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Abstract

Motivation: Glycosylation is one of the most heterogeneous and complex protein post-

translational modifications. Liquid chromatography coupled mass spectrometry (LC-MS) is a com-

mon high throughput method for analyzing complex biological samples. Accurate study of glycans

require high resolution mass spectrometry. Mass spectrometry data contains intricate sub-

structures that encode mass and abundance, requiring several transformations before it can be

used to identify biological molecules, requiring automated tools to analyze samples in a high

throughput setting. Existing tools for interpreting the resulting data do not take into account related

glycans when evaluating individual observations, limiting their sensitivity.

Results: We developed an algorithm for assigning glycan compositions from LC-MS data by

exploring biosynthetic network relationships among glycans. Our algorithm optimizes a set of like-

lihood scoring functions based on glycan chemical properties but uses network Laplacian regular-

ization and optionally prior information about expected glycan families to smooth the likelihood

and thus achieve a consistent and more representative solution. Our method was able to identify

as many, or more glycan compositions compared to previous approaches, and demonstrated

greater sensitivity with regularization. Our network definition was tailored to N-glycans but the

method may be applied to glycomics data from other glycan families like O-glycans or heparan sul-

fate where the relationships between compositions can be expressed as a graph.

Availability and implementation Built Executable: http://www.bumc.bu.edu/msr/glycresoft/ and

Source Code: https://github.com/BostonUniversityCBMS/glycresoft.

Contact: jzaia@bu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Glycosylation modulates the structures and functions of proteins

and lipids in a broad class of biological processes (Varki, 2017).

Accurate mass measurement defines monosaccharide composition

given assumptions regarding glycan class and biosynthesis (Zaia,

2008). For unseparated mixtures, mass spectrometry analysis deter-

mines the mass-to-charge ratio values for only the most abundant

glycans; dynamic range for detection of glycans is poor because of

ion suppression (Peltoniemi et al., 2013). By contrast, online separa-

tions coupled with mass spectrometry improve dynamic range and

reproducibility of glycan analysis, at the cost of increased analysis

time and workflow complexity.

There are many tools for interpreting glycan mass spectral datasets

(Ceroni et al., 2008; Frank and Schloissnig, 2010; Goldberg et al.,

2009; Kronewitter et al., 2014; Maxwell et al., 2012; Peltoniemi

et al., 2013; Yu et al., 2013) for both unseparated and separated ex-

perimental protocols. These programs address instrument-specific sig-

nal processing requirements. For example SysBioWare (Frank and

Schloissnig, 2010) performs sophisticated baseline removal prior to

fitting peaks, while GlyQ-IQ (Kronewitter et al., 2014) was written
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for cleaner Fourier Transform MS (FTMS) that does not require such

a baseline removal step. Tools that build on the THRASH implemen-

tation from Decon2LS (Jaitly et al., 2009; Maxwell et al., 2012; Yu

et al., 2013) are unable to deal with variable baseline noise or extreme

dynamic range.

Each tool also has its own format for defining glycan structures

or compositions, some even bundling a large database with their

software to remove the burden from the user to build a list of candi-

dates themselves (Goldberg et al., 2009; Kronewitter et al., 2014;

Yu et al., 2013) while others define methods for building glycan

databases as part of the program (Ceroni et al., 2008; Maxwell

et al., 2012). Many of these tools are designed for specific glycan

subclass such as N-glycans or glycosaminoglycans and/or organisms,

limiting their vocabulary of possible monosaccharides to just

those commonly found in that subgroup (Goldberg et al., 2009;

Kronewitter et al., 2014; Peltoniemi et al., 2013; Yu et al., 2013).

Often, these tools are tailored for analysis of a particular derivatiza-

tion state, adduction conditions, or neutral loss pattern (Maxwell

et al., 2012; Peltoniemi et al., 2013; Yu et al., 2013). Work has been

done to construct a standardized namespace and representation for

glycans, glySpace, including both structures and compositions

(Campbell et al., 2014; Tiemeyer et al., 2017). This data is publicly

accessible, including a programmatic query interface using SPARQL

over HTTPS (Aoki-Kinoshita et al., 2015). Tools that can communi-

cate with these services have the potential to lead researchers to find

deeper connections from cross-referenced information, and other

researchers can more readily find and use their work.

These spectral processing and glycan library properties are

reflected in the scoring function that each program uses to discrimin-

ate glycan signal from the background noise and contaminants.

Several methods have been developed using different facets of the

observed data. Yu et al. (2013) used the isotopic pattern goodness-

of-fit while Peltoniemi et al. (2013) used intensity features of associ-

ated MSnscans to evaluate partial structure and composition match

quality. Kronewitter et al. (2014) combined several features of the

MS1 evidence, including elution profile peak shape goodness-of-fit,

isotopic fit, mass accuracy, scan count and in-source fragmentation

correlation. Some of these methods are well-defined and invariant

from instrument to instrument in this era of high resolution mass

spectrometry, but others are tightly coupled to the experimental

equipment. Missing from this list are methods to target a glycan’s

intrinsic properties, such as charge state distribution or facility in

acquiring adducts, which can increase the number of spurious

assignments if not considered. We propose a new scoring function

which is able to combine those properties which are independent of

experimental setup with these glycan-aware features.

As observed by Goldberg et al. (2009), there is also value in

including related glycan composition identifications in how much

confidence one assigns to a given glycan composition assignment.

They used a method to exploit the known biosynthetic rules of

N-glycans to connect peaks in a MALDI mass spectrum assigned to

a particular N-glycan by intact mass alone. Their method using the

maximum weighted subgraph of the biosynthetic network had dem-

onstrably better performance than chance with their expert system

annotation method. Kronewitter et al. (2014) considered a similar

idea with more emphasis on handling in-source fragmentation

observed in LC-MS and LC-MS/MS experiments.

We extend this notion of a glycan family to cover more sectors

of the biosynthetic landscape which we term ‘neighborhoods’,

and present an algorithm for learning the importance of each neigh-

borhood from observed data, which can in turn be used to improve

glycan composition assignment performance. We also apply our

method using three different glycan composition search spaces to

show how the underlying database can influence results. We present

our method on typical N-glycans in humans, though our method

can be applied to any variety of glycan composition whose monosac-

charides can be described using IUPAC trivial names or whose com-

ponents can be described in terms of chemical formulae.

This method is implemented as part of, GlycReSoft, a collection

of open source tools for interpretation of glycans and glycopeptides

from LC-MS or LC-MS/MS data. It includes programs to construct

glycan databases from either a text file enumerating all composi-

tions, combinatorial constraints describing the space of glycan

compositions, and by querying GlyTouCan. These glycans can be

combined with arbitrary reduction and derivatization modifications.

GlycReSoft can also combine these glycan databases with peptides

to produce glycopeptide databases. GlycReSoft also contains a de-

convolution program to convert raw mass spectra stored in mzML

or mzXML from an LC-MS or LC-MS/MS experiment files into a

mzML file containing monoisotopic peak and charge states for each

observed isotopic pattern. The deconvolution algorithm is able to

handle both the noise commonly found in TOF spectra as well as

the isotopic pattern truncation characteristic of Orbitrap spectra.

Lastly it includes a search engine for identifying these fitted neutral

masses as either glycans or glycopeptides from a database with com-

binatorial composition shifts to detect adducts, neutral losses, or

other chemical modifications not already part of the database.

We further incorporate adduction into the scoring process, treating

it as another feature of the data as it is unavoidable, rather than

treating it purely as a confounding factor. These features make the

program more flexible and robust than the previously cited works

(Kronewitter et al., 2014; Peltoniemi et al., 2013; Yu et al., 2013)

and we demonstrate these abilities by interpreting native, permethy-

lated, reduced and deutero-reduced samples from both QTOF and

Orbitrap instruments. GlycReSoft is composed of a set of command

line tools and provides a GUI that composes them. The GUI is pow-

ered by a web server which can be deployed on a network to allow

multiple users to access its features and can leverage multiple CPUs.

The tools are all written in Python and C, licensed under the

Apache2 Common License. For more details, please see the docu-

mentation at http://www.bumc.bu.edu/msr/glycresoft/

2 Materials and methods

2.1 Glycan hypothesis generation
In eukaryotes, a 14 monosaccharide N-glycan of composition

HexNAc2 Hex12 is transferred to a newly synthesized protein in the

endoplasmic reticulum by the oligosaccharyl transferase protein

complex. This glycan is trimmed to HexNAc2 Hex9 during protein

folding and quality control. As the glycoprotein transits the Golgi

apparatus, N-glycans are trimmed to HexNAc2 Hex5 before being

elaborated into hybrid and complex N-glycan classes (Stanley et al.,

2009). Glycan structures are refined by a series of reactions that

yield over a million possible N-glycan topologies, as shown in

Akune et al. (2016). These topologies define the glycan’s geometry

and protein binding properties. Neither MS1 nor collisional tandem

MS of glycans can capture the full tree or graph structure of an

N-glycan, so we reduced the topology to a count of each type of resi-

due, a composition.

Starting with the core motif HexNAc2 Hex3, we generated

all combinations of monosaccharides ranging between the limits

in Table 1 to build a human N-glycan composition database,

which produced 1240 distinct compositions. These rules are able to
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efficiently generate all glycan compositions from canonical branch-

ing patterns and lactosamine extensions, as well as rarer constructs

such as LacdiNAc Goldberg et al. (2009) at the cost of including

some wholly improbable compositions. To perform a side-by-side

comparison we also extracted the glycan list from Yu et al. (2013)

derived from the biosynthetic rules in Krambeck and Betenbaugh

(2005) with 319 compositions, and another database using all curated

N-glycans from glySpace via GlyTouCan (Tiemeyer et al., 2017)

containing only [Hex, HexNAc, Fuc, Neu5Ac, sulfate], with 275

distinct compositions. As previous analysis of Influenza A virus

samples detected sulfated N-glycans (Khatri et al., 2016), we also cre-

ated a combinatorial database with up to one sulfate included, for a

total of 2480 compositions. As our algorithm treats HexNAc and

HexNAc(S) as distinct entities, for all monosaccharides with post-

attachment substituents such as sulfate and phosphate, we detached

the substituent from the core monosaccharide. Our implementation is

able to interpret IUPAC trivial names and compositions thereof with

standard substituent and unambiguous backbone modifications, per-

mitting a wide range of possible glycan compositions.

2.2 LC-MS data preprocessing
We analyzed samples from several sources, including both

Quadrupole Time-of-Flight (QTOF) and Orbitrap instruments as

shown in Supplementary Table S1. For details on sample prepar-

ation and data acquisition, please see the source citations in the ref-

erenced table. We converted all datasets to mzML format (Martens

et al., 2011) using Proteowizard (Kessner et al., 2008) without any

data transforming filters. We applied a background reduction

method based upon (Kaur and O’Connor, 2006), using a window

length of 2 m/z. Next, we picked peaks using a Gaussian model and

iteratively charge state deconvoluted and deisotoped using an avera-

gine (Senko et al., 1995) formula appropriate to the molecule under

study. For native glycans, the formula was H 1.690 C 1.0 O 0.738 N

0.071, for permethylated glycans, the formula was H 1.819 C 1.0 O

0.431 N 0.042. We used an iterative approach which combines

aspects of the dependence graph method (Liu et al., 2010) and with

subtraction. All samples were processed using a minimum isotopic

fit score of 20 with an isotopic strictness penalty of 2.

2.3 Chromatogram aggregation
We clustered peaks whose neutral masses were within dmass ¼ 15 parts-

per-million error (PPM) of each other. When there were multiple candi-

date clusters for a single peak, we used the cluster with the lowest mass

error. Next, we sorted each cluster by time, creating a list of aggregated

chromatograms. To account for small mass differences, we found all

chromatograms which were within dmass ¼ 10 PPM of each other and

which overlap in time and merge them. These mass tolerances were

selected empirically, and can be adjusted as needed by the user.

2.4 Glycan composition matching
For each chromatogram, we searched each glycan database for com-

positions whose masses were within dmass ¼ 10 PPM for QTOF

data, 5 PPM for FTMS data. These values are commonly used for

data from these instruments based upon information from their

manufacturers. We merged all chromatograms matching the same

composition. Then, for each mass shift combination expected for

each sample, we searched each glycan database for compositions

whose neutral mass were within dmass of the observed neutral

mass—mass shift combination mass, followed by another round of

merging chromatograms with the same assigned composition. We

reduced the data by splitting each feature where the time between se-

quential observation was greater than drt ¼ 0:25 min and removed

chromatograms with fewer than k¼5 data points. The same chro-

matogram may be given multiple assignments and designated mul-

tiple mass shifts, and chromatograms without glycan assignments

may use chromatograms with glycan assignments as mass shifted

components. This ambiguity information was propagated through

each merge and split step. We termed these remaining assigned and

unassigned chromatograms candidate features.

2.5 Feature evaluation
We computed several metrics to estimate how distinguishable each

candidate feature was from random noise. The metrics are mentioned

in List 1, but for more information see Supplementary Section S3.

List 1: Chromatographic feature metrics

1. Goodness-of-fit of chromatographic peak shape to a model func-

tion (Kronewitter et al., 2014; Yu and Peng, 2010).

2. Goodness-of-fit of isotopic pattern to glycan composition

weighted by peak abundance (Maxwell et al., 2012).

3. Observed charge states with respect to glycan composition and

mass.

4. Time gap between MS1 observations detecting missing peaks

and interference.

5. Adduction states with respect to glycan composition and mass.

These metrics are bounded in �1;1ð Þ. Any observation for which

any metric was observed below a feature specific threshold was dis-

carded as having insufficient evidence for consideration. The

observed score s for each candidate feature is the sum of the logit-

transformation of these metrics. This produces a single value

bounded in �1;1ð Þ, whose distribution we assume is asymptotic-

ally normal. A value of s<8 reflects a low confidence match, with

confidence increasing as s does. As these metrics are tied to reliable

detection of the glycan by the mass spectrometer, they depend upon

glycan abundance, sample quality and mass spectrometer resolution.

2.6 Glycan composition network smoothing
Ideally, each glycan present in a sample under analysis would produce

sufficient experimental evidence that they can be identified. In practice,

glycan compositions with lower abundances may not present strong

evidence, leading to those glycan compositions being discarded. Others

have demonstrated that it is advantageous to use relationships between

glycans based on biosynthetic or structural rules to adjust the score of

a single glycan assignment (Goldberg et al., 2009; Kronewitter et al.,

2014). To improve performance, we propose a method based on

Laplacian regularized least squares (Belkin et al., 2006) to use evidence

from glycan compositions related over a network to smooth its evalu-

ation of glycan composition feature matching.

Previous approaches to using information regarding identifica-

tion of one glycan composition to increase the confidence in another

have been proposed by Goldberg et al. (2009) and Kronewitter et al.

(2014) using different techniques. Goldberg et al. used random

Table 1. Human N-glycan composition bounds (Stanley et al., 2009)

Monosaccharide Lower limit Upper limit Constraints

HexNAc 2 9

Hex 3 10

Fuc 0 4 HexNAc > Fuc

NeuAc 0 5 ðHexNAc� 1Þ > NeuAc
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walks along the biosynthetic network between identified glycan

compositions to increase the confidence of those connected compo-

sitions. This method works well but requires that the parameters of

the random walk be properly tuned for the biosynthetic network

being used. Laplacian regularized least squares is more robust to

small changes to the network and is able to use the entire network.

Kronwitter et al. included a term in their criterion for detection

requiring the presence of another glycan composition with one more

or one less monosaccharide to permit identification. This puts sub-

stantial weight on a Boolean term, giving it the ability to overrule

other experimental evidence. Similar methods could be devised using

methods like ant colony optimization to traverse the biosynthetic

graph, or a database-specific belief network, but these methods

would require considerable manual tuning for each new database to

be tested.

2.6.1 Glycan composition graph

For each database of theoretical glycan compositions we create, we

define each composition to be a coordinate vector in a Zþc space

where c is the number of components in any glycan composition,

and represented by a node in an undirected glycan composition

graph G. Under this interpretation, we can compute the L1-distance

between two glycan compositions, representing the biosynthetic dis-

tance between the two compositions, an analog for the number of

enzymatic steps needed to go from one glycan to the other. For any

two glycan compositions gu, gv, if L1 gu; gvð Þ ¼ 1 we add an edge

connecting gu and gv to G with weight w¼1.

2.6.2 Neighborhood definition

Our definition of distance connects glycan compositions which dif-

fer by a single monosaccharide, but we can assert how larger collec-

tions of glycan compositions are related. To this end, we extend the

definition of neighborhoods for N-glycans using intervals over

monosaccharide counts shown in Table 2. These neighborhoods are

arranged to span particular epitopes or biosynthetically related sub-

types of N-glycans, such as sialylation state or branching pattern.

Neighborhoods overlap sets of glycan compositions which are also

biosynthetically related. Each neighborhood spans the eponymous

class of glycan compositions, as well as the preceding class and pro-

ceeding class. For example, the Tri-Antennary neighborhood spans

Bi-Antennary and Tetra-Antennary compositions. This helps to

channel the estimation of s among related groups. The Hybrid, Bi-

Antennary and Asialo-Bi-Antennary neighborhoods introduce com-

plications because they are biosynthetically close to each other. For

the simplicity, we chose to include all of Hybrid in Asialo-Bi-

Antennary and permit up to one NeuAc in its members.

Glycan compositions may belong to zero or more neighbor-

hoods, as there are unusual glycan compositions which do not sat-

isfy any neighborhood’s rules, and several neighborhoods

intentionally overlap to express broad relationships between groups.

We define a matrix A as an n�k matrix where Ai;k is the degree

to which gi belongs kth neighborhood:

Ai;k ¼
1

jneighborhoodkj
X

g�2neighborhoodk

L1 gi; g
�ð Þ (1)

To reduce the impact of neighborhood size on the elements of A, the

columns of A are first normalized to sum to 1, and then the rows of

A are normalized to sum to 1. We assume that members of the same

neighborhood will share a central tendency s.

2.6.3 Laplacian regularization

To accomplish our goal, we can use Laplacian regularized least

squares to find a new score /, based upon s and relationships among

the observed glycans described by our biosynthetic graph G. These

relationships can be directed to move towards some central tendency

s using the Laplacian of G and some definitions of broad groups in G.
We combine the observed score s and the structure of G to esti-

mate a smoothed score / that combines the evidence for each indi-

vidual glycan composition as well as its relatives. As s is the size of

the set of observed glycan composition p while / is of size n, we par-

tition / into a block vector
/o

/m

� �
with dimensions

p
n� p

� �
.

Let L be the weighted Laplacian matrix of G, which is an n�n

matrix. To ensure L is invertible, we add In to L. We partition L into

blocks
Loo Lom

Lmo Lmm

� �
. We also partition A into

Ao

Am

� �
and so ¼ Aos,

sm ¼ Ams.
We find the / that minimizes the expression

S L;/; sð Þ ¼
/o � so

/m � sm

" #t
Loo Lom

Lmo Lmm

" #
/o � so

/m � sm

" #
(2)

‘ ¼ s� /oð Þt s� /oð Þ þ kS L;/; sð Þ (3)

where k controls how much weight is placed on the network struc-

ture and s.
To obtain the optimal /, we take the partial derivative of ‘ w.r.t /m:

0 ¼ @‘

@/m

s� /oð Þt s� /oð Þ þ kS L;/; sð Þ
� �

(4)

b/m ¼ �Lmm
�1Lmo /o � soð Þ þ sm (5)

and w.r.t. /o

0 ¼ @‘

@/o

s� /oð Þt s� /oð Þ þ kS L;/; sð Þ
� �

(6)

b/o ¼ Iþ k Loo � LomL�1
mmLmo

� ��
��1 s� soð Þ þ so (7)

Table 2. N-glycan neighborhood definitions

Name HexNAC Hex NeuAc Size

Min Max Min Max Min Max

High mannose 2 2 3 10 0 0 16

Hybrid 2 4 2 6 0 2 80

Bi-antennary 3 5 3 6 1 3 104

Asialo-bi-antennary 3 5 3 6 0 1 96

Tri-antennary 4 6 4 7 1 4 172

Asialo-tri-antennary 4 6 4 7 0 0 56

Tetra-antennary 5 7 5 8 1 5 240

Asialo-tetra-antennary 5 7 5 8 0 0 60

Penta-antennary 6 8 6 9 1 5 280

Asialo-penta-antennary 6 8 6 9 0 0 60

Hexa-antennary 7 9 7 10 1 6 300

Asialo-hexa-antennary 7 9 7 10 0 0 60

Hepta-antennary 8 10 8 11 1 7 150

Asialo-hepta-antennary 8 10 8 11 0 0 30

Note: These define the ranges of monosaccharides which will be used to

classify a glycan composition as being a member of each neighborhood, and

the number of combinatorial N-glycan compositions in each neighborhood.
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To use this method, we must provide values for k and s. While

these values could be chosen based on the expectations of the user

for a given experiment, we provide an algorithm for selecting their

values in Supplementary Section S5. These methods use the topology

of the glycan composition graph and the distribution of observed

scores, and cannot fully capture boundary cases or related but dis-

connected parts of the graph.

3 Results

We demonstrated the performance of our algorithm using

released influenza hemagglutinin dataset 20141103–02-Phil-BS and

a serum glycan dataset Perm-BS-070111-04-Serum. Please refer to

Supplementary Section S7 for all other datasets. For each compari-

son, the unregularized case is not smoothed, effectively k¼0, the

partially regularized case uses the grid search fitted values of s but

uses a fixed k ¼ 0:2, and the fully regularized case uses the grid

search fitted values of both s and k.

3.1 Chromatogram assignment performance for

20141103-02-Phil-BS
The fitted parameters for the network constructed for 20141103-

02-Phil-BS are shown in Table 3. The assigned chromatograms are

shown in Figure 1. We observe up to seven branch structures in this

sample, consistent with these N-glycans being derived from an avian

context (Khatri et al., 2016; Stanley et al., 2009).

The comparison of assignment performance with differing

degrees of smoothing for each database are shown in Figure 2 and

Table 4. We used the Receiver Operator Characteristic (ROC) Area

Under the Curve (AUC) to measure performance, using manually

validated compositions as ground truth. We observed the greatest

number of assignments using the Combinatorialþ Sulfate database,

and the greatest ROC AUC in the partially regularized condition.

3.2 Chromatogram assignment performance for

Perm-BS-070111-04-Serum
The fitted parameters for the network constructed for Perm-BS-

070111-04-Serum are shown in Table 3. The assigned chromato-

grams are shown in Figure 4.

Table 3. Estimated values of smoothing parameters s, k and c for each dataset and database

Neighborhood s Phil-BS Serum

Combinatorialþ Sulfate glySpace Krambeck Combinatorial glySpace Krambeck

High-mannose 18.008 15.061 17.089 20.328 19.392 19.720

Hybrid 13.440 12.435 12.503 20.997 18.610 20.056

Bi-antennary 0.000 0.000 0.000 15.901 16.826 17.593

Asialo-bi-antennary 14.078 10.916 13.591 22.585 21.563 21.827

Tri-antennary 0.000 0.000 0.000 26.420 19.605 23.644

Asialo-tri-antennary 14.538 6.565 11.952 20.025 21.128 19.764

Tetra-antennary 0.000 0.000 0.000 19.508 18.542 17.674

Asialo-tetra-antennary 14.331 4.842 12.373 2.472 7.180 2.568

Penta-antennary 0.000 0.000 0.000 11.878 15.035 11.682

Asialo-penta-antennary 11.588 1.255 9.784 0.000 0.000 0.000

Hexa-antennary 0.000 0.000 0.000 0.000 0.000 0.000

Asialo-hexa-antennary 11.094 3.883 13.223 0.000 0.000 0.000

Hepta-antennary 0.000 0.000 0.000 0.000 0.000 0.000

Asialo-hepta-antennary 3.117 1.529 2.703 0.000 0.000 0.000bk 0.99 0.69 0.99 0.99 0.99 0.99bc 11.39 14.60 10.42 20.57 18.42 20.72

Fig. 1. Chromatogram Assignments and Quantification for 20141103-02-Phil-BS

Using the CombinatorialþSulfate database. The Retention Time (Min) axis

shows the experimental retention time in minutes, and the Relative Abundance

axis shows the intensity of the signal from each aggregated ion species. The

identified glycan compositions are labeled with a tuple describing the number

of each component of the form [HexNAc, Hex, Fuc, NeuAc, SO3] (Color version

of this figure is available at Bioinformatics online.)
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The comparison of assignment performance with differing

degrees of smoothing is shown in Figure 3. We observe the greatest

number of total true identifications using the partially regularized

Combinatorial database. However, the Combinatorial database also

has many more false positives, with a ROC AUC of 0.816. These

false positives do not appear in the biosynthetically constrained

Krambeck database which maximizes its ROC AUC in the partially

regularized condition at 0.883. After removing all ambiguous

matches, the Krambeck database also has nearly the same number

of true matches as the Combinatorial database.

4 Discussion

We demonstrated that the regularization method improved the

sensitivity and specificity of glycan composition assignment for LC-

MS based experiments. The method used similar assumptions

about the importance of common substructural elements of N-gly-

cans to Goldberg et al. (2009), but we extend this concept with the

addition of a procedure for learning the relationship strengths and

use broader groups of structures.

The experimental results from the original analysis of

20141103-02-Phil-BS and 20141031-07-Phil-82 82 demonstrated

that while both strains expressed predominantly high-mannose gly-

cosylation, 20141103-02-Phil-BS expressed more larger complex-

type structures (Khatri et al., 2016). In our findings shown in

Figure 1, we recapitulate these results while reducing the number of

false assignments (Table 4). There are substantial differences in both

the mass spectral processing and scoring schemes which contribute

to these results, but the regularization procedure is responsible for

recovering many low abundance features from this comparison. As

these samples are derived from chicken eggs, we have observed

larger branching patterns than are observed in normal mammalian

tissue (Stanley et al., 2009). There is evidence for this in the

20141103-02-Phil-BS with HexNAc9 Hex10-based compositions

suggesting a seven branch pattern, though this cannot be determined

without high quality MSn data. The s fit for Phil-BS (shown) and

Phil-82 (supplement) have smaller values in the neighborhoods of

their largest glycan compositions as these features tended to be low

in abundance and not high scoring in their own right, but were par-

tially supported by the overlap with the next largest neighborhood,

as expected. We observed the best performance with the

Combinatorialþ Sulfate database, which produced more than half-

again as many true matches than the other two databases. It pro-

duced several false matches as well, but the smoothing process

removed these while boosting the score of other low abundance

matches which were consistent with higher scoring matches.

The Krambeck database performed identically in all smoothing

conditions as it was only able to match the common species, not

including cases that were multiply fucosylated or sulfated. It had no

false matches ranked alongside its true matches so smoothing could

not change its performance. The glySpace-derived database

produced more true matches, but also lacked some of these more fuco-

sylated and complex compositions. Some of the compositions included

by the glySpace-derived database were lower scoring, but the chosen

value of c for that database was greater than 18, causing the fitted val-

ues of s to omit the larger, less abundant complex-type N-glycans. This

caused smoothing to lower the scores of these real matches rather than

raise them, as with the Combinatorialþ Sulfate database.

Fig. 2. Performance Comparison with and without Network Smoothing

for 20141103-02-Phil-BS. The Receiver Operator Characteristic Curve

(ROC) comparing True Positive Rate (TPR) to False Positive Rate (FPR) shows

how each database performed under different regularization conditions,

summarized with the Area Under the Curve (AUC) in the legend. The

CombinatorialþSulfate database showed the best performance, and

improved with regularization (Color version of this figure is available at

Bioinformatics online.)

Table 4. Performance comparison for 20141103-02-Phil-BS using

receiver operator characteristic (ROC) area under the curve (AUC)

Name ROC AUC True matchesa

Combinatorial unregularized 0.882 56

Combinatorial partial 0.995 57

Combinatorial grid 0.991 57

GlySpace unregularized 0.811 40

GlySpace partial 0.808 38

GlySpace grid 0.802 31

Krambeck unregularized 0.742 28

Krambeck partial 0.742 29

Krambeck grid 0.742 29

Khatri et al. (2016) – 46

Note: The Combinatorial Partial Regularization approach performed best.
aSelected at /o > 5:0.

Fig. 3. Performance Comparison with and without Network Smoothing for Perm-

BS-070111-04-Serum. The Receiver Operator Characteristic Curve (ROC) comparing

True Positive Rate (TPR) to False Positive Rate (FPR) shows how each database per-

formed under different regularization conditions, summarized with the Area Under

the Curve (AUC) in the legend (Color version of this figure is available at

Bioinformatics online.)
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As we show in Figure 3, regularization improves the predictive

performance of the identification algorithm on Perm-BS-070111-

04-Serum for all databases. We reproduce the majority of the glycan

assignments from Yu et al. (2013), but the ambiguity caused by am-

monium adduction as shown in Figure 4 makes a direct comparison

of composition assignment lists difficult. Our algorithm requires a

minimum amount of MS1 information in order to compute a score,

which some of the assignments in the original published results do

not possess, and are omitted from the count in Table 5. After

accounting for ambiguity, we were able to assign all of the composi-

tions previously reported using the Krambeck database, which was

used by Yu et al. (2013), and with the combinatorial database. The

glySpace-derived database did not contain all of these compositions,

but performed competitively with the combinatorial database’s

ROC AUC. The combinatorial database matched a small number of

glycan compositions which were not in Krambeck but which were

consistent with other glycan compositions observed nearby in reten-

tion time. The combinatorial database also benefited most substan-

tially from smoothing, discarding many false positives while

retaining many more true positives at the same false positive rate

compared to the other databases. These invalid glycan compositions

can match LC-MS features at any point in the elution profile,

though in this dataset the majority of these matches appear to be in

the time range between 10 and 22 min, and similar glycan composi-

tions that are biosynthetically valid elute later on in the experiment.

Therefore a for a retention-time aware approach to evaluating gly-

can composition assignments, as described in Hu et al. (2016) could

also be useful, but this is likely dependent upon the experimental

workup and separation technique used.

While the biosynthetically constrained Krambeck database per-

formed better on Perm-BS-070111-04-Serum, it did not contain all of

the reasonably assignable glycan compositions, and it performed poorly

on 20141103-02-Phil-BS with a false negative rate of 50% compared

to the combinatorial database. This is because the necessary enzymatic

pathways were either not considered in the original authors’ model be-

cause either the enzyme was excluded for simplicity (Krambeck et al.,

2009) or because the particular enzymes used were not within the scope

of the model used (Ichimiya et al., 2014; Spiro and Spiro, 2000). This

highlights the importance of selecting a good reference database, though

a post-processing step such as we described here can help mitigate using

too large a database, but not a too small one.

In this work, we used the same network neighborhood imposed

over different underlying sets of composition nodes, and the con-

nectivity of those networks did not take into account the constraints

of the biosynthetic process. It may be possible to obtain better per-

formance by defining network connectivity according to concrete

enzymatic relationships. This may also alter how the neighborhoods

are defined and how A is parameterized, and in turn how s is learn-

ed. Similarly, this procedure depends upon the scoring functions

used, so selecting another set of functions for the data to fit may

lead to different parameter values.

Lastly, while these case studies have demonstrated the algo-

rithm’s ability to learn network parameters from the data, an expert

can define s and A themselves or obtain a model fitted on related

data and apply it directly without a fitting step. An expert could use

this model specification to impose prior beliefs on the evaluation

process, and adjust k to control the importance of these beliefs.

Similarly, one could also use the derivation of b/m to estimate the

score for an unobserved glycan composition, given A and s.

We used our glycoinformatics toolkit to produce a richer abstrac-

tion of glycans and monosaccharides, including producing standard-

compliant textual representations of these structures and composi-

tions. We produced a text file containing all of the glycan composi-

tions found in the Krambeck and Combinatorial database but not the

glySpace-derived database in the above samples (see Supplementary

Section S9), and have submit it to GlyTouCan (Tiemeyer et al., 2017)

for registration so that future researchers can use these structures.

5 Conclusions

In this study, we demonstrated the advantages of our application of

Laplacian Regularization to smooth LC-MS assignments of glycan

compositions across multiple experimental protocols (Hu and

Mechref, 2012; Khatri et al., 2016). Our algorithm’s performance is

competitive with existing tools for analyzing the same type of data,

(a) (b)

(c)

Fig. 4. Chromatogram Assignments for Perm-BS-070111-04-Serum. In all

panels, the Retention Time (Min) axis shows the experimental retention time

in minutes, and the Relative Abundance axis shows the intensity of the signal

from each aggregated ion species. The identified glycan compositions are

labeled with a tuple describing the number of each component of the form

[HexNAc, Hex, Fuc, NeuAc]. (a) Features Assigned After Grid Regularization

of Perm-BS-070111-04-Serum. (b) This sample contains heavy ammonium

adduction which introduces ambiguity in intact mass based assignments. (c)

Low scoring features which may be discarded based on individual evidence

alone may be more reasonable to accept given evidence from related com-

position, such as our network smoothing method (Color version of this figure

is available at Bioinformatics online.)

Table 5. Performance comparison for Perm-BS-070111-04-Serum

using receiver operator characteristic (ROC) area under the curver

(AUC) and number of non-ambiguous matches

Name ROC

AUC

True

matchesa

Non-ambiguous

matches

Combinatorial unregularized 0.679 86 61

Combinatorial partial 0.816 87 62

Combinatorial grid 0.804 86 61

GlySpace unregularized 0.788 59 51

GlySpace partial 0.803 60 52

GlySpace grid 0.809 60 52

Krambeck unregularized 0.866 70 60

Krambeck partial 0.883 70 60

Krambeck grid 0.882 69 59

Yu et al. (2013) – 72b 59

Note: While the Krambeck database had a better ROC AUC, the

Combinatorial database had more true matches.
aSelected at /o > 5:0.
bOnly includes cases with sufficient MS1 scans available for comparison.
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with the added benefit of more flexible evaluation process and

broader range of understood monosaccharides. Our tools integrate

with glySpace and allow users to leverage existing glycomics reposi-

tories to build databases where applicable.

All of the methods demonstrated in this paper are available as

part of the open source, cross-platform glycomics and glycoproteo-

mics software GlycReSoft, freely available at http://www.bumc.bu.

edu/msr/glycresoft/.
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