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Adults with congenital heart disease are increasingly being exposed to low-dose ionizing radiation (LDIR) from
cardiac procedures. In a recent study, Cohen et al. (Circulation. 2018;137(13):1334–1345) reported an association
between increased LDIR exposure and cancer incidence but did not explore temporal relationships. Yet, the impact
of past exposures probably accumulates over years, and its strength may depend on the amount of time elapsed
since exposure. Furthermore, LDIR procedures performed shortly before a cancer diagnosis may have been
ordered because of early symptoms of cancer, raising concerns about reversal causality bias. To address these
challenges, we combined flexible modeling of cumulative exposures with competing-risks methodology to estimate
separate associations of time-varying LDIR exposure with cancer incidence and all-cause mortality. Among
24,833 patients from the Quebec Congenital Heart Disease Database, 602 had incident cancer and 500 died dur-
ing a follow-up period of up to 15 years (1995–2010). Initial results suggested a strong association of cancer inci-
dence with very recent LDIR exposures, likely reflecting reverse causality bias. When exposure was lagged by 2
years, an increased cumulative LDIR dose from the previous 2–6 years was associated with increased cancer inci-
dence, with a stronger association for women. These results illustrate the importance of accurate modeling of tem-
poral relationships between time-varying exposures and health outcomes.

cancer epidemiology; competing risks; splines; time-varying exposure

Abbreviations: AIC, Akaike information criterion; CHD, congenital heart disease; df, degrees of freedom; HR, hazard ratio; LDIR,
low-dose ionizing radiation; WCE, weighted cumulative exposure.

Epidemiologic studies increasingly assess exposures and
treatments that vary not only between subjects but also
within-subject over time. Such studies have to explore possi-
bly complex temporal relationships between past values of
time-varying exposures and the occurrence of the clinical
event(s) of interest, which requires addressing several analyt-
ical and conceptual challenges (1–3).

First, many exposures may affect the outcome only after
some time lag, but its duration is seldom known a priori (4, 5),
and lag estimation requires specialized methods (1, 6–10). Fail-
ure to accurately model a lagged association may dilute its esti-
mated strength and lead to incorrect conclusions (11). When
the exposure itself varies considerably during follow-up of

individual subjects, specification of a time-varying exposure
metric, which aggregates information on past exposures, may
materially affect the validity of conclusions and the statistical
power to detect a true association (4, 12). Moreover, because
the relative importance of past exposures probably varies
with time since exposure (1, 13), sophisticated, flexible meth-
ods are required in order to accurately model the exposure
weighting function (1, 14–16). Furthermore, exposures related
to (for example) therapeutic or diagnostic procedures ordered
by health professionals raise concerns about potential reverse
causality, due to protopathic bias. This occurs whenever expo-
sure is induced by a treatment or procedure administered
because of early symptoms of the health condition considered
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the “outcome” (17). In addition, time-to-event analyses of
cohort studies that assess outcomes other than all-cause mor-
tality have to account for competing risks of events that may
preclude observation of the outcome of interest (18, 19).
Finally, whereas for any association it is important to explore
the roles of possible effect modifiers (e.g., sex or gender) (20, 21),
it may be less obvious how to assess such interactions in flexible
modeling of time-varying exposures.

Several approaches have been proposed for addressing the
challenges related to the latency periods and varying impacts
of exposures received at different times in the past. Earlier
methods have included time window models (6–8), paramet-
ric exposure weighting functions (1), and different methods
for estimating lags (9, 10, 22, 23). In the past 2 decades, par-
allel progress in bothflexiblemodeling techniques and computa-
tional resources has led to the development of flexible weighted
cumulative exposure (WCE) methodology, which models the
joint association of past exposures with the hazard using
splines to avoid the need to specify the form of the exposure
weighting function. The spline-basedWCEmodeling approach
was initiated in the case-control setting by Hauptmann et al.
(14) and extended to generalized linear models by Berhane
et al. (15). More recently, building on earlier parametric WCE
extensions of the Coxmodel (4, 24), spline-basedWCEmodel-
ing was adapted to time-to-event analyses (16, 25), where the
time-varying cumulative exposure metric is continuously up-
dated during follow-up. This approach has been extended to
marginal structural models with time-varying confounders/
mediators (26) and to competing-risks analyses (27). All of
these flexible models have been validated in extensive simu-
lations, and most have started to show their advantages in
real-life epidemiologic studies (28–31). In contrast, to date
we are not aware of any application ofWCEmodeling account-
ing for competing risks.

One challenging and timely clinical question concerns the
potential association between time-varying exposure to low-
dose ionizing radiation (LDIR) and the risk of cancer among
patients with congenital heart disease (CHD) (32). The increas-
ingly longer survival of CHD patients, due to improved care
and therapy, makes it important to assess nonfatal health out-
comes in this growing population (33, 34). In particular, the
recently reported increased prevalence of cancer in adults with
CHD, compared with the general population (35), raises con-
cerns about the potential impact of LDIR procedures, to which
CHD patients are frequently exposed at relatively young ages
(32). Indeed, similar associations between radiation and cancer
have been reported in other clinical populations (1, 21, 36–39).

In particular, in a recent large population-based study, Cohen
et al. (40) reported that CHD patients with a higher number of
LDIR-emitting cardiac imaging procedures during follow-up
had a higher cancer incidence than those who had only 1 proce-
dure or no procedures. However, as the authors recognized, the
analyses did not employ time-varying exposuremetrics (12, 40),
which would be necessary to explore how LDIR exposures
received at different times in the past may affect the hazard (12).

In this paper, we reanalyze the same database using a flexi-
ble, recently developed and validated approach (27) to model
the separate associations of cumulative dose of past LDIR
exposures with the competing risks of cancer incidence and

all-cause mortality. Our main objective is to illustrate how
such flexible modeling may yield new insights into the com-
plex temporal relationships between a time-varying exposure
and the hazards of competing events in a large population-
based cohort.

METHODS

Data sources

The cohort was derived from the Quebec Congenital Heart
Disease Database, which merged Quebec, Canada’s, medical
claims database (Régie de l’Assurance Maladie du Québec)
with its hospital discharge database (Med-Echo) and death
registry (33). The Quebec Congenital Heart Disease Data-
base contains longitudinal information on diagnoses, demo-
graphic factors, hospitalizations, and inpatient and outpatient
diagnostic and therapeutic procedures for all patients diag-
nosed with CHD who used the Quebec provincial health-
care system between January 1, 1983, and March 31, 2010
(33). After exclusion of prevalent cancer cases and patients
with unspecified CHD lesions or genetic disorders (40), the
final cohort included 24,833 CHD patients who were aged
18–64 years between January 1, 1995, and December 31,
2009, and free of cancer on January 1, 1995.

Exposures

Exposure to LDIR-related cardiac procedures was identified
from physicians’ billing codes during a 27-year period from
1983 to 2009 (40, 41). The 118 procedure codes included cathe-
terizations (diagnostic procedures, structural heart interven-
tions, and coronary interventions), computed tomography scans
of the chest, nuclear imaging, and cardiac rhythm procedures
(41). Three alternative time-varying exposures, updated every 6
months during follow-up, were defined: 1) the total number of
LDIR procedures in a given 6-month period, 2) the total dose of
radiation incurred from those procedures, and 3) the logarithm
of the total dose, whichwas considered to account for a possible
nonlinear dose-response relationship (4, 16) and the potential
inaccuracy of imputed doses (40) (details are provided in Web
Appendix 1, available at https://academic.oup.com/aje).

Outcomes

The outcome of primary interest was incident cancer,
defined as the first outpatient diagnosis of primary specified
cancer during the 15-year period from January 1, 1995, to
December 31, 2009, confirmed by inpatient data (40). Pri-
mary specified cancers were ascertained by means of Inter-
national Classification of Diseases, Ninth Revision, codes
(before 2006) and International Classification of Diseases,
Tenth Revision, codes (beginning in 2006), which were used
in the Quebec Congenital Heart Disease Database, and were
categorized on the basis of cancer site (35, 40). Web Appen-
dix 2 outlines data manipulations implemented to avoid
potential immortal time bias, and Web Appendix 3 provides
details on the outcome ascertainment.
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Covariates

LDIR exposures were adjusted for the following a priori-
selected potential confounders (40): age at diagnosis, repre-
sented by linear and squared terms to account for its possibly
nonlinear association with the logarithm of the hazard; sex;
year of birth; specific types of lesions (severe defects, shunts,
and valvular lesions), to account for disease severity; chronic
coronary artery disease, a major comorbid condition for
CHD patients (42); and time-varying transplantation status,
which was recently shown to be an important confounder of
the radiation-cancer association (43).

Statistical analyses

The main analyses relied on flexible extensions of the Cox
proportional hazards model to competing risks, with a time-
varying exposure. Cohort entry was defined as the latest of
January 1, 1995, or the patient’s 18th birthday. The event time
was defined as the time to the earlier of 2 competing events:
1) cancer diagnosis (k = 1) or 2) death from any cause (k = 2).
Subjects who had no event during follow-up were censored at
the earliest of either December 31, 2009, or their 65th birthday
(40).

The joint association of past LDIR exposures with the haz-
ard of event k at time u was represented by the time-varying
weighted cumulative exposure (WCEk(u)) metric (24), defined
as the weighted sum of exposures received during different 6-
month intervals in the past (27):

∑( ) = ( − ) ( ) ( )u w u t X tWCE , 1i k

t

u

k i,

where Xi(t), t ≤ u, represents the exposure received by sub-
ject i in the 6-month interval t (e.g., the number of LDIR pro-
cedures or the total dose of radiation incurred), and the
event-specific weight function wk(u − t) assigns weights to
past exposures, depending on the time elapsed since expo-
sure (u − t).

The weight functions were estimated using flexible cubic
regression splines, which avoided a priori assumptions regard-
ing their shape (14, 25). The weight functions are defined over
a user-specified time window [0, a], where a represents the
maximum width of the exposure time window over which
past exposures may affect the current hazard (27), and can be
constrained to smoothly decay to 0 at the right end of this win-
dow (25). A likelihood ratio statistic with 2 degrees of free-
dom (df) was used to assess the statistical significance of the
improvement in the deviance of the unconstrained model rela-
tive to the constrained model, which would indicate that the
selected support interval a should be increased (25).

We relied on fullmaximum likelihood estimation tofit a single
flexible competing-risksWCEmodel (27), which simultaneously
estimates the hazards of the two competing events, cancer inci-
dence and noncancer death (27), by adapting the data augmenta-
tion approach (44):
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where the event-specific baseline hazard λ0,k(u) is modeled by
cubic regression B-splines with 1 interior knot at themedian of the
uncensored event times (45) andμks represents the corresponding
adjusted log hazard ratio for the (time-varying or time-fixed) co-
variate ( )Z us . Finally, ( ) = ∑ ( − ) ( )u w u t X tWCEi k t

u
k i, repre-

sents the estimated weighted cumulative exposure metric for
event k at time interval u for subject i. Web Appendix 4 pro-
vides further details of the estimation and explains how the
hazard ratios for different exposure patterns are calculated.

To minimize the risk of reverse causality bias, we lagged
the LDIR exposure by 2 years. We then assessed the improve-
ment in the deviance of the lagged WCE model (2) relative to
a simpler 1-df model that represented the lagged cumulative
exposure with the unweighted sum of past exposures X(t)
over the same time window [0, a] (27). We performed several
sensitivity analyses to compare the goodness of fit, in terms of
the Akaike information criterion (AIC) (46), of alternative
models and to inform the choices regarding 1) the flexibility
(number of knots) of splines, 2) use of either the number of
procedures or their (possibly log-transformed) dose as the ex-
posure measure, and 3) the time window (parameter a) during
which past LDIR exposures might be associated with the haz-
ard (more details are provided in the Results section). Then
we assessed whether, in the resulting final WCE model, the
associations of cumulative LDIR exposure with the outcomes
differed between a priori-selected subgroups of 1) women
versus men and 2) subjects aged<40 years at cohort entry ver-
sus subjects aged ≥40 years at cohort entry, by comparing the
deviances of 2 nested WCE models (2). For example, when
exploring possible interaction with sex, the first model included
a single WCE metric for each event, common to men and
women, adjusted for the main effect of sex. The second, more
complex model included, for each event, 2 separate WCE
metrics, one for each sex. The statistical significance of the
difference between the two models was tested at α = 0.05,
using the likelihood ratio statistic with 2m df, where m corre-
sponded to the degrees of freedom required to fit each of the
two event-specific weight functions (27).

We estimated 95% pointwise confidence intervals around
the weight functions using the Monte Carlo procedure (27). All
WCE analyses were performed using a customized R program
(R Foundation for Statistical Computing, Vienna, Austria) (27).

RESULTS

During a follow-up period of up to 15 years, there were
602 incident cancer diagnoses and 500 deaths from all causes
among cancer-free patients, with incidence rates of 1.09/
1,000 person-years for cancer and 0.90/1,000 person-years
for mortality. Table 1 summarizes the distributions of base-
line characteristics and the frequency of LDIR procedures
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during follow-up. Table 2 presents sex-specific distributions
of cancer sites.

Full cohort analyses

Web Appendix 5 and Web Figure 1 illustrate how flexible
WCE modeling can help in detecting the reverse causality
bias (47, 48). To avoid such biases, in all analyses discussed
below, the LDIR exposure was lagged by 2 years.

In preliminary WCE analyses, we addressed the choice of
the number of knots with exposures cumulated over the longest
possible time window of 27 years (a = 27), where potential
benefits of added flexibility in modeling the weight function
should be most evident (27, 49, 50). However, even in that case,

the parsimonious 1-knot model yielded a better fit (lower AIC)
(46) than the more complex 2- or 3-knot models (data not
shown). Thus, all further analyses were limited to 1-knot mod-
els, implying 3 df for each event-specific constrained weight
function (27).

Next, we compared 3 alternative ways of measuring time-
varying LDIR exposure X(t) in consecutive 6-month intervals:
1) the total number of LDIR procedures, 2) the total radiation
dose from all corresponding procedures, and 3) the logarithm
of the total dose. Because use of the log-transformed dose sys-
tematically improved the WCE model’s fit to data relative to
the other two exposuremeasures (as illustrated inWebAppendix
6 and Web Table 1), all results presented below rely on the log
dose.

Table 1. Baseline and Clinical Characteristics of a Cohort of PatientsWith Congenital Heart Disease (n= 24,833), Quebec, Canada, 1995–2010

Characteristic
Categorical Covariates Continuous Covariates

No. of Persons % Mean (SD) Median (IQR)

Covariates

Age at entry, years 28 (13.4) 19.7 (18–36)

Age group, years

18–39 19,802 79.7

40–64 5,031 20.3

Sex

Male 11,020 44.4

Female 13,813 55.6

Year of birth 1970.5 (16.8) 1975 (1959–1985)

Type of lesion

Severe defect 3,495 14.1

Shunt 15,498 62.4

Valvular lesion 5,840 23.5

Chronic coronary artery disease

Yes 1,588 6.4

No 23,245 93.6

Exposure

Total amount of LDIR received during follow-up, mSva

From catheterizations 13.5 (14.5) 7 (7–15)

From computed tomography scans 24.3 (20.4) 15 (15–30)

From nuclear medicine 17.3 (16.2) 15.6 (7.8–15.6)

From cardiac rhythm procedures 15.9 (16.4) 15 (3–16.5)

Average no. of procedures performed during follow-upa

From catheterizations 1.5 (1.8) 1 (1–2)

From computed tomography scans 1.6 (1.4) 1 (1–2)

From nuclear medicine 2.1 (1.9) 1 (1–2)

From cardiac rhythm procedures 1.9 (1.5) 1 (1–2)

Outcome (During≤15 Years of Follow-up)

Incident cancer 602 2.4

All-causemortality 500 2.0

Abbreviations: IQR, interquartile range; LDIR, low-dose ionizing radiation; SD, standard deviation.
a When there was at least 1 procedure.

Am J Epidemiol. 2019;188(8):1552–1562

Cumulative Radiation Exposure and Risk of Cancer 1555



Then, because of the uncertainty regarding how long past
LDIR exposures may be associated with the current hazard
of incident cancer (1), we fitted alternative unlagged 1-knot
unconstrained WCE models for time windows of 3, 5, 9, 12,
and 18 years (very short time windows being considered,
these analyses did not employ the 2-year lag). The 9-year
model yielded the lowest AIC. Furthermore, the estimates
based on shorter windows suggested that the LDIR doses
received 5 or more years prior were still associated with the
current hazard, whereas the 12- and 18-year estimates did
not show any risk increases associated with LDIR doses
received more than 7–8 years prior (see Web Appendix 7
and Web Figure 2 for the comparison of AICs and weight
function estimates). Finally, the 9-year unconstrained model
did not improve the fit in comparison with the more parsimo-
nious right-constrained model (P = 0.25). Given the above
results, the main analyses relied on the lagged 1-knot right-
constrained WCE model, with cumulative exposure defined
as the weighted sum of log LDIR doses received in the past 9
years. This model fitted better (AIC = 15,769.3) than the
unweighted sum of past doses (AIC = 15,776.3) from the
same time window (P = 0.0047).

Figure 1 shows the corresponding weight functions for the
two events, estimated in the full cohort, with their 95% confi-
dence intervals. Because of the 2-year lag, the curves show

the relative importance of LDIR exposures received 2–9
years before. Figure 1A indicates that LDIR doses from the
past 2–5 years were associated with statistically significant
increases in the hazard of incident cancer, but those received
more than 6 years ago did not seem to matter, as reflected by
weights close to 0. In contrast, for all-cause mortality, the
most recent LDIR exposures seemed to play a dominant role,
probably reflecting the reverse causality bias (Figure 1B).
Table 3 shows event-specific hazard ratios for covariates
from the final WCEmodel.

Subgroup analyses

Sex. The extended competing-risks WCE model that
estimated separate weight functions for women and men fit-
ted the data significantly better than the model that assumed
the same association for both sexes (P = 0.0057 for the like-
lihood ratio statistic with 6 df).

For men, only LDIR exposures from 3 years before to
about 6 years before were associated with increased cancer
incidence (Figure 2A), whereas all-cause mortality was
mostly associated with recent LDIR exposures (Figure 2B).
For women, the short-term associations of LDIR exposures
with cancer incidence were stronger than those for men, as
reflected by higher values of the corresponding weight func-
tions, but were limited to doses received less than 5 years
before (Figure 2C). For women, all-cause mortality was
mostly associated with recent LDIR exposures (Figure 2D).

To assess the strength of the estimated associations
between LDIR and incident cancer (Figure 3), we evaluated
adjusted sex-specific hazard ratios (vertical axis) for selected
hypothetical patterns of LDIR doses received at different
times in the past (horizontal axis), relative to patients with no
LDIR procedures in the past 9 years. Comparison of different
patterns illustrates the impact of 1) more recent exposures
(for men, hazard ratio (HR) = 1.46 (4–5 years before) vs.
HR = 1.20 (2.5–3.5 years before) for a dose of 7.8 mSv and
HR = 1.62 (4–5 years before) vs. HR = 1.26 (2.5–3.5 years
before) for a dose of 15.0 mSv; for women, HR = 2.16
(2.5–3.5 years before) vs. HR = 1.26 (4–5 years before) for a
dose of 7.8 mSv and HR = 2.67 (2.5–3.5 years before) vs.
HR = 1.34 (4–5 years before) for a dose of 15.0 mSv) and
2) higher doses (for men, HR = 1.26 (15.0 mSv) vs. HR =
1.20 (7.8 mSv) 2.5–3.5 years before and HR = 1.62 (15.0
mSv) vs. HR = 1.46 (7.8 mSv) 4–5 years before; for women,
HR = 1.34 (15.0 mSv) vs. HR = 1.26 (7.8 mSv) 4–5 years
before and HR = 2.67 (15.0 mSv) vs. HR = 2.16 (7.8 mSv)
2.5–3.5 years before). Comparison of hazard ratios for equiv-
alent patterns in Figures 3A and 3B indicates that the impact
of recent LDIR exposures was stronger for women than for
men. We also estimated hazard ratios associated with
selected dose histories actually observed in our cohort. For
women and men, across all patients and all periods when
they were exposed, the median hazard ratios were 1.06 and
1.17, respectively, as compared with no LDIR procedures in
the past 9 years, with 90th percentiles of 1.70 and 1.46 (Web
Appendix 8 provides more details, and Web Table 2 shows
examples of exposure patterns corresponding to median and
90th percentile hazard ratios). Even if the exposure-cancer

Table 2. Distribution of Cancer Sitesa AmongMen andWomenWith
Congenital Heart DiseaseWho Developed Cancer During≤15 Years
of Follow-up, Quebec, Canada, 1995–2010

Sex and Cancer Site No. of Cases %

Male 263 100.0

Genitourinary organs 81 30.8

Digestive organs 61 23.2

Lymphatic and hematopoietic tissue 50 19.0

Respiratory organs 39 14.8

Bone, connective tissue, and skin 20 7.6

Thyroid and other endocrine glands 5 1.9

Brain and nervous system 4 1.5

Lip, oral cavity, and pharynx 3 1.1

Breast 0 0.0

Female 339 100.0

Breast 117 34.5

Respiratory organs 48 14.2

Genitourinary organs 45 13.3

Digestive organs 39 11.5

Lymphatic and hematopoietic tissue 37 10.9

Bone, connective tissue, and skin 24 7.1

Thyroid and other endocrine glands 18 5.3

Brain and nervous system 10 2.9

Lip, oral cavity, and pharynx 1 0.3

a Primary specified cancers were ascertained by means of Interna-
tional Classification of Diseases, Ninth Revision, codes (before 2006)
or International Classification of Diseases, Tenth Revision, codes
(during and after 2006).
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association was stronger in women (Figure 3), their median
hazard ratio was slightly lower because they were less fre-
quently exposed.

Age. Similar analyses yielded a marginally nonsignifi-
cant interaction with age (P = 0.13) and suggested that the
association with LDIR doses from the past 2–6 years may
have been somewhat stronger for younger adults than for
persons aged 40–64 years at cohort entry (results are shown
inWeb Appendix 9 andWeb Figure 3).

DISCUSSION

Our analyses shed light on the findings of the first study that
found an association between LDIR exposure from cardiac
procedures and cancer risk in adults with CHD (40), which
may have important public health implications (32). Our
analyses offer new insights into this complex association, help

estimate its approximate latency, account for the time-varying
nature of radiation exposures, and address analytical chal-
lenges related to modeling of cumulative exposures, compet-
ing risks, and effect modification by sex. Specifically, flexible
WCE modeling indicated that increased cumulative LDIR
dose from the previous 2–6 years was associated with increased
cancer incidence, with a stronger association for women, and
permitted estimation of how hazard ratios varied depending on
the past exposure pattern.

Preliminary unlagged analyses illustrated how WCE
modeling may help detect reverse causality bias, which oc-
curs because some recent LDIR procedures, especially com-
puter tomography chest scans, were probably performed
because of early precancer symptoms (51). A combination
of reverse causality and confounding bias probably also ex-
plains the association of higher cumulative LDIR dose with the
competing risks of all-cause mortality, for which biological

Table 3. Adjusted Event-Specific Hazard Ratios for Cancer and All-CauseMortality AmongMen andWomenWith
Congenital Heart Disease According to Covariates Included in the FinalWeighted Cumulative Exposure Competing-
RisksModel, Quebec, Canada, 1995–2010

Covariate
Cancer All-Cause Mortality

HR 95%CI HR 95%CI

Age (per year) 1.06 0.99, 1.14 0.97 0.91, 1.02

Age2 (per year2) 1.00 1.00, 1.00 1.00 1.00, 1.00

Sex (female vs. male) 1.16 0.99, 1.37 0.67 0.57, 0.80

Year of birth (per year) 0.97 0.92, 1.03 0.94 0.90, 0.98

Type of lesion

Severe defect 1.00 Referent 1.00 Referent

Shunt 1.24 0.92, 1.61 0.52 0.41, 0.65

Valvular lesion 1.02 0.75, 1.37 0.45 0.34, 0.57

Chronic coronary artery disease 1.48 1.14, 1.93 4.52 3.49, 6.01

Previous transplantationa status (yes/no) 5.09 2.45, 11.49 4.48 2.49, 7.80

Abbreviations: CI, confidence interval; HR, hazard ratio.
a Binary time-varying covariate.
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Figure 1. Estimated weight functions (dotted-dashed lines) and pointwise 95% bootstrap confidence intervals (shaded areas) for associations
between the logarithms of past doses of low-dose ionizing radiation exposure and cancer incidence (A) and all-cause mortality (B) among persons
with congenital heart disease (2-year-lagged analysis), Quebec, Canada, 1995–2010.
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plausibility may be difficult to establish. Indeed, patients with
more severe CHD and/or life-threatening comorbidity both
1) require more diagnostic procedures and 2) have higher
mortality. In contrast, our finding that cumulative LDIR dose
is associated with cancer incidence is in line with results of pre-
vious large epidemiologic studies (1, 52).

However, our consistent findings that the increased cancer
risks are associated with only those LDIR exposures—
whether represented by cumulative measures of log dose,
dose, or the number of procedures—that occurred in the past
2–6 years raises 2 important interrelated questions. 1) Can
such a short latency represent a biologically plausible cause-
effect relationship? 2) If not, what are possible alternative ex-
planations for an association specific to LDIR exposures
from the past 2–6 years? We recognize that the latency sug-
gested by our analyses is shorter than that reported in the
Life Span Studies (53) and studies of cancer incidence after a
major nuclear accident (54). Yet, the impact of a single mas-
sive radiation dose may be different from the cumulative
impact of several low-dose exposures, where there seems to

be some uncertainty regarding the latency period for their
association with cancer incidence (55, 56). For example,
Richardson and Ashmore (1) found that among nuclear indus-
try workers, the lags varied substantially across cancer sites,
and might be as short as 5 years for all cancers but lung cancer.
Furthermore, even exposures that occurred only 2–3 years ear-
lier contributed substantially to the cumulative risk of cancer
death (1). Finally, in their study, the outcome was cancermor-
tality (1), which can partly explain why our analyses of cancer
incidence suggested somewhat shorter latencies. Indeed, in a
recent large study of computed tomography scans received in
childhood and adolescence, exposures from the past 2–5 years
had the strongest association with cancer incidence (52).

Regarding alternative mechanisms that might have produced
“evidence” of a statistically significant association, found in our
analyses with the 2-year lag, a simple reverse causality bias can
arguably be ruled out. It is unlikely that LDIR procedures per-
formed more than 2 years before the diagnosis of most cancers,
with the possible exception of brain cancers, were ordered
because of early precancer symptoms (52), and brain cancers
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Figure 2. Estimated weight functions (dotted-dashed lines) and pointwise 95% bootstrap confidence intervals (shaded areas) for associations
between the logarithms of past doses of low-dose ionizing radiation exposure and cancer incidence (left panels) and all-cause mortality (right panels)
for men (A and B) and women (C and D) with congenital heart disease (2-year-lagged analysis), Quebec, Canada, 1995–2010.
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were too rare in our population (2.3%) to materially affect the
results. Furthermore, the main source of LDIR exposure in our
study was cardiac imaging tests, which are seldom ordered as a
diagnostic work-up for cancer. One reason why our analyses
suggested a shorter latency period could be “detection bias.”
Because our CHD population is followed more closely than the
general population (57), it is possible that cancers are detected
at earlier stages. Indeed, in a large population-based Taiwanese
study, the median time from CHD diagnosis to cancer diagnosis
was only 3 years (58). Our database does not include information
on cancer stage at diagnosis, but future research should explore
this issue. Finally, even if we excluded patients with known
genetic abnormalities (40), we cannot exclude the possibil-
ity that some unknown abnormalities could both 1) require
more frequent LDIR procedures and 2) increase the risk of
cancer, inducing unmeasured confounding bias. If our re-
sults were largely driven by a small subpopulation of highly
susceptible patients (59, 60) who developed cancers soon
after exposure, the resulting depletion of susceptible per-
sons could also explain an absence of an association with
LDIR exposures received more than 6 years before (52).

Our finding that CHD patients who had received relatively
high LDIR doses in the past 2–6 years were at increased risk
of incident cancer suggests that these patients should be
monitored more closely. Whereas hazard ratios associated
with typical LDIR exposures were modest, patients with
cumulative doses in the top percentiles of the distribution
observed in our cohort had relative risk increases above 60%
(Figure 3), which are clinically meaningful.

The weight functions differed significantly by sex: The
association between LDIR exposures and cancer incidence
was stronger, and the latency shorter, for women than for
men. These findings, which emphasize the need to explore
the role of sex as a potential effect modifier in epidemiologic
studies (20, 61), are in line with those of other large studies

(52, 55) confirming the concerns about higher radiosensitiv-
ity and vulnerability in women (21, 39), which may be attrib-
utable to their smaller body sizes and to the presence of
radiosensitive breast and lung tissues in the radiated field
(21, 39). Indeed, cancers of the breast and respiratory organs
together represent approximately 50% of all cancers diag-
nosed among women in our cohort (40). This difference may
also partly reflect sex-related differences in the distributions
of cancer sites (Table 2), which may be differentially affected
by LDIR exposures (1). Because our sample size was not
sufficient for analyses of particular cancer sites, these ques-
tions should be explored in future studies.

Similar to other database studies of time-varying exposures,
our study had limitations related to 1) exposure measurement er-
rors, 2) unmeasured confounding, 3) heterogeneity in exposure
across calendar time, and 4) uncertain external validity (62, 63).
With regard to the first limitation, procedure-specific data on
doses delivered, which were not available in our database, were
imputed (40), similarly to other studies (52), based on the typical
effective dose reported in the literature (36, 64–67). Yet, the
actual LDIR dose received may vary by sex, age, radiation type,
and the exposed organ (68). However, we found similar laten-
cies in sensitivity analyses based on the number of LDIR proce-
dures, which avoided measurement errors in dosage. Second,
smoking status, which is not recorded in the Quebec Congenital
Heart Disease Database, may be an important unmeasured con-
founder for the association between LDIR exposure and cancer
incidence (1). However, in the same database, exclusion of
smoking-related cancers did not materially change the results
(40). Third, in future research, investigators should also explore
the potential impact of secular trends in exposure intensity, re-
flecting progress in radiation technology (69). Finally, our re-
sults were limited to adults with CHD and should not be
generalized to other adult populations or to children with CHD,
who require further, dedicated studies.
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Figure 3. Adjusted hazard ratios from the final model (2-year-lagged analysis of associations between the logarithms of past doses of low-dose
ionizing radiation (LDIR) exposure and cancer incidence) for selected hypothetical patterns of LDIR received at 2 different times in the past 9 years,
relative to patients with no LDIR procedures in the past 9 years, amongmen (A) and women (B) with congenital heart disease, 1995–2010.
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In conclusion, we recognize that a single observational
study cannot establish a causal relationship. However, the
ultimate goal of statistical analyses is to best reflect what the
empirical data tell us about the complex processes underly-
ing disease occurrence, progression, and outcomes. From
this perspective, our flexibleWCEmodeling helped establish
the temporal relationship between LDIR exposures and can-
cer incidence, raising intriguing questions about the underly-
ing mechanisms and the plausibility of the causal effect.
Similar analytical challenges arise while studying many other
time-varying exposures/treatments where, depending on the
study design and data structure, researchers may apply flexible
exposure weighting methods developed for (nested) case-
control studies (1, 14), time-to-event analyses (16, 25), mar-
ginal structural models (26), generalized linear models (15),
or competing risks (27). Extrapolating from our findings, such
flexible methods may yield interesting new insights and help
generate new hypotheses.
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