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Abstract: Nickel zinc nanoferrites (Ni1−xZnxFe2O4) were synthesized via a chemical co-precipitation
method having stoichiometric proportion (x) altering from 0.00 to 1.00 in steps of 0.25. The synthesized
nanoparticles were sintered at 800 ◦C for 12 h. X-ray diffraction patterns illustrate that the nanocrystalline
cubic spinel ferrites have been obtained after sintering. The Scherrer formula is used to evaluate
the particle size using the extreme intense peak (311). The experimental results demonstrate that
precipitated particles’ size was in the range of 20–60 nm. Scanning electron microscopy (SEM) is used to
investigate the elemental configuration and morphological characterizations of all the prepared samples.
FTIR spectroscopy data for respective sites were examined in the range of 300–1000 cm−1. The higher
frequency band ν1 were assigned due to tetrahedral complexes while lower frequency band ν2 were
allocated due to octahedral complexes. Our experimental results demonstrate that the lattice constant
a0 increases while lattice strain decreases with increasing zinc substitution in nickel zinc nanoferrites.
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1. Introduction

Nanoparticles retain diverse physical physiognomies and chemical characteristics that are different
from the corresponding bulk stable state properties. It is due to the quantum size effect, dimensions,
surface influence, or quantum tunneling impact [1–3]. Previously, metallic nanoparticles have been
comprehensively examined due to their theoretical significance and technical importance for wide-range
applications in ferrofluids, microwave devices, magnetic materials, lubricants or catalysts, etc. [4,5].
The nanomaterials comprise nanocrystallites and interfaces. The nanocrystalline interface is a gas-like
material, which shows neither long- nor short-range order [2,6]. The nanocrystalline material physical
and chemical properties have been influenced by the interfacial structure and the interface volume [7,8].

Ferrites history and their applications have been known for several centuries in the past. Generally,
ferrites comprise iron oxide as a main constituent, and metal oxides. Ferrites are divided into different
categories depending upon the crystal structure, i.e., spinel ferrite, garnet, ortho-ferrite, and hexagonal
ferrites, each having its importance [9–11]. However, substituted M-type hexaferrite possess promising
potential application in advanced technology. These ferrites comprise a hexagonal structure having
ferromagnetic nature, i.e., the large total magnetic moment at operating and ambient temperature.
More than 90% of permanent magnets are produced all over the world based on this compound.
This compound is a deep semiconductor (~109 Ohm*cm) at room temperature with a ferrimagnetic
structure and a total magnetic moment of 20 µB in the ground state [12–14]. Furthermore, a large
spontaneous polarization and multiferroic properties at room temperature recently discovered in
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barium hexaferrite were substituted by diamagnetic cations [15]. Herewith, the magnetoelectric
characteristics of M-type hexaferrite fabricated by a modified ceramic technique are more advanced
than those for the well-known room temperature BiFeO3 orthoferrite multiferroic [15,16].

Besides this, spinel ferrite nanoparticles have attained a lot of interest due to their unique magnetic,
thermal electrical, dielectric, or catalytic properties for high-tech applications in industries as an inductive
or capacitive material, ferrofluids, disk recording, microwave absorbers, transformers, electric generators,
or electrical device, etc. [17–19]. The spinel structure allows the amalgamation of various metallic
ions without altering the spinel crystal structure modifying electrical structural, dielectric, or magnetic
properties of spinel ferrites via substituting M2 ions [20–23]. The spinel ferrites structure is composed of
[M+2]tet [Fe+3]octaO4. However, the induction of a third metal ion helps in modifying the distribution
of the ions in the spinel assembly. The concentration of third metal ion alters the distribution of Fe+3

and M+2 ions affecting the magnetic, catalytic electrical, or dielectric properties [24–26]. Different ferrite
systems such as Mn–Zn, Ni–Zn, or Mg–Mn are very significant for high-tech applications [27–29]. Ni–Zn
bulk ferrite nanomaterials are the only core materials applicable to high-frequency applications [27,30,31].
The main drawback is that its performance is constrained to 100 MHz due to eddy current at high
frequencies. However, this issue is resolved by enhancing material electrical resistivity keeping the
saturation magnetization higher. With the elimination of the inter-granular domain wall and processing
material in ultrafine particles, one can achieve higher electrical resistivity [32,33]. The ultrafine grain
generates grain boundaries that act as a barrier for electron flow, causing a reduction in the eddy current
losses [34–37].

Here in, we demonstrate the synthesis of Zn-substituted Ni-ferrite nanoparticles via chemical
co-precipitation method. We discuss the influence of Zn ions on Ni nano ferrites comprehensively.
We investigate the effect of Zn+2 doping on the structural, AC conductivity, dielectric impedance, and
BET surface area with the variation in zinc concentration in Ni1−xZnxFe2O4 (x = 0, 0.25, 0.5, 0.75, 1)
ferrites as a function of frequency and composition at room temperature.

2. Materials and Methods

Different methods have been employed to synthesize nanoferrites, such as sol–gel route [12,38,39],
co-precipitation [40], hydrothermal technique, ball-mill [41], or micro-emulsion method [42]. Each mode has
its impact on the particle size, morphology, catalytic activity, dielectric, or magnetic properties [43]. Herein,
nanocrystalline Ni1−xZnxFe2O4 particles were produced via a chemical co-precipitation technique. Chemical
co-precipitation method plays an influential role in governing particle size, chemical homogeneity, and
degree of agglomeration. Different parameters influence the magnetization of substituted ferrite nanoparticles
synthesized, such as reaction temperature, initial molar concentration or pH of the suspension, etc. [44–46].
Ni1−xZnxFe2O4 ferrite with x varying from 0 to 1 in step of 0.25 were prepared by a co-precipitating aqueous
solution of Ni(NO3)2.6H2O, Zn(NO3)2.6H2O and Fe(NO3)2.9H2O in their respective stoichiometry and kept
at 85 ◦C. The solution was then added to NaOH within 15 s under continuous stirring. During the process,
pH of the solution was retained at 12. The acquired solution was then heated at 85 ◦C for an hour until the
solution cooled down to room temperature. The attained precipitated particles were washed numerous times
with distilled water to eliminate the salt residues and other impurities till pH 7 is achieved. After this, it was
dried in an electric oven at 120 ◦C for 12 h to eradicate the water contents. Finally, the powder samples were
sintered in a muffle furnace at 800 ◦C for 9 h.

The ferrite nanoparticles formation takes place in two steps: first, a co-precipitation step in which
the transformation of metal salts into hydroxides occurs. Second is the fertilization step in which
conversion of hydroxides into nanoferrites take place. Thus, the fine particles of metal hydroxides
were acquired via co-precipitation of metal cations in alkaline medium. The solid solution of metal
hydroxides was then transformed to nickel zinc nanoferrite when it was heated in an alkaline medium
at 85 ◦C, which would require a sufficient time to transform metal hydroxides into ferrites. The inclusive
chemical reactions involved in the formation of nanoferrites can be written as:
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(1 − x)Ni2+ + xZn2+ + 2Fe3+ + 8OH→ (1 − x)Ni(OH)2 xZn(OH)2·2Fe(OH)3 (1)

(1− x)Ni(OH)2 xZn(OH)2·2Fe(OH)3
heat
→ heat Ni1−xZnxFe2O4 + nH2O (2)

The characterization of Ni1−xZnxFe2O4 samples were performed using different analytical methods.
The X-ray diffraction (XRD) patterns of the samples were recorded using Cu Kα (λ = 1.54Ả) in 2θ range
15◦ to 94◦ at a step size of 0.02◦/s using X-ray diffraction (XRD) instrument Rigaku (Austin TX, 77381-5209,
USA). The elemental analysis and morphological characterizations of Ni1−xZnxFe2O4 were performed
via high-resolution JSM 6490LA scanning electron microscopy (Diamond Hill Road, Woonsocket, RI 0289,
5 Product Code: 300574, USA). The Fourier transform infrared (FTIR) spectra of samples of Ni1−xZnx

Fe2O4 were recorded with a Perkin Elmer FTIR spectrometer (4-555 Wentworth Street East Oshawa, ON,
L1H 3V8, Canada) in the range 1000–300 cm−1. The dried samples were mixed with KBr matrix, and
spectra were recorded in transmission mode. TGA of samples were carried out on the dried precipitate
by using Perkin Elmer differential thermal analyzer (940 Winter St. Waltham, MA, 02451, USA). Surface
area and pore size distribution analyses of samples were performed using BET Micrometrics Gemini VII
(4356 Communications Drive, Norcross, GA 30093-2901, USA). The dielectric properties and impedance
spectroscopy measurements were carried out in the frequency range of 100 Hz to 5 MHz using a Wayne
Kerr LCR meter bridge (WK 6500 B) [Durban Road, Bognor Regis, West Sussex, PO22 9QT, UK].

3. Results

The morphology of Ni1−xZnxFe2O4 nanoferrite samples was analyzed by using high-resolution
scanning electron microscope (SEM), operating at 20 KV. The SEM provides information about the
structure of nanoferrites having different compositions. We used powder samples for the morphological
analysis. The SEM images depict that nearly all the Ni1−xZnxFe2O4 nanoparticles exhibit a globular
spherical shape and a narrow size distribution, as shown in Figure 1. The particle sharpness is more or
less orbicular possessing few clusters and agglomeration in between the particles. The SEM images
indicated that the particle size of the samples lies in the nanometer regime (20–60 nm). The SEM images
show that pure nickel ferrite nanoparticles possess spherical symmetry and uniformity. However,
with increasing zinc concentration, the morphology of the particles slightly changes. The lower zinc
concentration (x = 0.25) did not influence the morphology, but the compactness and agglomeration
slightly enhance Figure 1. However, when zinc (x = 0.5) is in equivalent concentration in comparison
with nickel, it influences the nanostructure a lot, and an apparent transformation is observable from
spherical to non-uniform hexagonal and spherical nanoferrites formation.
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At higher zinc concentration, fewer spherical and more corned, irregular, non-symmetric particles
and agglomeration are observed as shown in Figure 1. Thus, increase in zinc doping gradually impacts
the morphology of nickel ferrites, and noticeable transformation takes place from uniform spherical
morphology to irregular non-symmetrical nanostructures. Beside this, oxygen concentration also
influence the structural, dielectric, magnetic, and magnetoelectric properties [24].

3.1. XRD Analysis

The X-ray diffraction pattern of nickel zinc nanoferrites with composition Ni1−xZnxFe2O4 (x = 0,
0.25, 0.5, 0.75, 1)) is presented in Figure 2a. The XRD patterns confirm that all the samples exhibit
a polycrystalline FCC spinel structure. The crystallite size of Ni1−xZnxFe2O4 was calculated using
the Scherrer formula [47–49]. The full width at half maximum of the strongest reflection was used to
calculate the crystallite sizes using Scherrer equation as mentioned below.

D = K λ/βcosθ (3)

Nanomaterials 2019, 9, x FOR PEER REVIEW 5 of 16 

 

 

 
Figure 2. (a) The X-Ray diffraction pattern for Ni1-xZnxFe2O4 nanoferrites (x = 0, 0.25, 0.5, 0.75, 1). The 
influence of Zn doping on average (b) crystallite size, (c) lattice constant, and (d) lattice strain. 

Table 1. Crystallite size, lattice constant, and lattice strain for Ni1-xZnxFe2O4. 

Zinc Concentration Crystallite Size, D (nm) Lattice Constant, (Å) Lattice Strain% 
Ρx∇ 

g/cm3 
Ρx∇ 

g/cm3 

Porosity∇ 
% 

0 21.3 8.32 0.631 5.40 3.76 31 
0.25 30 8.40 0.377 6.71 3.79 44 
0.5 35.5 8.42 0.416 6.67 3.81 43 
0.75 53.1 8.44 0.215 6.62 3.77 44 

1 70.6 8.45 0.162 5.30 3.86 27 

Firstly, we calculated the d-values, Miller indices, and then the lattice constant “a.” Lattice 
parameter for different values of zinc concentration is graphically plotted in Figure 2c. The calculated 
lattice constant (a) identifies the prepared nanoferrites to be cubic spinel. The lattice parameter 
enhances with an in increase in Zn+2 ion substitution. The lattice constant “a” of nickel-based zinc-
doped nanoferrites increases from 8.32 Å to 8.45 Å with an increase in zinc content. The Zn2+ have 
larger ionic radius (0.83 Å) as compared to Ni2+ (0.74 Å) and Fe3+ (0.65 Å) ions. There is a uniform 
increment in lattice constant with Zn substitution, which demonstrates that the lattice grows without 
deteriorating the lattice symmetry of the lattice. 

It is experimentally observed that with increasing zinc concentration in Ni1-xZnxFe2O4 

nanoferrites, the lattice strain reduces and lattice constant increases. However, in the absence of zinc, 
there is maximum lattice strain, and an intermediate lattice strain is observed when zinc and nickel 
are in equal stoichiometric ratio, as shown in Figure 2d. The lattice strain of Ni1-xZnxFe2O4 nanoferrites 
was calculated by using William–Hall method (WH) [52,53]. William and Hall suggested a relation 
between crystallite size (D) and strain (ε) induced broadening given by the following equation. 

βcosθ = 0.9λ/D + 4εsinθ (7) 

Figure 2. (a) The X-Ray diffraction pattern for Ni1−xZnxFe2O4 nanoferrites (x = 0, 0.25, 0.5, 0.75, 1).
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Here in, D represents the crystallite size, β is the full width at half maximum (FWHM) of the
(3 1 1) peak in radian, K is the shape function equivalent to 0.9, λ is the X-ray wavelength, and θ is the
diffraction angle. The presence of broad peaks in the spectrum demonstrates that the mean crystallite
size of the prepared samples was in the nanometer range. The experimental results demonstrate that
the lattice constant “a” increases from 8.32 Å to 8.45 Å with the increase in zinc content in Ni-based
ferrites. Previously, Gul et al. [50,51] and Vaidyanathan et al. [37] also described that the lattice constant
enhances with Zn substitution. The reason is that Zn2+ ions possess larger ionic radius (0.83 Å) in
comparison with Ni2+ (0.74 Å) and Fe3+ (0.65 Å) ions. Consequently, as the concentration of Zn
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ions upsurges, the lattice constant also rises. The increase in lattice constant obeys the Vegard’s Law.
Our experimental result proves that there is a steady increase in the lattice constant with Zn substitution,
which specifies that the lattice expands without disturbing the lattice symmetry. The measured density
ρm and X-ray ρx density can be calculated by using the following relation.

ρm = m/пr2h (4)

In the above equation, m represents mass, r is the radius, and h is the height of a sample.

ρx = 8M/NV (5)

N is Avogadro’s number, M is the molecular weight of the sample, V represents unit cell volume,
and 8 is the number of formula units in a cell. Porosity can be determined by using the following
relation. The values of lattice constant, lattice strain, theoretical, and apparent density are shown in
Table 1.

ρ = 1 − ρm/ρx (6)

Table 1. Crystallite size, lattice constant, and lattice strain for Ni1−xZnxFe2O4.

Zinc
Concentration

Crystallite
Size, D (nm)

Lattice
Constant, (Å)

Lattice
Strain%

Px
g/cm3

Px
g/cm3

Porosity
%

0 21.3 8.32 0.631 5.40 3.76 31
0.25 30 8.40 0.377 6.71 3.79 44
0.5 35.5 8.42 0.416 6.67 3.81 43

0.75 53.1 8.44 0.215 6.62 3.77 44
1 70.6 8.45 0.162 5.30 3.86 27

The average crystallite size of Ni1−xZnxFe2O4 nanoferrites (x = 0, 0.25, 0.5, 0.75, 1) was calculated
from the X-ray line broadening considering the intense peak corresponding to the (311) plane and using
the Scherrer formula. We synthesized all Ni1−xZnxFe2O4 nanoferrites under similar settings, though
the crystallite size for zinc concentration was not the same, perhaps due to preparation circumstances,
which might give rise to different ferrite formation rates. The average crystallite size of Ni1−xZnxFe2O4

nanoferrites (x = 0, 0.25, 0.5, 0.75, 1) lies within the range 21–60 nm as graphically presented in Figure 2b.
Firstly, we calculated the d-values, Miller indices, and then the lattice constant “a.” Lattice

parameter for different values of zinc concentration is graphically plotted in Figure 2c. The calculated
lattice constant (a) identifies the prepared nanoferrites to be cubic spinel. The lattice parameter enhances
with an in increase in Zn+2 ion substitution. The lattice constant “a” of nickel-based zinc-doped
nanoferrites increases from 8.32 Å to 8.45 Å with an increase in zinc content. The Zn2+ have larger ionic
radius (0.83 Å) as compared to Ni2+ (0.74 Å) and Fe3+ (0.65 Å) ions. There is a uniform increment in
lattice constant with Zn substitution, which demonstrates that the lattice grows without deteriorating
the lattice symmetry of the lattice.

It is experimentally observed that with increasing zinc concentration in Ni1−xZnxFe2O4 nanoferrites,
the lattice strain reduces and lattice constant increases. However, in the absence of zinc, there is
maximum lattice strain, and an intermediate lattice strain is observed when zinc and nickel are in
equal stoichiometric ratio, as shown in Figure 2d. The lattice strain of Ni1−xZnxFe2O4 nanoferrites was
calculated by using William–Hall method (WH) [52,53]. William and Hall suggested a relation between
crystallite size (D) and strain (ε) induced broadening given by the following equation.

βcosθ = 0.9λ/D + 4εsinθ (7)
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Here, β represents FWHM in radians, λ is X-ray wavelength, 0.9 is shape factor, and ε is induced strain
in the crystal [52,54]. Generally, the lattice strain is attained via the slope of the fit through the plot,
which is drawn with 4sinθ along the x-axis and βcosθ along the y-axis [53,55].

3.2. FT-IR Spectroscopy Analysis

IR Spectroscopy is a significant method to analyze the accomplishment of the solid-state reaction
and investigate the deformation existence in the spinel structure due to foreign ions or cationic
distribution [56,57]. In our experimental results of FT-IR spectra, all the samples exhibit two prominent
frequency bands at 370 and 580 cm−1, measured in the wavelength range of 1000–350 nm, displaying
pure spinel phase. The frequency band at a higher wavelength (ν1 (587–557cm−1)) is due to the
presence of tetrahedral complexes, while the lower frequency bands ν2 (383–363cm−1) illustrates the
octahedral complexes as shown in Figure 3.
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The FT-IR analysis shows that the normal vibrational mode of a tetrahedral cluster is greater in
comparison with the octahedral cluster. The reason is that the octahedral group possesses longer bond
length, while the tetrahedral cluster has a shorter bond length. According to the geometric configuration
of ferrites, the metal cations were located nearest to oxygen ions, in two different sublattices of ferrites,
i.e., tetrahedral (A-sites) and octahedral sites (B-sites) [58]. The FT-IR spectra of the Ni1−xZnxFe2O4

ferrites point out two strong absorption bands at 587–557cm−1 and 383–363cm−1. These bands (ν1 and
ν2) were assigned due to the metal–oxygen ion complexes’ vibrations in the tetrahedral and octahedral
positions. The band position differences (ν1 and ν2) arise due to difference in the Fe3+–O2− distance for
tetrahedral and octahedral complexes [59]. Generally, the vibrational frequency is dependent on cation
mass, bonding force, and cation–oxygen distance [60]. The vibrational frequencies of Ni1−xZnxFe2O4

ferrites ν1 and ν2 corresponding to tetrahedral and octahedral metal complexes were mentioned in
Table 2.

Table 2. Vibrational frequencies corresponding to tetrahedral and octahedral metal complexes.

X 0 0.25 0.5 0.75 1

Tetrahedral band 586.99 587.08 586.48 556.89 580.30
Octahedral band 374.33 381.11 372.90 383.24 364.77
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3.3. Thermal Stability

The thermal stability of Ni1−xZnxFe2O4 was studied using a Perkin Elmer differential thermal
analyzer. The measurements were performed at room temperature (25 ◦C) to 1000 ◦C at a heating rate
of 10 ◦C/min in an oxygen environment. In all samples, the initial weight loss takes place at 120 ◦C
due to vaporization of water molecules from the surface and then at 200 ◦C from the trapped water.
The higher temperature is required to decompose the nitrate network that is obvious from the weight
loss at 360 ◦C. The conversion process took place nearly at 400 ◦C and converted into ferrite particles at
a temperature of 580 ◦C. At around 850 ◦C, complete crystallization in cubic spine phase can be seen
as shown in Figure 4. Our outcomes were in accordance with the previously reported results [61,62].
Few anomalies were clearly observed at 750 ◦C, 800 ◦C, 620 ◦C, 830 ◦C, and 820 ◦C for x = 0, 0.75, 0.5,
0.25, and 1 samples, respectively. The sharp declination observed above 850 ◦C is due to the residual
effect [61]. However, weight loss is not observed over 850 ◦C showing the formation of only Ni–Zn
ferrite nanoparticles in all samples (Figure 4a–e).
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3.4. BET Surface Area Analysis

Adsorption of unreactive gas at atomic level plays an important role in determining the surface
area, including surface irregularities and pores interior. In BET surface area analysis for nickel zinc
ferrites, it is seen that for pure nickel ferrite, we have the maximum surface area, and with the increment
of zinc, there is a decrement in surface area as shown in Figure 5a. The surface area reduction may
be due to the low adsorption in the presence of zinc. Secondly, the ionic radius of zinc is larger than
nickel and lastly arrangement of metal ions. Zinc ions occupy A sites (normal spinel ferrite) while
nickel ions occupy B (inverse spinel ferrite) sites, thus affecting the surface area. The specific surface
area of nickel zinc ferrites can be theoretically calculated by using the following formula [63,64].

SBET (m2/g) = 6000/Dnmρ(g/cm3) (8)

Here, Dnm represents the particle diameter, and ρ represents the density of the material (provided
in Supporting Info (Table S1)). It is seen that experimentally calculated surface area (BET) and
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theoretically calculated surface area values (S-BET) are very close to each other. Equation (9) signifies
crystallite size (DBET) calculated via BET results through the following formula.

DBET = 6000/SBETDXRD (9)
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Here in DXRD, (ρx) represents the calculated density obtained via XRD crystallographic parameters.
It is seen that crystallite size determined through XRD results by using Scherer formula in Table 1 and
BET results in Table 3 are in agreement with each other.

Table 3. The surface area analysis of nickel zinc nanoferrites.

Sr. No Ni1−xZnxFe2O4
BET Surface Area

m2/g
Specific Surface Area

SBET (m2/g) DBET

1 NiFe2O4 46.4871 52.1 21.32
2 Ni0.75Zn0.25 Fe2O4 28.2980 29.80 30.41
3 Ni0.5Zn0.5Fe2O4 19.5481 25.33 36
4 Ni0.25Zn0.75Fe2O4 17.4112 17.06 52.41
5 ZnFe2O4 17.3383 16.03 66

Figure 5b shows there is maximum adsorption in the case of nickel ferrite, and as nickel decreases,
the adsorption rate decreases. There is minimum adsorption for zinc ferrite when x = 0.25 and we
get the same curve when x = 0, which shows that adsorption rate is same for pure zinc ferrite and
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when there is only 0.25 nickel present in nickel zinc ferrite. Figure 5c shows a graph between relative
pressure and the inverse of quantity adsorbed, which also proves that there is a minimum adsorption
rate for zinc ferrite.

3.5. Electrical Properties

Electrical properties include dielectric loss tangent, dielectric constant, or electrical resistivity,
which largely depend on size, shape, crystallinity, porosity, and chemical composition of ferrites.
Sintering temperature and preparation methods also play an essential role. The hopping process is
involved in the conduction in ferrites. The band theory concludes that conductivity is temperature
dependent, and change in temperature varies the charge carrier concentration. During the hopping
process, the conduction current upsurges via hopping from one iron ion to the next iron ion in B–B sites
with temperature increment due to mobility change [65]. However, besides different complex oxides,
in perovskites and spinels, the dielectric constant real part (multiferroic substituted hexaferrites) declines
gradually at low frequencies and almost monotonically with diamagnetic substitution possessing
permeability (real and imaginary parts) peak nearly at 50 GHz determined via the level of diamagnetic
substitution [66,67].

3.5.1. Dielectric Constant

The dielectric properties are associated with the electric field distribution within the crystal.
The dielectric constant was expressed in real and imaginary parts as mentioned in the following
equation:

ε = ε′ − jε” (10)

The real dielectric part gives information about the stored energy. The imaginary part contributes
to energy dissipation in the applied AC field.

The dielectric measurements were recorded in the frequency range of 100–5 MHz. Figure 6a,b represents
the deviation of real and imaginary parts of dielectric constant with frequency for Ni1−xZnxFe2O4 ferrite
nanoparticles at room temperature. It is experimentally observed that the real and imaginary parts of
permittivity exponentially decrease with increasing frequency (Figure 6a,b). At lower frequency, there is
a sharp decrement of permittivity in both the real and imaginary parts. However, it remains constant for
all compositions with increasing frequency. The dielectric constant deviance with frequency occurs due to
space charge polarization and Maxwell Wagner type interfacial polarization [68,69] agreeing on the Koops
phenomenological theory [70,71]. The experimental result demonstrates that the polarization decreases
with increasing frequency. However, it becomes persistent, which shows the frequency-independent
behavior beyond a certain frequency limit. In nanoferrites, the space charge polarization arises due to
the inhomogeneous dielectric structure [72]. The nanoferrites comprise of crystalline conducting grains
separated by weak-conducting amorphous grain boundaries [73]. In ferrites, dielectric polarization arises
due to the electron exchange between Fe+2 and Fe+3 ions generating the directional field [74]. The electronic
exchange between Fe+2 and Fe+3 ions cannot follow the alternating field with increasing external applied
electric field [72,75]. The dielectric constant declines with increasing frequency, as shown in Figure 6.
In nanoferrites, the magnitude of electron exchange is dependent on Fe+2/Fe+3 ions concentration at B
site [75].

The experimental result demonstrates that the imaginary part of the dielectric constant is more
pronounced in comparison to the real part. The dispersion of dielectric constant is maximum for
the sample x = 0.75 (Figure 6b). On the octahedral sites, the maximum dispersion is due to the
existence of available Fe+2 ions. The sample x = 0.75 possess a higher concentration of ferrous ions at
octahedral sites in comparison to other Ni1−xZnxFe2O4 samples. The sample X = 0.75 shows maximum
polarization, which enhances higher permittivity due to electron transfer between Fe+2/Fe+3 ions.
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3.5.2. Dielectric Loss Tangent

The dielectric loss tangent explains the energy declines within the ferrite. The polarization lags
behind the applied alternating field, when the dielectric loss tangent rises. Figure 7 represents the
graph of dielectric loss varying with frequency. The experimental result demonstrates that in all our
synthesized samples in the lower frequency region, the dielectric loss factor is high. The dielectric
loss is related to grain boundaries. The high dielectric loss is because of higher resistance due to the
existence of grain boundaries. It requires efficient energy for electron transfer between Fe+2/Fe+3 ions,
which causes a high loss at a low-frequency region. However, at high-frequency regions, the resistivity
declines due to grains. Small energy is needed at octahedral sites for electron transference mechanism
between the two iron ions. The high dielectric loss at lower frequencies is due to different factors
including impurities, crystal defects, moisture, and inhomogeneity.
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Conductivity explains the conduction mechanism and charge carrier in ferrite materials.
Conductivity characterizes an increasing function of frequency when it occurs via electrons springing.
In the case of band conduction, frequency shows a decreasing trend. The following equation represents
material conductivity:
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Here in,

Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 17 

 

sites in comparison to other Ni1-xZnxFe2O4 samples. The sample X = 0.75 shows maximum 

polarization, which enhances higher permittivity due to electron transfer between Fe+2/Fe+3 ions. 

3.5.2. Dielectric Loss Tangent 

The dielectric loss tangent explains the energy declines within the ferrite. The polarization lags 

behind the applied alternating field, when the dielectric loss tangent rises. Figure 7 represents the 

graph of dielectric loss varying with frequency. The experimental result demonstrates that in all our 

synthesized samples in the lower frequency region, the dielectric loss factor is high. The dielectric 

loss is related to grain boundaries. The high dielectric loss is because of higher resistance due to the 

existence of grain boundaries. It requires efficient energy for electron transfer between Fe+2/Fe+3 ions, 

which causes a high loss at a low-frequency region. However, at high-frequency regions, the 

resistivity declines due to grains. Small energy is needed at octahedral sites for electron transference 

mechanism between the two iron ions. The high dielectric loss at lower frequencies is due to different 

factors including impurities, crystal defects, moisture, and inhomogeneity. 

 

Figure 7. The variation of dielectric loss tangent tan(δ) as a function of lnf(Hz) of Ni1-xZnxFe2O4. 

3.5.3. AC Conductivity (Ϭac) 

Conductivity explains the conduction mechanism and charge carrier in ferrite materials. 

Conductivity characterizes an increasing function of frequency when it occurs via electrons 

springing. In the case of band conduction, frequency shows a decreasing trend. The following 

equation represents material conductivity: 

Ϭtot = Ϭo(T) + Ϭ(ѡ,T) (11) 

Here in, Ϭo(T) signifies DC conductivity that is frequency independent. The expression Ϭ(ѡ,T) 

characterizes AC conductivity due to electron springing at octahedral situates. The AC conductivity 

of ferrites can be calculated by using Ϭac = ε′εoѡtanδ. The variation of lnϬac with lnf for Ni1-xZnxFe2O4 

ferrites at room temperature is shown in Figure 8. Conductivity slowly increases at low frequency, 

while at high-frequency region conduction increases instantaneously due to the hopping of infinite 

clusters. According to Koop’s theory, at low frequency, the conductivity occurs due to grain 

boundaries existence while the conductivity at higher frequency takes place due to conducting grains 

[5,76,77]. 

o(T) signifies DC conductivity that is frequency independent. The expression

Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 17 

 

sites in comparison to other Ni1-xZnxFe2O4 samples. The sample X = 0.75 shows maximum 

polarization, which enhances higher permittivity due to electron transfer between Fe+2/Fe+3 ions. 

3.5.2. Dielectric Loss Tangent 

The dielectric loss tangent explains the energy declines within the ferrite. The polarization lags 

behind the applied alternating field, when the dielectric loss tangent rises. Figure 7 represents the 

graph of dielectric loss varying with frequency. The experimental result demonstrates that in all our 

synthesized samples in the lower frequency region, the dielectric loss factor is high. The dielectric 

loss is related to grain boundaries. The high dielectric loss is because of higher resistance due to the 

existence of grain boundaries. It requires efficient energy for electron transfer between Fe+2/Fe+3 ions, 

which causes a high loss at a low-frequency region. However, at high-frequency regions, the 

resistivity declines due to grains. Small energy is needed at octahedral sites for electron transference 

mechanism between the two iron ions. The high dielectric loss at lower frequencies is due to different 

factors including impurities, crystal defects, moisture, and inhomogeneity. 

 

Figure 7. The variation of dielectric loss tangent tan(δ) as a function of lnf(Hz) of Ni1-xZnxFe2O4. 

3.5.3. AC Conductivity (Ϭac) 

Conductivity explains the conduction mechanism and charge carrier in ferrite materials. 

Conductivity characterizes an increasing function of frequency when it occurs via electrons 

springing. In the case of band conduction, frequency shows a decreasing trend. The following 

equation represents material conductivity: 

Ϭtot = Ϭo(T) + Ϭ(ѡ,T) (11) 

Here in, Ϭo(T) signifies DC conductivity that is frequency independent. The expression Ϭ(ѡ,T) 

characterizes AC conductivity due to electron springing at octahedral situates. The AC conductivity 

of ferrites can be calculated by using Ϭac = ε′εoѡtanδ. The variation of lnϬac with lnf for Ni1-xZnxFe2O4 

ferrites at room temperature is shown in Figure 8. Conductivity slowly increases at low frequency, 

while at high-frequency region conduction increases instantaneously due to the hopping of infinite 

clusters. According to Koop’s theory, at low frequency, the conductivity occurs due to grain 

boundaries existence while the conductivity at higher frequency takes place due to conducting grains 

[5,76,77]. 

(w,T)
characterizes AC conductivity due to electron springing at octahedral situates. The AC conductivity of
ferrites can be calculated by using

Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 17 

 

sites in comparison to other Ni1-xZnxFe2O4 samples. The sample X = 0.75 shows maximum 

polarization, which enhances higher permittivity due to electron transfer between Fe+2/Fe+3 ions. 

3.5.2. Dielectric Loss Tangent 

The dielectric loss tangent explains the energy declines within the ferrite. The polarization lags 

behind the applied alternating field, when the dielectric loss tangent rises. Figure 7 represents the 

graph of dielectric loss varying with frequency. The experimental result demonstrates that in all our 

synthesized samples in the lower frequency region, the dielectric loss factor is high. The dielectric 

loss is related to grain boundaries. The high dielectric loss is because of higher resistance due to the 

existence of grain boundaries. It requires efficient energy for electron transfer between Fe+2/Fe+3 ions, 

which causes a high loss at a low-frequency region. However, at high-frequency regions, the 

resistivity declines due to grains. Small energy is needed at octahedral sites for electron transference 

mechanism between the two iron ions. The high dielectric loss at lower frequencies is due to different 

factors including impurities, crystal defects, moisture, and inhomogeneity. 

 

Figure 7. The variation of dielectric loss tangent tan(δ) as a function of lnf(Hz) of Ni1-xZnxFe2O4. 

3.5.3. AC Conductivity (Ϭac) 

Conductivity explains the conduction mechanism and charge carrier in ferrite materials. 

Conductivity characterizes an increasing function of frequency when it occurs via electrons 

springing. In the case of band conduction, frequency shows a decreasing trend. The following 

equation represents material conductivity: 

Ϭtot = Ϭo(T) + Ϭ(ѡ,T) (11) 

Here in, Ϭo(T) signifies DC conductivity that is frequency independent. The expression Ϭ(ѡ,T) 

characterizes AC conductivity due to electron springing at octahedral situates. The AC conductivity 

of ferrites can be calculated by using Ϭac = ε′εoѡtanδ. The variation of lnϬac with lnf for Ni1-xZnxFe2O4 

ferrites at room temperature is shown in Figure 8. Conductivity slowly increases at low frequency, 

while at high-frequency region conduction increases instantaneously due to the hopping of infinite 

clusters. According to Koop’s theory, at low frequency, the conductivity occurs due to grain 

boundaries existence while the conductivity at higher frequency takes place due to conducting grains 

[5,76,77]. 

ac = ε′εowtanδ. The variation of ln

Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 17 

 

sites in comparison to other Ni1-xZnxFe2O4 samples. The sample X = 0.75 shows maximum 

polarization, which enhances higher permittivity due to electron transfer between Fe+2/Fe+3 ions. 

3.5.2. Dielectric Loss Tangent 

The dielectric loss tangent explains the energy declines within the ferrite. The polarization lags 

behind the applied alternating field, when the dielectric loss tangent rises. Figure 7 represents the 

graph of dielectric loss varying with frequency. The experimental result demonstrates that in all our 

synthesized samples in the lower frequency region, the dielectric loss factor is high. The dielectric 

loss is related to grain boundaries. The high dielectric loss is because of higher resistance due to the 

existence of grain boundaries. It requires efficient energy for electron transfer between Fe+2/Fe+3 ions, 

which causes a high loss at a low-frequency region. However, at high-frequency regions, the 

resistivity declines due to grains. Small energy is needed at octahedral sites for electron transference 

mechanism between the two iron ions. The high dielectric loss at lower frequencies is due to different 

factors including impurities, crystal defects, moisture, and inhomogeneity. 

 

Figure 7. The variation of dielectric loss tangent tan(δ) as a function of lnf(Hz) of Ni1-xZnxFe2O4. 

3.5.3. AC Conductivity (Ϭac) 

Conductivity explains the conduction mechanism and charge carrier in ferrite materials. 

Conductivity characterizes an increasing function of frequency when it occurs via electrons 

springing. In the case of band conduction, frequency shows a decreasing trend. The following 

equation represents material conductivity: 

Ϭtot = Ϭo(T) + Ϭ(ѡ,T) (11) 

Here in, Ϭo(T) signifies DC conductivity that is frequency independent. The expression Ϭ(ѡ,T) 

characterizes AC conductivity due to electron springing at octahedral situates. The AC conductivity 

of ferrites can be calculated by using Ϭac = ε′εoѡtanδ. The variation of lnϬac with lnf for Ni1-xZnxFe2O4 

ferrites at room temperature is shown in Figure 8. Conductivity slowly increases at low frequency, 

while at high-frequency region conduction increases instantaneously due to the hopping of infinite 

clusters. According to Koop’s theory, at low frequency, the conductivity occurs due to grain 

boundaries existence while the conductivity at higher frequency takes place due to conducting grains 

[5,76,77]. 

ac with lnf for Ni1−xZnxFe2O4

ferrites at room temperature is shown in Figure 8. Conductivity slowly increases at low frequency,
while at high-frequency region conduction increases instantaneously due to the hopping of infinite
clusters. According to Koop’s theory, at low frequency, the conductivity occurs due to grain boundaries
existence while the conductivity at higher frequency takes place due to conducting grains [5,76,77].Nanomaterials 2019, 9, x FOR PEER REVIEW 11 of 16 

 

 
Figure 8. Graphical representation of the variation of tan Ϭac conductivity lnf(Hz) of Ni1-xZnxFe2O4. 

3.5.4. Impedance Spectroscopy 

Impedance spectroscopy associates the material’s dielectric properties with its microstructures. 
It also helps in analyzing the influence of various factors such as interfaces, grains, or grain 
boundaries of polycrystalline materials. The impedance measurements (IM) give us statistics 
regarding resistive and reactive constituents. At room temperature, the IM were performed in the 
frequency range from 100–5 MHz. Figure 9a demonstrates the graph presenting real part variation of 
impedance as a function of frequency. The experimental result shows that z’ declines with increasing 
frequency. As a result, AC conductivity upsurges with applied frequency. Figure 9b shows the 
variation of the reactive part of impedance as a function of applied frequency at room temperature. 
It is graphically evident that values of imaginary impedance first increases showing peaking nature, 
and then start to decrease in the higher frequency region. 

 
Figure 9. Variation of (a) real part and (b) imaginary part of impedance z′ as a function of lnf(Hz) of 
Ni1-xZnxFe2O4. 

3.5.5. Complex Impedance Spectrum Analysis 

Complex impedance gives information regarding the electrical conduction mechanism and the 
charge transport behavior of nanocrystalline materials. It provides statistics about the impedance 
resistive and reactive parts and provides a correlation between the electrical and structural properties 
of the material [78]. The graphical plot Figure 10 demonstrates the two semicircles dependent on 
material’s electrical properties. The first semicircle at the low-frequency region illustrates resistance 
due to the grain boundary. At the high-frequency region, the second semicircle represents resistance 
due to grains or bulk properties [73–79]. At an applied frequency, the complex impedance of grains 
and grain boundaries can be written as: 

Figure 8. Graphical representation of the variation of tan

Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 17 

 

sites in comparison to other Ni1-xZnxFe2O4 samples. The sample X = 0.75 shows maximum 

polarization, which enhances higher permittivity due to electron transfer between Fe+2/Fe+3 ions. 

3.5.2. Dielectric Loss Tangent 

The dielectric loss tangent explains the energy declines within the ferrite. The polarization lags 

behind the applied alternating field, when the dielectric loss tangent rises. Figure 7 represents the 

graph of dielectric loss varying with frequency. The experimental result demonstrates that in all our 

synthesized samples in the lower frequency region, the dielectric loss factor is high. The dielectric 

loss is related to grain boundaries. The high dielectric loss is because of higher resistance due to the 

existence of grain boundaries. It requires efficient energy for electron transfer between Fe+2/Fe+3 ions, 

which causes a high loss at a low-frequency region. However, at high-frequency regions, the 

resistivity declines due to grains. Small energy is needed at octahedral sites for electron transference 

mechanism between the two iron ions. The high dielectric loss at lower frequencies is due to different 

factors including impurities, crystal defects, moisture, and inhomogeneity. 

 

Figure 7. The variation of dielectric loss tangent tan(δ) as a function of lnf(Hz) of Ni1-xZnxFe2O4. 

3.5.3. AC Conductivity (Ϭac) 

Conductivity explains the conduction mechanism and charge carrier in ferrite materials. 

Conductivity characterizes an increasing function of frequency when it occurs via electrons 

springing. In the case of band conduction, frequency shows a decreasing trend. The following 

equation represents material conductivity: 

Ϭtot = Ϭo(T) + Ϭ(ѡ,T) (11) 

Here in, Ϭo(T) signifies DC conductivity that is frequency independent. The expression Ϭ(ѡ,T) 

characterizes AC conductivity due to electron springing at octahedral situates. The AC conductivity 

of ferrites can be calculated by using Ϭac = ε′εoѡtanδ. The variation of lnϬac with lnf for Ni1-xZnxFe2O4 

ferrites at room temperature is shown in Figure 8. Conductivity slowly increases at low frequency, 

while at high-frequency region conduction increases instantaneously due to the hopping of infinite 

clusters. According to Koop’s theory, at low frequency, the conductivity occurs due to grain 

boundaries existence while the conductivity at higher frequency takes place due to conducting grains 

[5,76,77]. 

ac conductivity lnf(Hz) of Ni1−xZnxFe2O4.

3.5.4. Impedance Spectroscopy

Impedance spectroscopy associates the material’s dielectric properties with its microstructures.
It also helps in analyzing the influence of various factors such as interfaces, grains, or grain boundaries
of polycrystalline materials. The impedance measurements (IM) give us statistics regarding resistive
and reactive constituents. At room temperature, the IM were performed in the frequency range from
100–5 MHz. Figure 9a demonstrates the graph presenting real part variation of impedance as a function
of frequency. The experimental result shows that z’ declines with increasing frequency. As a result,
AC conductivity upsurges with applied frequency. Figure 9b shows the variation of the reactive part
of impedance as a function of applied frequency at room temperature. It is graphically evident that
values of imaginary impedance first increases showing peaking nature, and then start to decrease in
the higher frequency region.
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3.5.5. Complex Impedance Spectrum Analysis

Complex impedance gives information regarding the electrical conduction mechanism and the
charge transport behavior of nanocrystalline materials. It provides statistics about the impedance
resistive and reactive parts and provides a correlation between the electrical and structural properties
of the material [78]. The graphical plot Figure 10 demonstrates the two semicircles dependent on
material’s electrical properties. The first semicircle at the low-frequency region illustrates resistance
due to the grain boundary. At the high-frequency region, the second semicircle represents resistance
due to grains or bulk properties [73–79]. At an applied frequency, the complex impedance of grains
and grain boundaries can be written as:

z* = z′ + z” (12)

z′ = [{Rg/(1 + wg Cg Rg)2} + {Rg/(1 + wgb Cgb RGB)2}] (13)

z” = [{Rg/1 + (wg Cg Rg)2} + {Rg/1 + (wgb Cgb Rgb)2}] (14)
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Here, Rg, Cg, Rgb, and Cgb characterize the resistance and capacitance, while wg and wgb signify
semicircles’ peak frequency for grain and grain boundaries, repectively.

The capacitances were estimated from the circular arc maximum height, and the resistances were
derived from circular arc intercept on z′ axis. The maximum height of the individual semicircle is
evaluated using the following equation:

z′ = −z” (15)

The capacitance at grain and grain boundaries can be calculated by using the following relation:

Cg = 1/Rgwg (16)

Cg = 1/Rgbwg (17)

The relaxation time for grain and grain boundaries can be calculated by:

Ґg = 1/wg = CgRg (18)

Ґg = 1/wgb = CgbRgb (19)

Figure 10 represents cole–cole plot (complex impedance, z′/z”.) for all compositions as a function of
frequency. It demonstrates an individual semicircle arc indicating conduction due to grain boundaries.
Generally, the impedance measurement displays two overlapped arcs of semicircles contributed by
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semiconducting grains at high-frequency region and insulating grain boundaries in the low-frequency
region. However, at room temperatures, the arcs are not well resolved, but as temperature upsurges the
arcs due to grain and grain boundaries become noticeable. In our experimental results, we attain one
semicircle, which concludes that maximum conduction is through grain boundary in all Ni1−xZnxFe2O4

samples [73,80]. Moreover, it may occur also due to transport of charge carriers, conduction band
overlapping in bulk, or electrode interfaces [52,81]. The oxygen stoichiometry also significantly
affects the electric, magnetic, or magnetoelectric properties of nanoferrites, hexaferrites, and complex
oxides [24,82].

4. Conclusions

Our experimental results demonstrate that Zn-doped spinel nanoferrites Ni1−xZnxFe2O4 were
efficaciously prepared via the co-precipitated method. The XRD analysis confirms the existence of
a single spinel phase in nanoferrites. It was observed that the lattice parameters, density, and grain size
of Ni1−xZnxFe2O4 enhance with the addition of zinc concentration (x). Furthermore, dielectric constant
ε and dielectric loss tangent (tan δ) decline with increasing field frequency. The experimental result
demonstrates that AC conductivity
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ac also increases with the increasing frequency. The cole–cole plot
shows that maximum conduction in nickel zinc ferrite is due to grain boundaries. The surface area
analysis verifies that pure nickel ferrite shows maximum surface area. The increment of zinc causes
a decrement in the surface area of nanoparticles (Ni1−xZnxFe2O4).

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/7/1024/s1,
Table S1 represents the average particle size variation of nickel zinc nano ferrites estimated via SEM.
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