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Abstract

Patient-derived tumour xenografts and tumour organoids have
become important preclinical model systems for cancer research.
Both models maintain key features from their parental tumours,
such as genetic and phenotypic heterogeneity, which allows them
to be used for a wide spectrum of applications. In contrast to
patient-derived xenografts, organoids can be established and
expanded with high efficiency from primary patient material. On
the other hand, xenografts retain tumour–stroma interactions,
which are known to contribute to tumorigenesis. In this review,
we discuss recent advances in patient-derived tumour xenograft
and tumour organoid model systems and compare their promises
and challenges as preclinical models in cancer research.

Keywords cancer; organoids; preclinical models; tumour heterogeneity; xeno-

grafts

DOI 10.15252/embj.2019101654 | Received 28 January 2019 | Revised 30 April

2019 | Accepted 2 May 2019 | Published online 8 July 2019

The EMBO Journal (2019) 38: e101654

Introduction

Cancers consist of a continuously evolving heterogeneous cell mass

(McGranahan & Swanton, 2017). Importantly, not all cells within a

tumour contribute equally to its progression. Early studies on mouse

mammary tumours revealed that cellular subpopulations from dif-

ferent regions of the same tumour vary in growth rate, drug

response, immunogenicity and metastatic capacity (reviewed in

Heppner, 1984; Tabassum & Polyak, 2015). This intra-tumour

heterogeneity can arise from both genetic and non-genetic variabil-

ity within tumours, such as variations in availability of resources,

like differential access to oxygen and nutrients (Kreso & Dick, 2014;

Tabassum & Polyak, 2015). The development of preclinical model

systems phenocopying tumour heterogeneity is required for study-

ing its contribution to tumour progression and acquisition of ther-

apy resistance. Whereas the first patient-derived tumour xenograft

(PDTX) models were successfully established during the fifties

(Toolan, 1953), patient-derived tumour organoid (PDTO) models

have been established only during the last decade (Sato et al, 2011)

(Fig 1). Both PDTX and PDTO model systems are able to

recapitulate the intra- and inter-tumour heterogeneity seen in

human cancers (Beckhove et al, 2003; Guenot et al, 2006; Huang

et al, 2015; van de Wetering et al, 2015; Bruna et al, 2016; George

et al, 2017; Nanki et al, 2018; Sachs et al, 2018; Yan et al, 2018).

Therefore, these models are promising tools to study sub-clonal

dynamics within individual tumours during progression and therapy

resistance (Shi et al, 2014).

Due to the complexity of human tumours, response to clinical

cancer treatments varies substantially. Additionally, mechanisms of

tumour progression are poorly defined as well as drug efficacy and

resistance. While a high number of anti-cancer compounds tested

for clinical safety in Phase I studies progress to Phase II efficacy test-

ing, most of these compounds fail in Phase II and III studies, which

examine the power of pharmacological responses (Dimasi et al,

2013). Such high failure rates in clinical trials headline the need of

preclinical efficacy models for improved predictions of clinical

outcome. Several human preclinical models are currently used,

including cancer cell lines, PDTX and PDTO cultures (Figs 1 and 2).

These models have improved our understanding of the mechanisms

of cancer progression and provided valuable tools for the develop-

ment of novel cancer treatments. Additionally, these preclinical

models are used to predict clinical response to anti-cancer agents. In

this review, we discuss PDTX and PDTO model systems and

compare their promises and challenges in cancer research.

PDTX models
To understand cancer biology and its translation into effective treat-

ments, human preclinical models capturing the heterogeneity of

cancer are fundamental. Although with low efficiency, primary

tumour tissues can be grown in 2D cultures in vitro, allowing

tumour cells capable of adapting to these conditions to expand and

form a cell line. The use of in vitro cancer cell lines has provided

valuable insights on tumour development and mechanisms of thera-

peutic actions (Sos et al, 2009; Greshock et al, 2010). However, the

main drawback of cancer cell lines is the lack of both phenotypic

and genetic heterogeneity found in the original tumours (Sachs &

Clevers, 2014; Byrne et al, 2017). To enhance the correlation with

human cancers, surgically derived primary clinical tumour samples

can be grafted into mice, known as PDTX. In such models, tumour

architecture and the relative proportion of cancer cells and stromal

cells are maintained to a large extent, which yields better resem-

blance to the original tumour compared to cancer cell lines (Byrne
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et al, 2017; Fig 2). Although not all patient-derived tumours can

successfully be engrafted into mice, the success rate of PDTX estab-

lishment is increasing due to the establishment of immunocompro-

mised mice (Shultz et al, 2005; Drake et al, 2012).

Although the first documented attempt to transplant a human

cancer into an animal dates back to 1775, a hallmark study by

Helene Toolan showed that it was possible to grow human tumour

cells in x-irradiated mice and rats (Toolan, 1953). Additionally,

she demonstrated that proliferation extended considerably when

the x-radiated hosts were treated with the immune system

suppressor cortisone (Toolan, 1953). Later, Phillips and Gazet

were able to obtain a slightly higher percentage of viable patient-

derived tumour grafts by treating the host mice with anti-lympho-

cyte serum. The number of viable grafts increased in particular

when combined with thymectomy, demonstrating that a

suppressed immune response enhances engraftment efficiency

(Phillips & Gazet, 1970). Following these studies, several geneti-

cally modified mouse models have been established, which are

severely immune deficient, such as the NOD/SCID/IL2Rcnull (NSG)
mouse (Shultz et al, 2005). The virtual absence of an immune

system in these mice allows for significantly higher engraftment

rates (Shultz et al, 2005; Byrne et al, 2017). Together these studies

demonstrated that loss of immune system activity improves

engraftment and viability of patient-derived tumour tissue into

mice. PDTX models are currently established for a broad variety

of cancers, including colorectal (Fichtner et al, 2004; Guenot et al,

2006), pancreatic (Fu et al, 1992; Kim et al, 2009), breast

(Beckhove et al, 2003; Bruna et al, 2016), lung (Cutz et al, 2006),

skin (Taetle et al, 1987), head and neck (Hennessey et al, 2011),

prostate (Wang et al, 2005) and ovarian cancer (George et al,

2017; Fig 3). Although PDTXs recapitulate tumour tissue more

closely than cancer cell lines, they are usually generated from a

small amount of tumour material. As a consequence, the PDTX

derived from it might not capture the full heterogeneity of the

original tumour (Kemper et al, 2015). Moreover, Morgan and

colleagues recently reported that from the total number of muta-

tions detected in primary non-small-cell-lung cancer (NSCLC)

tumours, only 43% were detected in the corresponding PDTXs and

four additional mutations arose in early passages of PDTXs that

were not present in the primary tumour (Morgan et al, 2017).

These observations suggest that clonal selection and evolution

may occur early on upon tumour tissue engraftment into mice.

Multiple biopsies from different regions of a tumour should be

engrafted to capture the complete tumour architecture in vivo,

whereas early passages of PDTXs should be used for translational

applications to avoid outcomes that deviate from clinical response.

Furthermore, the limited engraftment rates of PDTXs remain a

major challenge, which is highly variable among cancers (Rosfjord
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Figure 1. Timeline PDTX and PDTO development.
(Toolan, 1953; Taetle et al, 1987; Fu et al, 1992; Beckhove et al, 2003; Fichtner et al, 2004; Shultz et al, 2005; Wang et al, 2005; Cutz et al, 2006; Sato et al, 2009, 2011;
Hennessey et al, 2011; Gao et al, 2014; Karthaus et al, 2014; Boj et al, 2015; Lee et al, 2018; Li et al, 2018, 2019; Sachs et al, 2018; Yan et al, 2018; Kopper et al, 2019; Schutgens
et al, 2019).
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et al, 2014). Sub-clones of advanced tumours grow best as PDTX,

compared to less advanced tumours. Additionally, growth rates of

engrafted tumour tissue increase over several passages of PDTXs

and a significant correlation was found between PDTX passage

number and features of higher tumour grade (Pearson et al, 2016).

This indicates that clonal selection occurs over passages of PDTXs.

The contribution of tumour stroma to tumour growth upon

engraftment remains controversial in PDTX models. Components of

human stroma, including vasculature, immune cells and fibroblasts,

are present during early passages of PDTXs. The presence of these

human stromal components allows for interaction studies between

tumour cells and their microenvironment. However, the human

stroma is subsequently replaced by murine stroma over several

passages of PDTXs (Julien et al, 2012; Peng et al, 2013). Gene

expression studies of NSCLC PDTXs confirmed depletion of human-

derived tumour-associated cells with a downregulation of genes

corresponding to cell adhesion and immune response pathways.

This suggests that the PDTX deviates from the original tumour over

time (Morgan et al, 2017). In addition, drug metabolism and

pharmacokinetics differ between mouse and human, which needs to

be taken into account (Morgan et al, 2017).

Over the years, it has become increasingly clear that orthotopic

transplantation provide a more physiological PDTX than heterotopic

(e.g. subcutaneous) engraftment. It was previously demonstrated

that orthotopic transplantation can lead to local invasive growth

and metastases, similar to those observed in patients (Dai et al,

2015; Hoffman, 2015). In orthotopic PDTXs, tumour-host interac-

tions can be investigated at the relevant location of primary and

secondary tumour growth, as well as the development of metas-

tases. In a comparison between orthotopic and subcutaneous xeno-

grafts of pancreatic ductal adenocarcinoma (PDAC), metabolic

differences were found. These differences could be attributed to

differences in tumour microenvironment caused by the different

location of engraftment (Zhan et al, 2017). These results highlight

the complexity of cancers as well as the importance of location and

environment of the transplantation site. Nonetheless, while ortho-

topic PDTXs more accurately mimic the primary tumours by resem-

blance of the native microenvironment, this method is technically
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Figure 2. Schematic representation of patient-derived tumour xenografts and organoids.
PDTXs preserve tumour heterogeneity and tumour–stroma interactions. PDTOs grow in a provided basement membrane extract and can be established from epithelial cancer
cells as well as normal epithelial tissue. Both models allow for several translational applications that contribute to development of therapeutic cancer treatments. Part of this
figure was adapted from Sachs and Clevers (2014).
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challenging and labour-intensive. Therefore, most studies still use

subcutaneous engraftment of tumour tissue.

PDTO models
During the last decade, techniques to grow tissues in vitro in 3D as

organotypic structures have been established. These so-called orga-

noids can be grown from adult and embryonic stem cells and are

able to self-organize into 3D structures that reflect the tissue of

origin (for adult stem cell-derived organoids), or to which the dif-

ferentiation was directed (embryonic stem cell-derived organoids)

(for a review see Clevers, 2016). The first adult stem cell-derived

organoid cultures were established from Lgr5-expressing mouse

intestinal stem cells that were placed in conditions mimicking the

intestinal stem cell niche (Sato et al, 2009). By providing R-spondin-

1, epidermal growth factor (EGF) and Noggin, and embedment of

the cells in an extracellular matrix-providing basement membranes

extract, the Lgr5-expressing stem cells received the signalling cues

necessary to self-renew, proliferate and form differentiated

offspring, resembling the intestinal epithelium (Sato et al, 2009).

Since then, organoid cultures have been established for a variety

of human tissues, including lung (Hild & Jaffe, 2016; Tan et al,

2017; Sachs et al, 2019), colon (Sato et al, 2011), stomach (Bartfeld

et al, 2015), liver (Huch et al, 2015), pancreas (Boj et al, 2015),

prostate (Chua et al, 2014; Karthaus et al, 2014), kidney (Jun et al,

2018; Schutgens et al, 2019) and fallopian tube (Kessler et al,

2015). Moreover, organoid culture protocols have been established

for patient-derived tumour tissue as well. Human tumour organoids

have been generated from colon (Sato et al, 2011; van de Wetering

et al, 2015), pancreas (Boj et al, 2015; Huang et al, 2015), prostate

(Gao et al, 2014; Drost et al, 2016), breast (Sachs et al, 2018),

gastric (Nanki et al, 2018; Yan et al, 2018), lung (Sachs et al, 2019),

oesophageal (Li et al, 2018), bladder (Lee et al, 2018; Mullenders

et al, 2019), ovarian (Kopper et al, 2019), kidney (Schutgens et al,

2019) and liver (Broutier et al, 2017; Li et al, 2019) tumour tissue

(Fig 3). An important feature of a number of these PDTOs is that

they genetically and phenotypically mirror the tumour epithelium,

including its intra-tumour heterogeneity (Huang et al, 2015; van de

Wetering et al, 2015; Nanki et al, 2018; Sachs et al, 2018; Yan et al,

2018). In a recent study, Roerink and colleagues characterized orga-

noids derived from single cells from several colorectal cancers

(CRC) and showed extensive mutational diversification as well as

differences in responses to anti-cancer drugs between even closely

related cells of the same tumour (Roerink et al, 2018). PDTO models

show improved resemblance to the original tumour compared to 2D

cultured cancer cell lines. Thereby, organoid cultures bridge the gap

between in vitro 2D cancer cell line cultures and in vivo PDTXs

(Sachs & Clevers, 2014; Drost & Clevers, 2018). Importantly, they

can be expanded long term and cryopreserved, allowing for the

generation of living tumour organoid biobanks (Weeber et al, 2015;

van de Wetering et al, 2015; Fujii et al, 2016; Schütte et al, 2017; Li

et al, 2018; Nanki et al, 2018; Sachs et al, 2018, 2019; Seino et al,

2018; Tiriac et al, 2018; Yan et al, 2018). So far, the majority of

established PDTO cultures originate from epithelial cancers (carci-

nomas). Although most common adult cancers are carcinomas and

epithelial in origin, a number of cancers are not, such as sarcomas,

leukaemia and lymphomas. This remains a major challenge in orga-

noid technology and is in contrast to PDTX models, which allow for

the growth of a broad variety of cancers. While organoid cultures

cannot mimic vasculature and tumour–stroma interactions, patient-

derived tumour organoids are a promising tool for several transla-

tional applications, such as high-throughput drug screens and

personalized medicine in a patient-derived manner.

Translational applications of PDTX and PDTO
model systems

Most preclinical anti-cancer agents entering clinical trials fail to

acquire regulatory approval due to insufficient safety or inefficacy.

This highlights the limitations of the predictive value of current
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Figure 3. Pie chart with the different cancer types that can be grown as PDTX (left) and PDTO (right) marked in green.
In general, the engraftment efficiency of PDTXs is lower than the success rate of PDTO establishment.
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preclinical models. However, in a study where they evaluated the

therapeutic relevance of PDTXs, a panel of six human small-cell-

lung carcinoma (SCLC) xenografts was treated with topotecan, a

topoisomerase I inhibitor, combinations of topotecan and the topoi-

somerase II inhibitor etoposide or alkylating agents ifosfamide or

cisplatin at maximum tolerated dose (Némati et al, 2010). Three out

of the six PDTX models showed over 90% growth inhibition when

treated with topotecan alone, similar to the therapeutic response

observed in Phase II clinical trials (Ardizzoni et al, 1997). Growth

inhibition in the PDTX models was improved when topotecan was

combined with etoposide or ifosfamide. These findings demonstrate

that the established xenografts are useful for preclinical assessment

of new drugs and combinations of drugs (Némati et al, 2010; Rosf-

jord et al, 2014). Moreover, Bertotti and colleagues screened a

cohort of 85 metastatic CRC (mCRC) PDTX models, treated with

cetuximab, an inhibiting antibody against epidermal growth factor

receptor (EGFR). They found an enrichment of tumours with HER2

amplification in cetuximab-resistant KRAS/NRAS/BRAF/PIK3CA

wild-type tumours (Bertotti et al, 2011). This proof-of-concept study

revealed that the combined inhibition of EGFR and HER2 induced

long-lasting tumour regression, suggesting promising therapeutic

opportunities for mCRC patients that are resistant to cetuximab

(Bertotti et al, 2011).

Gao and colleagues generated an extensive collection of more

than 1,000 PDTX models representing a broad range of solid

cancers. In this large panel of PDTX models, genetic hypotheses and

biomarkers of sensitivity to cancer treatments, derived from

cultured cancer cell lines, were successfully validated. Importantly,

the PDTX models also identified therapeutic candidates that cancer

cell lines failed to capture (Gao et al, 2015; Byrne et al, 2017). The

promising results of such large cohort studies increase the use of

PDTXs for preclinical models of testing anti-cancer drugs and to

unravel biomarkers for drug sensitivity and resistance. For example,

a recent study demonstrated that metformin, an anti-diabetic drug,

also affects tumour growth in CRC PDTX models. Administering

metformin at physiological levels of 150 mg/kg per day in mice,

which is equivalent to the clinical dose of 500–1,000 mg/daily in

human, is sufficient to inhibit tumour growth in CRC PDTX. This

implies promising therapeutic options for CRC patients (Suhaimi

et al, 2017). Together, these studies demonstrate the promises of

PDTXs as preclinical models to develop novel cancer treatments and

predict their clinical response in patients.

Fast expansion of preclinical model systems is important to

enable high-throughput drug screens. In contrast to PDTXs, patient-

derived organoid cultures can be more easily expanded long term

and several studies demonstrated that organoid cultures allow for

the detection of gene–drug associations and enable high-throughput

drug screens. Verissimo and colleagues tested KRAS pathway inhibi-

tors and combinations of drugs on normal colon organoids and CRC

PDTOs and demonstrated that only organoids harbouring KRAS

mutations were resistant to the treatments (Verissimo et al, 2016).

In another recent study, Vlachogiannis and colleagues reported a

living biobank of PDTOs from metastatic, heavily pretreated colorec-

tal and gastroesophageal tumours, which showed a high degree of

similarity to the original patient tumours. A comparison of

responses to anti-cancer agents in PDTOs and PDTO-based ortho-

topic mouse tumour xenograft models with the responses of the

patients in clinical trials, suggests that PDTOs successfully

recapitulate the response seen in the patient (Vlachogiannis et al,

2018). Additionally, Tiriac and colleagues generated a pancreatic

cancer PDTO library that largely maintained the mutational spec-

trum and transcriptional subtypes of primary pancreatic cancer.

They showed that pancreatic cancer PDTOs exhibited heterogeneous

responses to standard-of-care chemotherapeutics and that these

therapeutic profiles correspond to patient outcomes. These data

suggest that combined molecular and therapeutic profiling of PDTOs

may predict treatment response and enable prospective therapeutic

selection (Tiriac et al, 2018). Moreover, Schütte and colleagues

collected a large biobank of 106 CRCs, 35 PDTOs and 59 PDTXs to

identify novel biomarkers by linking molecular profiles with drug

sensitivity patterns. Although the genetic landscape of the original

tumours was largely maintained, they also found some differences

between PDTXs and PDTOs, as PDTXs appeared closer to the molec-

ular distinct CRC groups than PDTOs. Additionally, PDTOs showed

elevated expression levels of genes involved in xenobiotic and fatty

acid processes, which may affect drug sensitivity (Schütte et al,

2017).

Organoid cultures additionally allow for genetic engineering to

study effects of oncogenic mutations in detail. Li and colleagues

introduced oncogenic mutations into primary organoids from mouse

colon, stomach and pancreas. This study shows that pancreatic and

gastric organoids presented dysplasia as a result of the activating

KrasG12D mutation, loss of Tp53 or both and formed adenocarci-

noma upon in vivo transplantation. In contrast, primary colon orga-

noids required combinatorial Apc, Tp53, KrasG12D and Smad4

mutations for the formation of adenocarcinoma in vivo. Opposed to

colon organoids, small intestine organoids showed more rapid

dysplasia even with only the combination of mutated Apc and Kras

or mutated Apc and Tp53 (Li et al, 2014). Subsequently, two studies

translated this to the human situation by CRISPR/Cas9-mediated

genome editing of common CRC driver mutations in healthy human

small intestinal and colonic organoids (Drost et al, 2015; Matano

et al, 2015). These studies demonstrated that organoids harbouring

an activating mutation in KRAS, in combination with inactivating

mutations in APC, TP53 and SMAD4, are able to grow independent

of the intestinal stem cell niche factors EGF, Wnt, R-spondin and

Noggin. Additionally, Drost et al showed that loss of APC and TP53

are key drivers of chromosome instability and aneuploidy (Drost

et al, 2015). Not only adult stem cell-derived organoids can be used

to study cancer initiation and progression, but also embryonic stem

cell-derived organoids can be valuable tools in cancer research.

Huang et al directed the differentiation of human embryonic stem

cells towards pancreatic progenitor cells that formed ductal and

acinar structures. Expression of mutant KRAS or TP53 in progenitor

organoids induced mutation-specific phenotypes. For instance,

mutated TP53, but not mutated KRAS, induced cytosolic SOX9 local-

ization, which was associated with mortality of patients (Huang

et al, 2015). In another recent study, Drost et al used CRISPR-modi-

fied human stem cell organoids to study DNA repair defects in

cancer (Drost et al, 2017). This showed that accumulation of

mutations in organoids deficient in the mismatch repair gene MLH1

accurately models the mutation profiles observed in mismatch

repair-deficient CRC. Application of this approach to the cancer

predisposition gene NTHL1 demonstrated that a high contribution of

a mutational footprint (signature 30), observed in a breast cancer

cohort, within a tumour can be indicative of germline mutations in
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NTHL1 (Drost et al, 2017). These studies demonstrate the immense

opportunities organoid technology gives to study the effects of speci-

fic genetic alterations during cancer initiation and progression.

Integrating the tumour environment in PDTX and PDTO

The location in which a tumour resides, the tumour niche or

microenvironment, plays an important role in cancer development.

Stromal cells not only modulate the behaviour of tumour cells

directly but are also able to influence the immune system (Tauriello

et al, 2018). This is effectively shown in a study by Batlle and

colleagues, using a mouse model in which the main four CRC driver

mutations can be specifically modified in intestinal stem cells.

Quadruple-mutant mice developed metastatic tumours in the small

and large intestine that showed hallmarks of human CRC, including

T-cell exclusion and TGFb-activated stroma. They showed that inhi-

bition of TGFb induced a cytotoxic T-cell response against tumour

cells that prevented metastasis, highlighting the importance of the

tumour microenvironment (Tauriello et al, 2018).

Immune cells recognize antigens present on cell membranes and

distinguish between cancer cells and non-cancer cells (Schumacher

& Schreiber, 2015). As a consequence of tumour-specific mutations,

cancer cells start expressing neoantigens on their membranes,

which can be recognized by T lymphocytes. The recognition of such

neoantigens is an important factor in the efficacy of clinical

immunotherapies. Additionally, the neoantigen load may form a

biomarker for cancer cells (Schumacher & Schreiber, 2015).

However, the lack of an immune competent environment in both

immune-deficient mice and organoid cultures limits the utility of

these models to explore the interaction between a tumour cell and

the immune system. To overcome this limitation in PDTX models,

humanized mouse models have been developed (Box 1). For this,

selected immune components were introduced to establish a

competent human immune system (HIS) in mice. Humanized mice

maintain various lineages of human blood cells throughout the life-

time of the recipient animal. Ideally, the hematopoietic stem cells

(HSCs) come from the same patient from whom the PDTX will be

established, in order to avoid immune reactions caused by human

leucocyte antigen mismatch. This is challenging, because bone

marrow biopsies are a burden for weakened patients. Additionally,

growth factor-stimulated bone marrow mobilization for collecting

HSCs from peripheral blood might support tumour progression

(Voloshin et al, 2011). The low yields of CD34-positive HSCs

obtainable from cancer patients strongly limit the number of

humanized mice. Nonetheless, humanized mice allow studying

features of the human anti-tumour immune response in a mouse

model system (Shultz et al, 2012; Byrne et al, 2017). In such a

study, newborn NSG mice were co-engrafted with human HSCs and

human breast cancer cells. In these mice, tumour growth was

accompanied by specific T-cell maturation as well as tumour cell-

specific activation of T cells. Additionally, an accumulation of NK

cells was observed at the tumour site (Wege et al, 2011). Trans-

plantation of primary lung tumours into humanized mice revealed

the existence of tumour-infiltrating effector memory T cells that

were activated upon human IL-12 administration (Simpson-Abelson

et al, 2008). The ability to study tumour progression combined with

its engrafted immune system provides new approaches for cancer

immunotherapy, resistance of tumour cells to anti-cancer therapies

and the involvement of the immune system in response to

chemotherapy.

In tumour organoid cultures, the lack of an immune competent

environment can be overcome by co-culture with immune cells.

Nozaki and colleagues developed a novel co-culture system of

mouse intra-epithelial lymphocytes and intestinal epithelial cells. In

this co-culture, the intra-epithelial lymphocytes were expanded with

intestinal organoids in the presence of IL-2, IL-7 and IL-15 (Nozaki

et al, 2016). Recently, Zumwalde et al (2016) succeeded in charac-

terizing the intra-epithelial lymphocyte compartment of healthy

human breast tissue as well as identifying a subset of T lymphocytes

that can be pharmacologically targeted to enhance their response to

breast cancer cells. Specifically, Vd2+ cd T cells were constantly

present in the preparation of mammary ductal epithelial organoids.

In response to zoledronic acid, an aminobisphosphonate drug, these

T lymphocytes started to proliferate. Additionally, Vd2+ T cells from

breast ductal organoids produced IFNc, an anti-tumour cytokine,

and efficiently killed bisphosphonate-pulsed breast cancer cells.

Together, these results demonstrate the potential for Vd2+ cd T

lymphocytes to respond to FDA-approved bisphosphonate drugs as

a novel immunotherapeutic approach to inhibit cancer growth

(Zumwalde et al, 2016). In another recent study, Dijkstra and

colleagues established and validated a platform to induce and anal-

yse tumour-specific T-cell responses to epithelial cancers, including

mismatch repair-deficient CRC and NSCLC, in a personalized

manner. Enrichment of tumour-reactive T cells from peripheral

blood of patients was successfully established by co-cultures of

peripheral blood lymphocytes with autologous tumour organoids.

Moreover, they demonstrated that these tumour-reactive T cells effi-

ciently recognize and kill autologous tumour organoids, while leav-

ing the healthy organoids or tissue unharmed (Dijkstra et al, 2018).

In addition, Neal et al (2018) developed an air–liquid interface

PDTO culture system that recapitulates complex tumour architecture

including stromal and immune compartments. They demonstrated

that the T-cell receptors are highly conserved between the PDTO

culture and the parental tumour. Crucially, they showed that the

PDTO cultures functionally recapitulate the PD-1/PD-L1-dependent

immune checkpoint (Neal et al, 2018).

In addition to the immune system, cancer-associated fibroblasts

(CAFs) play an important role in the tumour environment. As such,

Öhlund and colleagues showed that a co-culture of murine pancre-

atic stellate cells (PSCs) and PDAC tumour organoids recapitulate

properties of PDAC desmoplasia. They demonstrate that PSCs dif-

ferentiate into two distinct subtypes of CAFs with elevated expres-

sion of aSMA and secretion of IL-6 and additional inflammatory

mediators, respectively (Öhlund et al, 2017). In accordance with

this, Seino and colleagues established a co-culture of PDAC orga-

noids and CAFs and showed that the CAFs provide a WNT niche for

PDAC (Seino et al, 2018), highlighting the importance of CAFs in

the tumour microenvironment. In an effort to model diabetic vascu-

lopathy in vitro, a recent study reported the development of human

blood vessel organoids from pluripotent stem cells that self-

assemble into capillary networks, containing endothelial cells and

pericytes, surrounded by a basement membrane. Upon transplanta-

tion of these organoids into mice, a perfused vascular tree is formed,

including arteries, arterioles and venules (Wimmer et al, 2019).

These human blood vessel organoids may open new doors for PDTO
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co-cultures. Culturing PDTOs in the presence of the vascular system,

in addition to co-cultures with CAFs and immune cells, can recapitu-

late more components of the tumour microenvironment in vitro.

In conclusion, the lack of an immune competent environment in

both PDTX and PDTO model systems can be overcome by using

humanized mouse models or generating co-cultures with immune

cells, respectively. Additionally, to mimic the tumour stroma in the

organoid model system, PDTOs can be co-cultured with CAFs.

Drug screens and personalized medicine using PDTX and
PDTO models

The discovery of molecular biomarkers for drug sensitivity is of high

importance for the treatment of cancer patients. As illustrated by the

EGFR tyrosine kinase inhibitor gefitinib in NSCLC, some drugs can

give exceptional responses in small subsets of patients. However,

when these patients are not properly identified within larger cohorts,

it results in an overall negative clinical trial outcome (Thatcher et al,

2005). PDTX models can be used as screening platforms for predict-

ing clinical outcome of the response rate to drugs, identifying

biomarkers for drug sensitivity and studying drug resistance. For

example, a prospective study in PDAC showed that the combination

of the anti-microtubule agent nab-paclitaxel and the anti-metabolite

gemcitabine is effective in PDTX models of PDAC, which correlated

with the clinical efficacy of this combination. Moreover, this combi-

nation of chemotherapeutics has been demonstrated to provide a

survival benefit for advanced PDAC patients in a randomized phase

III study (Von Hoff et al, 2013; Hidalgo et al, 2015). Additionally,

PDTX models are not only able to provide potential clinical indica-

tions, but they may also facilitate the identification of potential drug

efficacy biomarkers. In CRC for example, several studies have shown

that KRAS mutant PDTX models do not respond to cetuximab. The

wild-type status of KRAS is now a well-documented clinical

biomarker for this targeted therapy (Hidalgo et al, 2015). Further-

more, melanoma PDTX models were involved in the identification of

a mechanism of resistance to targeted drugs, such as the BRAFV600E

inhibitor vemurafenib. Additionally, a novel drug administration

strategy that is clinically applicable was proposed to overcome resis-

tance (Das Thakur et al, 2013). Although PDTX models are useful

for low-throughput drug screens and predicting clinical outcome,

they do not allow for high-throughput drug screens.

In contrast to PDTX models, PDTOs can be established and

expanded more efficiently, which allows them to be used in

medium- to high-throughput drug screens. The use of PDTOs as a

preclinical model for finding biomarkers and performing genotype–

drug associations is just starting to be explored. A few studies

already show promising results. For example, drug testing on a

panel of organoids derived from 20 chemo-naive CRC patients con-

firmed known drug sensitivity–genotype correlations. This proof of

principle highlighted the potential of screening organoid biobanks to

detect novel genotype–phenotype correlations (van de Wetering

et al, 2015). In a recent study, Pauli and colleagues collected 145

specimens, representing 18 different tumour types derived from

patients with metastatic solid tumours. PDTO cultures were estab-

lished from 56 of these specimens (38.6%), which were obtained

from biopsies or surgical resection and stored in a living biobank

(Pauli et al, 2017). PDTOs of four patients were used to perform

drug screens, targeting mutated pathways that were identified using

whole exome sequencing (WES). PDTX models were subsequently

used for the validation of the compounds that affected PDTO

growth. They found that two patients, suffering from uterine carci-

nosarcoma and endometrial adenocarcinoma, respectively, carried

similar driver mutations in PIK3CA and PTEN. Yet, the drug

response profiles clearly distinguished the two patients. For the uter-

ine carcinosarcoma case, they identified the combination of the

PIK3 inhibitor buparlisib (Armstrong et al, 2017) with the hypoxia

signalling suppressor vorinostat (Zhang et al, 2017) as one of the

top drug combinations. By contrast, for the endometrial adenocarci-

noma case, a combination of buparlisib with the PARP and HDAC

inhibitor olaparib (Yuan et al, 2017) was found as optimal treatment

in both PDTO and PDTX models. The latter is of high relevance, as

no targeted therapies are approved for endometrial cancer yet (Pauli

et al, 2017). The combination of WES, PDTO and PDTX models

makes it possible to compare the efficacy of specific drugs on indi-

vidual tumours thereby providing recommendations for patient care

in a personalized manner. Moreover, it enables assessing how indi-

vidual tumours evolve in response to therapies as well as determin-

ing next therapeutic steps for cases where standard clinical options

have already been exhausted. Additionally, the combination of these

techniques allows creating a database that relates drug sensitivity to

tumour genetics. This enables to nominate potential therapeutic

strategies even when only genomic data are available (Pauli et al,

2017). In conclusion, combining different techniques and model

systems for cancer research can improve the prediction of clinical

response to anti-cancer treatments in a personalized manner.

Outlook and challenges

The main challenge in preclinical cancer research remains the estab-

lishment of models that recapitulate the patient situation as close as

possible, retaining intra-tumour heterogeneity and the tumour envi-

ronment. So far, not all cancer types can be grown in mice or as

tumour organoids. For the establishment of more PDTO models, it

is of high relevance to find the optimal in vitro growth conditions

that enable tumour cells to grow, while keeping as much cellular

heterogeneity as possible. Selection pressure occurs in both PDTX

and PDTO model systems (Morgan et al, 2017; Pauli et al, 2017).

Therefore, combining the strengths of both preclinical model

Box 1: Humanized mouse models

Humanized mice are immunodeficient mice engrafted with human
hematopoietic stem cells which give rise to a variety of human blood
cell lineages throughout the life of the animal. The human immune
system (HIS) mouse model can be generated by transplantation of
CD34-positive human hematopoietic stem cells (HSCs) or precursor
cells. These cells can be isolated from bone marrow, peripheral blood
or umbilical cord blood. CD34-positive HSC transplantation can be
performed alone or in combination with transplantation of human
immune tissues, such as thymic tissue (Drake et al, 2012). Humanized
mouse models are powerful tools for studying cancer, haematopoiesis,
and inflammatory and infectious disease.
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systems will be powerful for investigating therapeutic responses.

For example, PDTOs can be used for high-throughput drug screen-

ings and selecting effective drugs or drug combinations. Subse-

quently, the efficacy of these selected drugs should be validated in

PDTX models (Pauli et al, 2017). Together, these preclinical models

can reflect the response to anti-cancer therapies and give indications

for patient-tailored treatment.

Conclusions

In this review, we discussed the role of PDTX and PDTO model

systems in cancer research and therapy development (Table 1).

While PDTXs have already been established for a broad variety of

cancers (Fig 3), the fast-evolving improvements in PDTO culture

systems hold great promise. Transplanting primary tumour tissue

directly into mice allows for the partial resemblance of the tumour

mirco-environment, including stromal components, such as CAFs

and vasculature. Although PDTO cultures do—so far—not maintain

the stromal components of human tumours, they represent genetic

and phenotypic heterogeneity found in human cancers. Addition-

ally, organoid cultures can be expanded relatively fast, cryopre-

served and genetically modified. These features allow for generating

living tumour organoid biobanks and providing a platform for high-

throughput drug screens. Although both models lack an immune

competent environment, this limitation can be overcome by trans-

plantation of HSCs and co-culture with T lymphocytes for PDTX and

PDTO models, respectively.

In addition to PDTX and PDTO, several other preclinical models

have been developed over the years. Induced pluripotent stem cells

(iPSCs) can be differentiated towards several lineages and can be

used to model normal development in vitro. iPSCs were successfully

used for exocrine differentiation of pancreatic progenitors and for

modelling PDAC tumour organoids (Huang et al, 2015) as well as

for differentiation to colonic organoids for the modelling of CRC

(Crespo et al, 2018). However, two main challenges in the establish-

ment of iPSC-derived cancer models are the efficiency of malignant

cell reprogramming and the capability to differentiate the iPSCs into

the cell lineage of interest (Papapetrou, 2016). Additionally, during

the establishment of iPSC-derived cancer models, selective

outgrowth of tumour sub-clones may occur when a subset of cells

harbours specific mutations resulting in a loss of heterogeneity. This

is in stark contrast to PDTO model systems that largely recapitulate

the genetic heterogeneity of the parental tumour (Huang et al, 2015;

van de Wetering et al, 2015; Nanki et al, 2018; Sachs et al, 2018;

Yan et al, 2018). Another recent study described a technology

termed conditional reprogramming, which allows efficient establish-

ment of patient tissue-derived 2D cancer cell cultures in the pres-

ence of RHO kinase inhibitor and a fibroblast feeder layer (Liu et al,

2012). It is of high importance to combine multiple cancer models

to get the best possible prediction of tumour sensitivity to and toxic-

ity of anti-cancer treatments, which will ultimately result in more

efficient translation from bench to bedside.
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