Notably, the subjects in the BNU dataset
are Chinese children, and 25 of them were recognized as dys-
lexics. The HCP S500 model predicted that the dyslexic children
would show relatively lower values for the score of character
recognition, which is the main discriminative behavioral test
for identifying Chinese dyslexics (Shu et al. 2003; Zhang et al.
2012; Cui et al. 2016). Therefore, the models possess potential

Figure 5. Prediction performance of the HCP S500-based gender-specific models in the NEW400 dataset. The scores of NEW400 females predicted by S500 female mod-

el were significantly correlated with their actual scores for both ORRT (A) and PVT (B). Similarly, S500 male model can significantly predict NEW400 males’ ORRT (C)

and PVT scores (D). All the P values were calculated using the permutation tests (i.e., 1 000 times).
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clinical significance to identify dyslexics. Finally, the HCP mod-
els were estimated using English-speaking adults but could be
generalized to predict the reading comprehension abilities in
Chinese-speaking children, strongly suggesting some common
neuroanatomical substrate underlying these abilities among
alphabetic and logographic languages.

It should be noted that a significant difference from chance
indicates the meaningfulness of a prediction model, and an
effect size (e.g., r) tells more about what extent the model can
predict scores for unseen individuals and therefore is more
suitable to assess generalizability. However, to determine a
“good” generalizability, there is no definitive standard for a

cutoff value in relevant effect size. Generally in statistics, a cor-
relation r greater than 0.3 would be considered as a well-
accepted effect size (Cohen 1992). While many of our predic-
tions reached such a well-accepted effect size, some of them
had an r value smaller than 0.3 though showing a significant
difference from chance (P < 0.05). Moreover, in terms of
whether the models can be solely applied in practice and
replace relevant behavioral tests when evaluating individual’s
reading comprehension abilities or identifying dyslexic
patients, the prediction results (even for the highest r value of
0.55 in Fig. 6C) are not good enough. The predicted data from
our models however might join the data from behavioral tests,

Figure 6. Prediction performance of the HCP S500-based ORRT and PVT models in the BNU dataset. The scores predicted by the HCP-based ORRT/PVT model and the

actual CRT/VDT scores using the whole dataset (A, B), female group (C, D), and male group (E, F) were mostly significantly correlated. All the P values were calculated

using the permutation tests (i.e., 1 000 times).
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resulting a more accurate assessment for individuals. Further
investigation is highly desired to keep improving the accuracy
and generalizability of our currently proposed predictive
models.

Regarding neuroimaging features, the present study adopted
the GMV, a neuroimaging measure characterizing the gross GM
morphology. Notably, the GMV was extracted from the struc-
tural MRI data; this feature is very easy to acquire and requires
no task in the scanner. Structural MRI-based features, such as
the GMV, are advantageous for neuroimaging-based prediction
or discrimination in practice. In fact, the GMV has been applied
to predict individual age (Erus et al. 2015), working memory
(Ullman et al. 2014), and clinical scores (Stonnington et al.
2010). Here, we further demonstrate the possibility of predicting
reading-related abilities using the GMV feature, indicating
a diagnostic role for the GMV in various reading-related
disorders.

Computationally, our current results demonstrate the
effectiveness of elastic-net penalized linear regression for pre-
diction analysis with a large number of features. Compared
with traditional linear regression, this algorithm applied the
elastic-net regularization technique, which could prevent over-
fitting and improve the generalization ability by adding add-
itional constraints or penalty to the model (Carroll et al. 2009;
Teipel et al. 2015, 2016). This technique performs automatic

feature selection while training the model, leading to a sparse
predictive model, which is particularly attractive in cases of a
large number of features and a small sample size. A few studies
have applied the elastic-net regression to decode neural activ-
ity (Carroll et al. 2009; Grosenick et al. 2013) or predict behav-
ioral phenotype (Fagerholm et al. 2015) and age (Khundrakpam
et al. 2015). The present study further indicated the promising
role of elastic-net regression in reading prediction and relevant
biomarker discovery.

Neuroanatomical Substrates Underlying Reading
Decoding and Linguistic Comprehension

Previous studies have consistently proposed that the human
reading system consists of frontal, temporoparietal, and
occipito-temporal cortical regions, responsible for mapping vis-
ual information onto auditory and semantic representations
(Fiez and Petersen 1998; McCandliss and Noble 2003;
Vandermosten et al. 2012). This putative reading system could
be further divided into 2 distinct neural routes: dorsal phono-
logical route (including superior temporal gyrus, inferior par-
ietal lobule, and inferior frontal gyrus) and ventral orthographic
route (including occipito-temporal regions) (Schlaggar and
McCandliss 2007).

Figure 7. The most important contributing 10 clusters for the S500 PVT/ORRT prediction models using all subjects, female group, or male group. The clusters are

arranged from the left to the right, according to a descending order of the peak value of the cluster. Each cluster was marked out by a red circle. The entire maps

showing the spatial pattern of all prediction-relevant GM voxels are illustrated in Supplementary Figure 4.
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In the present study, the prediction models identified a wide
range of important GM regions that significantly contributed to
the prediction of the 2 reading comprehension components;
these regions mainly covered the putative reading system,
cerebellum system, and subcortical system. This widespread
distribution across various systems is compatible with the fact
that reading comprehension is a complex skill consisting of
multiple cognitive components, such as phonological pro-
cesses, orthographic processes, and lexical-semantic processes
(Pugh et al. 2000). As expected to some degree, the putative
reading system was found to be prominent in predicting both
reading decoding and linguistic comprehension. For example,
some classical regions in reading comprehension exhibited a
great deal of contribution for the prediction, including the
superior temporal system and inferior frontal gyrus. This con-
tribution implied an important role of phonological processing
in the 2 reading comprehension skills (Pugh et al. 2000; Hoeft
et al. 2011; Price 2012; Richlan et al. 2013).

On the other hand, the results showed that the left cerebellar
tonsil was very important in predicting both the reading decod-
ing and linguistic comprehension skills. This finding is compat-
ible with previous functional MRI (fMRI) studies, in which
cerebellar activation was repeatedly observed during reading-
related tasks (Turkeltaub et al. 2002; Jobard et al. 2003). Our

observed cerebellar contribution to the prediction provides fur-
ther support for the cerebellum theory, in which impairments in
cerebellar are believed to play an essential role in reading disabil-
ity via affecting procedural learning, fluent processing and the
acquisition of automatic processes (Nicolson et al. 2001; Nicolson
and Fawcett 2007; Stoodley and Stein 2011).

Gender Differences in Predicting Reading
Comprehension Abilities

The estimated female-specific model could be used to predict
the scores of males, and the predicted scores were significantly
correlated with the actual scores of males, and vice versa. This
finding indicates some common mechanism between the
female and male models. Despite the significant correlation,
the female-specific model overestimated the males’ scores, and
the male-specific models underestimated the females’ scores.
This result is not that surprising, given the previously observed
age-related female advantages in reading abilities (Wallentin
2009). Possibly, the female-specific model captures specific
brain features on a more mature developmental stage and thus
overestimated the males’ performance. Genetic differences and
different response styles to the environment of the 2 genders
might also play a role in this gender difference.

Table 1 The identified most important 10 clusters contributing the ORRT prediction in the S500 model using all, female, or male subjects,
respectively

ID Region Hemisphere Cluster size Talairach Weight

Voxels X Y Z

Model based on all subjects of S500 dataset
1 Uncus R 34 −24 2 −52 0.330
2 Postcentral gyrus R 21 −60 18 48 0.275
3 Lingual gyrus R 45 −20 58 −4 0.239
4 Inferior temporal gyrus L 21 52 24 −20 0.226
5 Cuneus L 62 10 94 4 0.219
6 Inferior frontal gyrus R 15 −46 −34 2 0.213
7 Middle frontal gyrus L 10 18 −40 −14 0.201
8 Cerebellar tonsil L 16 40 42 −42 0.199
9 Superior parietal lobule R 7 −30 70 56 0.196
10 Superior frontal gyrus R 9 −28 −56 30 0.193

Model based on female subjects of S500 dataset
1 Inferior frontal gyrus R 5 −34 −6 −12 1.700
2 Postcentral gyrus R 6 −60 18 48 1.491
3 Superior temporal gyrus R 6 −50 16 2 1.330
4 Cuneus L 12 14 90 2 1.059
5 Posterior cingulate R 5 −2 58 8 0.804
6 Inferior parietal lobule R 8 −54 34 44 0.670
7 Culmen L 10 2 48 −6 0.651
8 Lingual gyrus R 14 −2 96 −12 0.645
9 Cuneus L 5 16 88 18 0.623
10 Postcentral gyrus R 5 −28 36 66 0.572

Model based on male subjects of S500 dataset
1 Uncus R 38 −24 2 −50 0.289
2 Medial frontal gyrus L 5 2 −54 6 0.270
3 Thalamus L 65 4 12 −4 0.241
4 Inferior parietal lobule L 9 44 36 38 0.231
5 Fusiform gyrus R 31 −40 42 −20 0.230
6 Inferior temporal gyrus L 20 34 8 −48 0.198
7 Lingual gyrus L 14 22 78 −4 0.196
8 Subcallosal gyrus L 45 24 −4 −16 0.187
9 Medial frontal gyrus R 6 −6 −6 −22 0.183
10 Supramarginal gyrus L 7 46 52 30 0.180

1668 | Cerebral Cortex, 2018, Vol. 28, No. 5



In concordance, there were differences in the GM contrib-
uting spatial pattern between the female-specific and male-
specific models. Although the GM spatial maps for both
female-specific and male-specific models involved the putative
reading system, cerebellum system, and subcortical system, the
specific constitution within each system was distinct between
genders, particularly within the putatively reading system.
Specifically, the male-specific ORRT model for reading decoding
involved the left inferior temporal gyrus, but it did not contribute
to the female-specific model. According to the well-known dual
route model of word reading (Coltheart and Rastle 1994), the left
inferior temporal gyrus belongs to the ventral lexicosemantic
route for reading (Jobard et al. 2003). The involvement of the ven-
tral lexicosemantic route in males may reflect that males depend
more on the semantic processing in the ORRT test, compared
with females. However, the ORRT is a simple phonological
decoding task for measuring reading decoding; thus, the involve-
ment of semantic processing may be redundant for efficient
reading decoding. Therefore, recruitment of the lexicosemantic
route in males may impede this type of processing.

Regarding the linguistic comprehension ability, both male-
specific and female-specific PVT models revealed an important
role of the left lingual gyrus, suggesting the involvement of
word processing in this particular cognitive processing (Howard

et al. 1992; Price et al. 1994; Hoeft et al. 2007). However, the
female-specific PVT model involved the left inferior frontal
gyrus, but the male-specific model did not identify this region.
Notably, the inferior frontal gyrus identified in the female-
specific model previously revealed an association with articula-
tion (Fiez and Petersen 1998) and was more recently implicated
in the extraction of phonological elements (Gandour et al.
2002). Given the PVT performance requires the ability to extract
useful phonological components and transform them into effi-
cient articulation form (Fiez and Petersen 1998). It is possible
that the involvement of the left inferior frontal gyrus in females
is to enhance their performance via advantageous phonological
processing skills, but males cannot benefit from this process.

Finally, a few issues relating to the current study should be
addressed. First, the large HCP sample used to estimate the
models included only adults with an age range from 22 to 35
years. While the model could be generalized to another inde-
pendent sample of children, it would be intriguing to exclu-
sively obtain models specific to different age ranges and further
evaluate the predictive differences between them. In addition,
the currently used HCP sample involves twins and siblings,
which may limit the generalizability of our results to some
degree. Second, the present study performed cross-sectional
prediction, although longitudinally predictive models that

Table 2 The identified most important 10 clusters contributing the PVT prediction in the S500 model using all, female, or male subjects,
respectively

ID Region Hemisphere Cluster size Talairach Weight

Voxels X Y Z

Model based on all subjects of S500 dataset
1 Medial frontal gyrus R 26 −6 −6 −22 0.297
2 Uncus R 16 −26 2 −52 0.258
3 Middle frontal gyrus R 8 −20 −42 −12 0.256
4 Cerebellar tonsil L 18 40 42 −42 0.253
5 Middle frontal gyrus R 16 −32 −50 2 0.243
6 Inferior frontal gyrus L 15 54 −20 26 0.234
7 Parahippocampus extend to superior temporal gyrus L 114 32 4 −12 0.233
8 Middle frontal gyrus L 80 52 −24 28 0.221
9 Middle frontal gyrus L 10 34 −52 −6 0.200
10 Precuneus L 22 16 60 30 0.197

Model based on all subjects of female S500 dataset
1 Middle frontal gyrus R 9 −20 −42 −12 0.313
2 Middle frontal gyrus R 28 −42 −38 −12 0.241
3 Lingual gyrus L 35 26 90 −10 0.238
4 Middle temporal gyrus R 42 −58 52 6 0.236
5 Inferior frontal gyrus L 68 54 −18 14 0.236
6 Superior frontal gyrus R 13 −30 −54 32 0.229
7 Inferior occipital gyrus L 28 34 86 −12 0.228
8 Cingulate gyrus L 19 10 −2 46 0.220
9 Medial frontal gyrus R 6 −16 −62 4 0.220
10 Inferior frontal gyrus R 195 −34 −6 −12 0.215

Model based on all subjects of male S500 dataset
1 Middle frontal gyrus L 20 42 −16 20 0.645
2 Superior frontal gyrus R 17 −26 −38 46 0.640
3 Cingulate gyrus L 12 0 48 38 0.636
4 Cerebellar tonsil R 39 −38 40 −42 0.592
5 Lingual gyrus L 19 14 80 −6 0.578
6 Middle occipital gyrus L 11 52 58 −8 0.559
7 Medial frontal gyrus L 21 2 −54 6 0.558
8 Inferior parietal lobule R 32 −48 50 48 0.556
9 Culmen L 25 50 46 −40 0.551
10 Medial frontal gyrus L 22 24 −44 12 0.548
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predict future reading decoding and linguistic comprehension
outcomes using early brain imaging data are of great import-
ance and should be thoroughly investigated in the future.
Finally, further investigations are encouraged to achieve a bet-
ter and more reliable prediction performance by combing the
GMV and other neuroimaging features, for example, those
derived from diffusion-weighted and fMRI data.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.

Funding
This work was supported by the National Science Foundation of
China (81671772), the 973 program (2014CB846103, 2013CB837300),
the National Science Foundation of China (81322021, 31271082,
31671126, 31611130107), the 863 program (2015AA020912), and the
Fundamental Research Funds for the Central Universities. Data
were provided [in part] by the Human Connectome Project, WU-
Minn Consortium (Principal Investigators: David Van Essen and
Kamil Ugurbil; 1U54MH091657) funded by the 16 National
Institutes of Health (NIH) Institutes and Centers that support the
NIH Blueprint for Neuroscience Research; and by the McDonnell
Center for Systems Neuroscience at Washington University.

Notes
Conflict of Interest: None declared.

References
Ashburner J. 2007. A fast diffeomorphic image registration algo-

rithm. NeuroImage. 38:95–113.
Ashburner J, Friston KJ. 2005. Unified segmentation.

NeuroImage. 26:839–851.
Barch DM, Burgess GC, Harms MP, Petersen SE, Schlaggar BL,

Corbetta M, Glasser MF, Curtiss S, Dixit S, Feldt C, et al. 2013.
Function in the human connectome: task-fMRI and individ-
ual differences in behavior. Neuroimage. 80:169–189.

Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin
AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, et al.
2012. The Cancer Cell Line Encyclopedia enables predictive
modelling of anticancer drug sensitivity. Nature. 483:
603–607.

Bilker WB, Hansen JA, Brensinger CM, Richard J, Gur RE, Gur RC.
2012. Development of abbreviated nine-item forms of the
Raven’s standard progressive matrices test. Assessment. 19:
354–369.

Burman DD, Bitan T, Booth JR. 2008. Sex differences in neural
processing of language among children. Neuropsychologia.
46:1349–1362.

Carroll MK, Cecchi GA, Rish I, Garg R, Rao AR. 2009. Prediction
and interpretation of distributed neural activity with sparse
models. NeuroImage. 44:112–122.

Chiu MM, McBride-Chang C. 2006. Gender, context, and reading:
a comparison of students in 43 countries. Sci Stud Read. 10:
331–362.

Cohen J. 1992. A power primer. Psychol Bull. 112:155–159.
Coltheart M, Rastle K. 1994. Serial processing in reading aloud:

evidence for dual-route models of reading. J Exp Psych. 20:
1197.

Cui Z, Xia Z, Su M, Shu H, Gong G. 2016. Disrupted white matter
connectivity underlying developmental dyslexia: a machine
learning approach. Hum Brain Mapp. 37:1443–1458.

Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD,
Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar
CN. 2010. Prediction of individual brain maturity using fMRI.
Science. 329:1358–1361.

Dubois J, Adolphs R. 2016. Building a science of individual dif-
ferences from fMRI. Trends Cogn Sci. 20:425–443.

Efron B, Hastie T, Johnstone I, Tibshirani R. 2004. Least angle
regression. Ann Stat. 32:407–451.

Erus G, Battapady H, Satterthwaite TD, Hakonarson H, Gur RE,
Davatzikos C, Gur RC. 2015. Imaging patterns of brain devel-
opment and their relationship to cognition. Cereb Cortex.
25:1676–1684.

Fagerholm ED, Hellyer PJ, Scott G, Leech R, Sharp DJ. 2015.
Disconnection of network hubs and cognitive impairment
after traumatic brain injury. Brain. 138:1696–1709.

Fiez JA, Petersen SE. 1998. Neuroimaging studies of word read-
ing. Proc Natl Acad Sci USA. 95:914–921.

Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J,
Chun MM, Papademetris X, Constable RT. 2015. Functional
connectome fingerprinting: identifying individuals using pat-
terns of brain connectivity. Nat Neurosci. 18:1664–1671.

Franke K, Ziegler G, Klöppel S, Gaser C. 2010. Estimating the age
of healthy subjects from T1-weighted MRI scans using ker-
nel methods: exploring the influence of various parameters.
NeuroImage. 50:883–892.

Gabrieli JDE, Ghosh SS, Whitfield-Gabrieli S. 2015. Prediction as
a humanitarian and pragmatic contribution from human
cognitive neuroscience. Neuron. 85:11–26.

Gandour J, Wong D, Lowe M, Dzemidzic M, Satthamnuwong N,
Tong Y, Li X. 2002. A cross-linguistic FMRI study of spectral
and temporal cues underlying phonological processing.
J Cogn Neurosci. 14:1076–1087.

Gardumi A, Ivanov D, Hausfeld L, Valente G, Formisano E,
Uludag K. 2016. The effect of spatial resolution on decoding
accuracy in fMRI multivariate pattern analysis. NeuroImage.
132:32–42.

Gershon RC, Slotkin J, Manly JJ, Blitz DL, Beaumont JL, Schnipke D,
Wallner-Allen K, Golinkoff RM, Gleason JB, Hirsh-Pasek K,
et al. 2013. IV. NIH Toolbox Cognition Battery (CB): measuring
language (vocabulary comprehension and reading decoding).
Monogr Soc Res Child Dev. 78:49–69.

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B,
Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, et al.
2013. The minimal preprocessing pipelines for the Human
Connectome Project. Neuroimage. 80:105–124.

Gong Y, Cai T. 1993. Wechsler intelligence scale for children,
Chinese revision (C-WISC). China: Map Press Hunan.

Gough PB, Tunmer WE. 1986. Decoding, reading, and reading
disability. Rem Spec Educ. 7:6–10.

Grosenick L, Klingenberg B, Katovich K, Knutson B, Taylor JE.
2013. Interpretable whole-brain prediction analysis with
GraphNet. NeuroImage. 72:304–321.

Gur RC, Ragland JD, Moberg PJ, Bilker WB, Kohler C, Siegel SJ, Gur
RE. 2001. Computerized neurocognitive scanning: II. The pro-
file of schizophrenia. Neuropsychopharmacology. 25:777–788.

He Q, Xue G, Chen C, Chen C, Lu ZL, Dong Q. 2013. Decoding the
neuroanatomical basis of reading ability: a multivoxel mor-
phometric study. J Neurosci. 33:12835–12843.

Hoeft F, McCandliss BD, Black JM, Gantman A, Zakerani N,
Hulme C, Lyytinen H, Whitfield-Gabrieli S, Glover GH,
Reiss AL, et al. 2011. Neural systems predicting long-term
outcome in dyslexia. Proc Natl Acad Sci USA. 108:361–366.

Hoeft F, Meyler A, Hernandez A, Juel C, Taylor-Hill H,
Martindale JL, McMillon G, Kolchugina G, Black JM, Faizi A,

1670 | Cerebral Cortex, 2018, Vol. 28, No. 5

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhx061/-/DC1


et al. 2007. Functional and morphometric brain dissociation
between dyslexia and reading ability. Proc Natl Acad Sci
USA. 104:4234–4239.

Hoerl A, Kennard R. 1988. Ridge regression. In: Kotz S,
Balakrishnan N, editors. Encyclopedia of statistical sciences.
New York: Wiley. p. 129–136.

Hoover WA, Gough PB. 1990. The simple view of reading. Read
Writ. 2:127–160.

Howard D, Patterson K, Wise R, Brown WD, Friston K, Weiller C,
Frackowiak R. 1992. The cortical localization of the lexicons.
Positron emission tomography evidence. Brain. 115(Pt 6):
1769–1782.

Jobard G, Crivello F, Tzourio-Mazoyer N. 2003. Evaluation of the
dual route theory of reading: a metanalysis of 35 neuroima-
ging studies. Neuroimage. 20:693–712.

Khundrakpam BS, Tohka J, Evans AC, Brain Development
Cooperative Group. 2015. Prediction of brain maturity based
on cortical thickness at different spatial resolutions.
Neuroimage. 111:350–359.

Krafnick AJ, Flowers DL, Luetje MM, Napoliello EM, Eden GF.
2014. An investigation into the origin of anatomical differ-
ences in dyslexia. J Neurosci. 34:901–908.

Lervag A, Aukrust VG. 2010. Vocabulary knowledge is a critical
determinant of the difference in reading comprehension
growth between first and second language learners. J Child
Psychol Psychiatry. 51:612–620.

Li H, Shu H, McBride-Chang C, Liu HY, Peng H. 2012. Chinese chil-
dren’s character recognition: Visuo-orthographic, phono-
logical processing and morphological skills. J Res Read. 35:
287–307.

Marquand AF, Rezek I, Buitelaar J, Beckmann CF. 2016.
Understanding heterogeneity in clinical cohorts using nor-
mative models: beyond case-control studies. Biol Psychiatry.
80:552–561.

McBride-Chang C, Cho JR, Liu H, Wagner RK, Shu H, Zhou A,
Cheuk CS, Muse A. 2005. Changing models across cultures:
associations of phonological awareness and morphological
structure awareness with vocabulary and word recognition
in second graders from Beijing, Hong Kong, Korea, and the
United States. J Exp Child Psychol. 92:140–160.

McBride-Chang C, Kail RV. 2002. Cross-cultural similarities in
the predictors of reading acquisition. Child Dev. 73:
1392–1407.

McCandliss BD, Noble KG. 2003. The development of reading
impairment: a cognitive neuroscience model. Ment Retard
Dev Disabil Res Rev. 9:196–204.

Nicolson RI, Fawcett AJ. 2007. Procedural learning difficulties:
reuniting the developmental disorders? Trends Neurosci. 30:
135–141.

Nicolson RI, Fawcett AJ, Dean P. 2001. Developmental dyslexia:
the cerebellar deficit hypothesis. Trends Neurosci. 24:508–511.

Norman KA, Polyn SM, Detre GJ, Haxby JV. 2006. Beyond mind-
reading: multi-voxel pattern analysis of fMRI data. Trends
Cogn Sci. 10:424–430.

Oldfield RC. 1971. The assessment and analysis of handedness:
the Edinburgh inventory. Neuropsychologia. 9:97–113.

Pan J, McBride-Chang C, Shu H, Liu H, Zhang Y, Li H. 2011. What
is in the naming? A 5-year longitudinal study of early rapid
naming and phonological sensitivity in relation to subse-
quent reading skills in both native Chinese and English as a
second language. J Educ Psychol. 103:897.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V.

2011. Scikit-learn: machine learning in Python. J Mach Learn
Res. 12:2825–2830.

Price CJ. 2012. A review and synthesis of the first 20 years of
PET and fMRI studies of heard speech, spoken language and
reading. Neuroimage. 62:816–847.

Price CJ, Wise RJ, Watson JD, Patterson K, Howard D,
Frackowiak RS. 1994. Brain activity during reading. The
effects of exposure duration and task. Brain. 117(Pt 6):
1255–1269.

Pugh KR, Mencl WE, Jenner AR, Katz L, Frost SJ, Lee JR, Shaywitz
SE, Shaywitz BA. 2000. Functional neuroimaging studies of
reading and reading disability (developmental dyslexia).
Ment Retard Dev Disabil Res Rev. 6:207–213.

Richlan F, Kronbichler M, Wimmer H. 2013. Structural abnor-
malities in the dyslexic brain: a meta-analysis of voxel-
based morphometry studies. Hum Brain Mapp. 34:
3055–3065.

Rosenberg MD, Finn ES, Scheinost D, Papademetris X, Shen X,
Constable RT, Chun MM. 2015. A neuromarker of sustained
attention from whole-brain functional connectivity. Nat
Neurosci. 19:165–171.

Rossell SL, Bullmore ET, Williams SC, David AS. 2002. Sex differ-
ences in functional brain activation during a lexical visual
field task. Brain Lang. 80:97–105.

Schlaggar BL, McCandliss BD. 2007. Development of neural sys-
tems for reading. Annu Rev Neurosci. 37:475–503. 30.

Shaywitz BA, Shaywitz SE, Pugh KR, Constable RT, Skudlarski P,
Fulbright RK, Bronen RA, Fletcher JM, Shankweiler DP, Katz L,
et al. 1995. Sex differences in the functional organization of
the brain for language. Nature. 373:607–609.

Shaywitz SE. 1998. Dyslexia. N Engl J Med. 338:307–312.
Shu H, Chen X, Anderson RC, Wu N, Xuan Y. 2003. Properties of

school Chinese: implications for learning to read. Child Dev.
74:27–47.

Stonnington CM, Chu C, Kloppel S, Jack CR Jr., Ashburner J,
Frackowiak RS, Alzheimer Disease Neuroimaging Initiative.
2010. Predicting clinical scores from magnetic resonance
scans in Alzheimer’s disease. Neuroimage. 51:1405–1413.

Stoodley CJ, Stein JF. 2011. The cerebellum and dyslexia. Cortex.
47:101–116.

Teipel SJ, Grothe MJ, Metzger CD, Grimmer T, Sorg C, Ewers M,
Franzmeier N, Meisenzahl E, Kloppel S, Borchardt V, et al.
2016. Robust detection of impaired resting state functional
connectivity networks in Alzheimer’s disease using elastic
net regularized regression. Front Aging Neurosci. 8:318.

Teipel SJ, Kurth J, Krause B, Grothe MJ, Alzheimer’s Disease
Neuroimaging Initiative. 2015. The relative importance of
imaging markers for the prediction of Alzheimer’s disease
dementia in mild cognitive impairment – Beyond classical
regression. Neuroimage Clin. 8:583–593.

Tibshirani R. 1996. Regression shrinkage and selection via the
lasso. J R Stat Soc Series B Stat Methodol. 58:267–288.

Toiviainen P, Alluri V, Brattico E, Wallentin M, Vuust P. 2013.
Capturing the musical brain with Lasso: dynamic decoding of
musical features from fMRI data. NeuroImage. 88C:170–180.

Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA. 2002. Meta-
analysis of the functional neuroanatomy of single-word
reading: method and validation. NeuroImage. 16:765–780.

Ullman H, Almeida R, Klingberg T. 2014. Structural maturation
and brain activity predict future working memory capacity
during childhood development. J Neurosci. 34:1592–1598.

Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E,
Ugurbil K, WU-Minn HCP Consortium. 2013. The WU-Minn

Neuroanatomical Prediction of Reading Comprehension Cui et al. | 1671



Human Connectome Project: an overview. Neuroimage. 80:
62–79.

Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TE,
Bucholz R, Chang A, Chen L, Corbetta M, Curtiss SW, et al.
2012. The Human Connectome Project: a data acquisition
perspective. Neuroimage. 62:2222–2231.

Vandermosten M, Boets B, Wouters J, Ghesquiere P. 2012. A
qualitative and quantitative review of diffusion tensor
imaging studies in reading and dyslexia. Neurosci Biobehav
Rev. 36:1532–1552.

Wallentin M. 2009. Putative sex differences in verbal abilities
and language cortex: a critical review. Brain Lang. 108:
175–183.

Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S. 2010. Sparse
representation for computer vision and pattern recognition.
Proc IEEE. 98:1031–1044.

Xie Y, Cui Z, Zhang Z, Sun Y, Sheng C, Li K, Gong G, Han Y, Jia J.
2015. Identification of amnestic mild cognitive impairment
using multi-modal brain features: a combined structural
MRI and Diffusion Tensor Imaging Study. J Alzheimers Dis.
47:509–522.

Zhang Y, Tardif T, Shu H, Li H, Liu H, McBride-Chang C, Liang W,
Zhang Z. 2013. Phonological skills and vocabulary knowledge
mediate socioeconomic status effects in predicting reading
outcomes for Chinese children. Dev Psychol. 49:665–671.

Zhang Y, Zhang L, Shu H, Xi J, Wu H, Zhang Y, Li P. 2012.
Universality of categorical perception deficit in developmen-
tal dyslexia: an investigation of Mandarin Chinese tones.
J Child Psychol Psychiatry. 53:874–882.

Zou H, Hastie T. 2005. Regularization and variable selection via
the elastic net. J R Stat Soc Series B Stat Methodol. 67:
301–320.

1672 | Cerebral Cortex, 2018, Vol. 28, No. 5


	Individualized Prediction of Reading Comprehension Ability Using Gray Matter Volume
	Introduction
	Materials and Methods
	Participants
	HCP S500 Dataset
	HCP NEW400 Dataset
	BNU Dataset

	Behavioral Scores
	HCP S500 and NEW400 Datasets
	BNU Dataset

	MRI Acquisition
	HCP S500 and NEW400 Datasets
	BNU Dataset

	Image Processing
	Predictive Models
	Elastic-Net Penalized Linear Regression
	Prediction Framework Within S500 Dataset
	Significance of Prediction Performance
	Specificity of the Predictive Model

	Gender-Specific Predictive Models
	Independent Validation Using HCP NEW400 Dataset
	Independent Validation Using BNU Dataset
	Contributing GM Voxels

	Results
	Overall Prediction Accuracy Within HCP S500
	Gender-Specific Prediction
	Independent Prediction in NEW400 Dataset
	Independent Prediction in BNU Children
	Contributing GM Voxels

	Discussion
	Individualized Prediction of the Reading Decoding and Linguistic Comprehension Abilities
	Neuroanatomical Substrates Underlying Reading Decoding and Linguistic Comprehension
	Gender Differences in Predicting Reading Comprehension Abilities

	Supplementary Material
	Funding
	Notes
	References


