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In the last third of the 20th century, etiological epidemiology within academia in high-income countries shifted its
primary concern from attempting to tackle the apparent epidemic of noncommunicable diseases to an increasing
focus on developing statistical and causal inference methodologies. This move was mutually constitutive with the
failure of applied epidemiology to make major progress, with many of the advances in understanding the causes of
noncommunicable diseases coming from outside the discipline, while ironically revealing the infectious origins of
several major conditions. Conversely, there were many examples of epidemiologic studies promoting ineffective
interventions and little evident attempt to account for such failure. Major advances in concrete understanding of dis-
ease etiology have been driven by a willingness to learn about and incorporate into epidemiology developments in
biology and cognate data science disciplines. If fundamental epidemiologic principles regarding the rooting of dis-
ease risk within populations are retained, recent methodological developments combined with increased biological
understanding and data sciences capability should herald a fruitful post–Modern Epidemiologyworld.

Bradford Hill; causal inference; history of epidemiology; liability models; methodology; stochasticity

Abbreviations: CHD, coronary heart disease; HDL, high-density lipoprotein; NSE, nonshared environment; RCT, randomized
controlled trial.

In JerryMorris’ seminal (but now largely unread) 1957 book
The Uses of Epidemiology” (1), he identified 7 uses of epidemiol-
ogy, one of which was discovering the causes of disease (2). In
this brief commentary, I will focus entirely on etiological epidemi-
ology and provide an impressionistic account of how the tension
between methodological development and real-world investi-
gation has played itself out in the field of noncommunicable
disease epidemiology.

THE SEEDBEDOFMODERNEPIDEMIOLOGY

Epidemiology in the mid-20th century was coming to terms
with the transition from communicable to apparently noncom-
municable diseases in high-income countries. Morris modestly
suggested his book should have been entitled “Some uses of
epidemiology in the study of non-communicable disease” (1, p. V).
The 1960 text Epidemiologic Methods by MacMahon, Pugh,
and Ipsen (3) similarly reflected a shift from communicable
disease epidemiology—the primary focus of earlier pioneer-
ing epidemiologic textbooks by Major Greenwood (4) and

Taylor and Knowelden (5)—to investigation of noncommu-
nicable disease.

A third of the first edition of Morris’s book was devoted to
the search for causes of disease, and he highlightedmultiple cau-
sality as likely being at the root of the chronic, apparently non-
communicable, diseases under investigation (1). Joint analysis
of the increasing number of putative risk factors for coronary
heart disease (CHD) was widely adopted following Cornfield’s
use of Fisher’s discriminant function in the multivariable—then
generally referred to asmultivariate (6)—setting in 1962 (7).Mor-
ris applied this to the investigation of physical activity in the sem-
inal London busmen study in 1966 (8), with Cornfield et al. (9)
presenting a detailed analysis of Framingham data in 1967. This
was largely superseded by the closely related multiple logistic
regression (10), which rapidly became ubiquitous in the epide-
miologic sphere.

Almost as quickly as they were taken up, such effortless off-
the-shelf approaches to identifying “independent” risk factors
were decried. Murphy considered that “[m]ultivariate analysis
(which in certain quarters is being substituted for scientific
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perception), can spread its soporific effect” (11, p. 1860) and
that (with respect to some analyses) “I am driven to believe that
however excellent the prediction, the formula, from an etiologi-
cal and ontological standpoint, provides no insights whatsoever”
(11, p. 1860). Leaders of the field joined in. Reuel Stallones
opined that then-contemporary epidemiology demonstrated
a “continuing concern for methods, and especially the dissection
of risk assessment, that would do credit to a Talmudic scholar
and that threatens at times to bury all that is good and beautiful
in epidemiology under an avalanche of mathematical trivia
and neologisms” (12, p. 69). Abe Lilienfeld thought that “[p]
erhaps the most dangerous aspect of the state of our discipline
today is that there is an unhealthy emphasis on howone conducts
an epidemiologic study and not why and what one does in such
a study. Simply put, we are training technocrats” (13, p. 147).

EPIDEMIOLOGYENCOUNTERSMODERNITY

From the early 1970s onward, a series of papers interrogat-
ing the fundamental tenets of epidemiology appeared. Among
the many authors, Olli Miettinen (14–20) and Ken Rothman
(21–25)were particularly influential early contributors. Rothman’s
1986 book Modern Epidemiology (26) represented a watershed
moment in the discipline. Improving the ability to identify causes
of disease was naturally a major concern of this rebooting of
epidemiologic methodology. For example, in a 1974 paper
on “Synergy and antagonism in cause-effect relationships” (21),
Rothman advanced the notion that synergy was represented by
supra-additive effects (referred to as “biologic interaction”
(27, 28)), an approach that would “provide clues to the behavior
of the causal mechanisms involved” (21, p. 386).

Morris’s Uses of Epidemiology (1) opened with the presen-
tation of population data on disease trends (e.g., CHD, peptic
ulcers, and lung cancer) that urgently required improved etio-
logical understanding so that prevention activities could be
mounted. Throughout the book, he discussed many other situa-
tions (from cancers through occupational illnesses to the chang-
ing socioeconomic and sex ratios in morbidity and mortality
rates), with epidemiologic methodology being discussed implic-
itly in terms of how it could be applied to these concrete issues.
Themeat ofModern Epidemiology (26), in contrast, commenced
with a largely abstract chapter entitled “Causal Inference in Epi-
demiology” that advanced a Popperian philosophy, expanded on
Rothman’s deterministic “causal pies”model (22), and critiqued
what it referred to as Bradford Hill’s (29) criteria for causal infer-
ence (26).Modern Epidemiology represented an epistemic break
in the discipline and established a set of generally accepted ax-
ioms that few have questioned. My pirated photocopy (the book
was expensive) is, from start to finish, heavily annotated and
proves at this distance how much I encountered for the first time
and learned from reading it.

In the year that Modern Epidemiology was published, the
start of increasingly formal andmathematized causal inference
in epidemiology was heralded by Jamie Robins’s brilliant work
introducing graphical causal modelling and the g-formula/G-
estimation framework (30) and influential papers by Robins
and Sander Greenland (31, 32) in which they connected causal
inference to epidemiologic analysis. These demonstrated their
utility in subsequent studies within the field of human immu-
nodeficiency virus/acquired immunodeficiency syndrome.

The rumbling dissatisfaction of some senior epidemiologists
continued, pointing out an apparent increasing disconnect between
a methodology-obsessed epidemiology and the fruitful investiga-
tion of patterns of the causes of disease within populations.
Three contributions from 1988 are illustrative. Leon Gordis
sensed an increasing disconnect between epidemiology and
biology and referred to epidemiologic studies being “considered
‘positive’ only because they use highly sophisticated statistical
techniques that have become available only in recent years”
(33, p. 2). Diana Petitti reported that within epidemiology, she
had found “less and less evidence of scientific creativity and
more and more striking deficits in the understanding of biol-
ogy” (34, p. 149), with the epidemiologic literature becom-
ing “an archive of the results of information derived from
mechanical applications of multivariate analysis” (34, p.
150). Jerry Morris (who was, as we have seen, an early
adopter of methods when he saw them as useful) reported
that he had “high regard for Rothman’s Modern Epidemiol-
ogy” (35, p. 100) but that “as a guide to modern epidemiology
the book has serious limitations” (35, p. 100).

“The student coming to it afresh could not gather that epidemiology
is the basic science of public health. Thus in close on 150 years of
epidemiological research (Dr Rothman doesn’t have much space
for history) it continues plausible that the main determinants of the
health of populations and sizable subgroups in them are their economic-
social-cultural conditions. The data on this are mostly cross-sectional
and inevitably derived from studies of populations and groups as
the unit, rather than from aggregation of individuals with their
various attributes” (35, p. 100).

THEMODERNVIEWOFCAUSALITY

Morris (1, 35, 36) (and others, such asMervyn Susser (37, 38))
saw causality as inherent in underlying sociocultural processes
working through mediating factors to influence the health of
individuals within populations; ultimately, epidemiologic cau-
sality needed to be considered as a population phenomenon
that could often be usefully interrogated through individual-
level investigation. Modern Epidemiology (26) and its fellow
travelers had a different view. I (probably unfairly) previously
characterized this as one in which “. . . the health of popula-
tions has become a footnote to a detailed exposition of how to
calculate a multivariably adjusted effect estimate from a study
with appropriate sampling, and then how to apply a billiard-
ball view of causation to your study results” (2, p. 1148).

Modern Epidemiology (26) incorporated Rothman’s notion
of “biologic interaction,” one that surely would have failed to
satisfy calls from Gordis and others to engage seriously with
biology. Despite its name, biologic interaction makes little
concession to actual biology (39) and is far removed from
the obvious deep engagement with the basic sciences seen in
earlier work on actual models of disease development, such
as in the work of Richard Peto (40). Indeed, if this commentary
has the effect of engaging more contemporary epidemiologists
in reading such contributions—the referenced paper introduced
the fascinating “Peto’s paradox” (41)—it has beenworthwriting.

Biologic interaction was advanced as a route to causal iden-
tification, but it is hard to come up with many examples of the
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application of this model having resulted in such. The determin-
istic “causal pies”were contrasted inModern Epidemiology (26)
with potential stochastic models, and here I think it is worth re-
flecting on the analogous situation with different formulations of
liability models developed in classic quantitative genetics
(and which E. A. Murphy, who we earlier heard complain
about soporific multivariate analyses, attempted to introduce to
epidemiologists (42)). Falconer’s influential threshold model
(43) envisages an underlying normally distributed liability in
which those above a certain level are doomed to develop dis-
ease (though the confusion of the implicit concepts of incidence
and prevalence in the initial paper would irritate epidemiolo-
gists). This is explicitly a deterministic model. However, the
liability includes all the known and unknown nongenetic fac-
tors, the latter of which includes the nonshared environment
(NSE) (44). NSE is estimated by subtraction in quantitative
genetic studies (e.g., twin studies), as the residual variance after
the estimated genetic component of variance and the compo-
nent of variance due to shared environment—the environmen-
tal influences that lead to siblings (and others) brought up in
the same home environment being similar to each other—
have been subtracted from 100%. For the large majority of
human traits, including diseases such as cancers, the so-called
NSE is the major component of variance (45, 46). In many
nonhuman forms of life, precisely the same situation is seen
when decomposing the variance in a phenotype contributed to
by genes and environment (45). When studying transmission
of skin patterning in guinea pigs, Sewall Wright said these ef-
fects “must be due to irregularities in development due to the
intangible sort of causes to which the word chance is applied”
(47, p. 545). So-called NSE in human phenotypes will be driven
by everything from stochastic nonperfect quantitative cyto-
plasmic sharing during cell division, somatic mutations, random
mitotically stable epigenetic changes through to idiosyncratic
life events of all types, measurement error, and (probably
importantly) reverse causal influences on phenotype of devel-
oping disease (45, 48, 49). Thus, a deterministic model could be
proposed because it explicitly contained the intangible variance
that quantitative genetics identified as largely stochastic. An
alternative model, advanced by Edwards (50), had no thresh-
old, instead proposing an increasing probability of disease with
increasing genetic liability. Probability at a given liability
would thus depend upon a mixture of known and unknown
(including potentially stochastic) nongenetic factors.

As will be appreciated, the Falconer and Edwards models
are largely equivalent (as Rothman hints at with respect to the
deterministic and stochastic causal models he considers (28)).
The explicit reason Rothman gives for favoring deterministic
models is that:

“In our ignorance of these hidden causal components, the best we
can do in assessing risk is to assign the average value to everyone
exposed to a given pattern of known causal risk indicators. As knowl-
edge expands the risk estimates assigned to people will approach one
of the extreme values, zero or unity”. (26, p. 12)

Such a formulation—that with increasing knowledge we can
approach certainty—is, of course, the epitome of the overhyped
“personalized medicine,” for which much epidemiologic and
other evidence suggests there are serious (and sometimes insur-
mountable) constraints (45, 51). In reality, it matters not

whether we consider our ignorance to be ontological (are there
truly stochastic processes leading to disease that are inher-
ently unpredictable?) or epistemological (that it is simply
infeasible that adequate data could be collected to identify the
individual-level causal processes); basic epidemiologic and bio-
logical reasoning presents serious bounds to approaching (or
even nearing) the holy grail of zero or unity values for risk

Figure 1. “The chance events that contribute to disease aetiology
can be analysed at many levels, from the social to the molecular. Con-
sider Winnie (Figure 1); why has she managed to smoke for 93 years
without developing lung cancer? Perhaps her genotype is particularly
resilient in this regard? Or perhaps many years ago the postman
called at one particular minute rather than another, and when she
opened the door a blast of wind causedWinnie to cough, and through
this dislodge a metaplastic cell from her alveoli? Individual biogra-
phies would involve a multitude of such events, and even the most
enthusiastic lifecourse epidemiologist could not hope to capture them
[54]. Perhaps chance is an under-appreciated contributor to the epidemi-
ology of disease” (45, p. 547). This photo ofWinnie Langley, who smoked
for 93 years, appeared in The Sun (138) and was reprinted in the Interna-
tional Journal of Epidemiology (45) Reprintedwith permission.

Figure 2. The major contribution of stochastic events and the
bounds to personalized medicine is illustrated by cancers of bilateral
organs.
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(45) (Figure 1). Consider the development of cancers in
bilateral organs, for example the breast (52) or kidney (53)
(Figure 2). At the time when a primary cancer develops in one
organ, the contralateral one will have an identical germline
genotype and will have experienced exposure patterns essen-
tially the same as those experienced by the affected organ.
Despite this, the risk of developing a second primary tumor in
the contralateral organ is little elevated over population risk (52,
53). For example, a monozygotic twinwith a primary breast can-
cer has roughly half of the risk of developing a second primary
cancer as her twin has of developing a first primary cancer (her
twin has 2 unaffected breasts at risk as opposed to 1 in the ini-
tially affected twin). A fantasy lifecourse study in which regular

tissue biopsies are obtained from early embryonic stages
onwards and there is minute-by-minute monitoring of every
action and exposure wouldn’t be quite intensive enough, it
seems (54). However, although we can engage in fantasies of
deterministic causal attribution, we should recognize that by
ignoring the constraints imposed by how the material world is,
we encourage the mythopoetics of personalized medicine. Epi-
demiologists, surely, should be suspicious of such.

Away from the abstractions on causal and deterministic mod-
els, the discussion of Hill’s (29) informal approach to strength-
ening causal inference inModern Epidemiology (26) was not
positive. It suggested some of the so-called “criteria” (26, p. 17)
(Hill neither used the term nor endorsed its obvious implications)
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Figure 3. Number of Google Scholar citations from 1965 onward of Austin Bradford Hill’s seminal proto-triangulation paper “The Environment
and Disease: Association or Causation?” (29) (A) and “causal inference” and “epidemiology” (B). Data from 2018 are preliminary and probably
incomplete.
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were either straightforwardly both “wrong” (26, p. 19) and
“useless and misleading” (26, p. 18) (with respect to specific-
ity) or, at best, “saddled with reservations” (26, p. 19). Popper
was clearly the man.

POST–MODERN EPIDEMIOLOGY: WHATGOESON?

The developments in epidemiologic methodology reflected
in and influenced by the publication ofModern Epidemiology
(26) might have been expected to increase the standing of the
discipline as a scientific enterprise. Indeed, Rothman ended
the first chapter of his book on the optimistic note that epidemi-
ology was becoming increasingly respected and seen as part of
biological science:

“Epidemiology has established a toehold as a scientific discipline.
Whereas epidemiologic results were once greeted mainly with skep-
ticism, they are now generally accorded some degree of respect. At
midcentury, epidemiologists had trouble persuading the scientific
community of a relation between smoking and lung cancer. By 1984,
the situation had changed so much that a weak epidemiologic associ-
ation observed between beta-carotene and cancer occurrence was the
stimulus for a biochemical hypothesis on anti-oxidants, which was
published in Science. The paper begins with the observation that
‘[E]pidemiological studies indicate that the incidence of cancer
may be slightly lower among individuals with an above-average
intake of beta-carotene and other carotenoids [55].’ The respectabil-
ity evinced by this integration of epidemiology into the fold of the
biologic sciences stems in large part from the emergence of a
clearer understanding of the epidemiologic concepts that have
become the basis of modern epidemiology” (26, p. 5).

Modern epidemiologic concepts were all set to herald in a
glorious age of ever-increasing respectability and reliability.
Sadly, the reverse proved to be the case: Over the years fol-
lowing the publication of Modern Epidemiology, an unprec-
edented outpouring of disdain for epidemiology appeared
(56–61). The cause of this is foreshadowed in Rothman’s
optimism: He used the example of epidemiologic evidence
that β-carotene would reduce cancer risk as an example of its
increasing respectability. What followed was a deluge of ran-
domized controlled trials across a range of (in particular die-
tary) exposures that failed to to show that epidemiologic
evidence usefully identified protective factors—including,
among others, vitamin E and C supplementation and cardio-
vascular disease, selenium supplementation and prostate cancer,
and Rothman’s pin-up of β-carotene and cancer (62). In 1998,
the second edition of Modern Epidemiology appeared (63),
now with 2 principal authors and several chapters on applied
epidemiology. The initial chapter gained an author and a word
in its title (it was now “The emergence of modern epidemiol-
ogy”) but was otherwise virtually unchanged from the first
edition, except for the simple deletion of the final paragraph
reproduced above (64).

The post–Modern Epidemiology period has been character-
ized by embracing the formal language and graphical represen-
tations of the causal inferencemovement (65, 66). This has been
unequivocally positive in many ways, in particular with respect
to making transportable across particular situations the general
structure of biases, for example of those due to conditioning on

what is now referred to as a collider (67–70). The discipline of
formally presenting proposed causal hypotheses (for expo-
sures of interest, confounders, and nonconfounding potential
covariates) is similarly helpful. However, this is only within a
framework of assessment of the evidence across as many do-
mains as can usefully provide independent evidence, whether
through quantitative orthogonal evidence factors that could be
combined (71) or as a broader exercise in triangulation of evi-
dence (72, 73). Hill’s viewpoints as well as the similar set of
arguments seen in the 1964 Surgeon General’s” report (74), pro-
vided prototypes for such triangulation (29, 75) but bizarrely
became the target of the modernists. Labarthe and Stallones (76),
in an entertaining contribution to a 1988 symposium on causal
inference, ironically referred to Hill as “the villain” and correctly
inferred that his contribution to actual, real-world epidemiologic
inference would be greater than that of the then-hero, Popper. Ci-
tations of Hill’s work and causal inference have appropriately
risen together (Figure 3). The denigration of Hill and his co-
thinkers in the causal inference school remains a constant, how-
ever. In the foundational 1993 text Causation, Prediction and
Search (77), Spirtes et al. opined that “the “epidemiological crite-
ria for causality” were an intellectual disgrace and the level of
argument . . . was sometimes more worthy of literary critics than
scientists” (76, p. 302). Figure 4was presented in an introduction
to causal inference in 2018 (78), with the explicit message being
that once you could draw a directed acyclic graph you no longer
needed Hill and his sad, time-expired empiricism. The irony that
Hill’s specificity, which Rothman characterized as “wrong, use-
less and misleading” (26, pp. 18–19), is the basis of the now-
lauded “negative controls” (79, 80) will not be lost on those
familiarwith earlier uses—from interrogatingmidcentury occupa-
tional exposures (discussed by Greenwood in 1948 (81)) through
the many subsequent applications (71). Unsurprisingly, once
legitimized, negative controls (aka specificity) have been overfor-
mularized and used to “correct” effect estimates (82), rather than
play amoremodest (but useful) role in causal inference (83).

Causal inference centered on a partially quantified “triangula-
tion” (72, 73, 84)—based mainly on the power of study design,
not analysis—should be explicitly (and prospectively) aimed at
gathering evidence from approaches in which biases will be as

Bradford Hill’s Criteria for Causality

1) Temporal relationship

2) Strength

3) Dose -response relationship

4) Consistency

5) Plausibility

6) Coherence

7) Analogous explanations

8) Specificity

9) Experiment

Figure 4. An indicative powerpoint from a recent talk on causal
inference (78).

Am J Epidemiol. 2019;188(8):1410–1419

1414 Davey Smith



near-orthogonal as is possible. This includes the much-despised
“ecological” or population data, a combination of which allowed
Fritz Lickint in 1935 to confidently declare smoking a cause of
lung cancer (85). This was a quarter of a century before Corn-
field’s justly celebrated andmassivelymore systematic triangula-
tion (with sensitivity analysis) (86), which is now increasingly
seen as foundational within epidemiology.

WEREWEEVER “MODERN”?

I started working as a chronic disease epidemiologist in the
mid-1980s, around the timeModernEpidemiology (26) appeared,
and the key questions at that time included:

Was high-density lipoprotein (HDL) cholesterol protective
against coronary disease?

Why was the incidence of stomach cancer declining?
What was the major etiological factor in cervical cancer?
Could alcohol consumption protect against CHD?
Was inflammation important in cardiovascular disease?
Did antioxidants reduce the risk of cancer and cardiovascular
disease?

What caused peptic ulcers?
Did higher triglyceride levels increase CHD risk?

Looking at these today, we have a much better idea about all of
them; however, the contribution of observational epidemiology,
ancient or modern, has been modest at best. Several turned out
to have an infectious basis. In 1989, Melissa Austin predicted
with respect to triglycerides, HDL cholesterol, and CHD that
the answer “must come from the biological sciences” (87, pp.
256–257). In 1991, the impossibility of epidemiologic investi-
gations making meaningful statements about causality in the
HDL cholesterol/triglycerides field was advanced on statistical
grounds (88), although consensuswas then hardening that the epi-
demiologic evidence indicated that HDL cholesterol was protec-
tive (“good cholesterol”) and triglycerides an innocent bystander
(89). Only randomized controlled trials (RCTs) to raise HDL (at
the cost of hundreds of millions of dollars) and Mendelian ran-
domization (90) studies (which were rather less expensive) indi-
cated that circulating HDL cholesterol levels were, in themselves,
noncausal (89). Similar stories could be told regarding others in
the above list of the key questions from themid-1980s.

The “epidemic” (60) of epidemiologic reports of “risk fac-
tors” for disease from studies that cannot realistically contribute
to causal understanding has continued unabated, although now
many of these are apparently examples of thoroughly mod-
ern epidemiology, being accompanied by a directed acyclic
graph and the approved causal inference language (see box 3
in Krieger and Davey Smith (91) for an analysis).

The lack of any sense of accountability within epidemiology is
striking. Consider 2 back-to-back papers from the New England
Journal of Medicine in 1993 in which substantially lower risk of
CHD was demonstrated among individuals using vitamin E
supplements (92, 93). These were a media triumph (e.g., the
NewYork Times headline “Vitamin E greatly reduces risk of heart
disease, studies suggest” (94) clearly reflected causal claims).
Unlike most published epidemiologic research, these studies
were consequential; the use of supplements containing vitamin
E amongUS adults increased substantially from the period before

these high-profile papers appeared to the period after, with more
than one third of adults taking such supplements around the turn
of the century (95). Sadly the public had been misinformed,
which became clear as RCT after RCT of vitamin E supplemen-
tation reported no cardiovascular benefit (96); however, it took
many years for this to influence usage (97). It should be noted
that in this case, the exposure being investigated in the obser-
vational studies—taking vitamin E supplements—was pre-
cisely the exposure investigated in the RCTs (randomization
to taking vitamin E supplements) and that in the observa-
tional studies, apparent benefit was seen within a few years of
use. Thus, the usual special pleading that the observational studies
and the RCTs were not testing the same hypothesis cannot be
advanced on this occasion. The investigators have never at-
tempted to report analyses aimed at understanding why their
methods produced such misleading findings. In another setting
in which their findings apparently conflicted with RCT evidence
(hormone replacement therapy), the original investigators have
collaborated with others on a methodology that suggests there
may be no disagreement between observational and RCT evi-
dence (98).Why has this not been applied to the vitamin E case?

The scenario above (which resonates with the last para-
graph from the first chapter of Modern Epidemiology being
simply dropped) illustrates the need for epidemiology to become
an open discipline, continuously reflexive and aiming to learn
from experience. The two 1993 vitamin E papers, which I
found unbelievable, stimulated me to write (in 1994) an edito-
rial on “Increasing the accessibility of data” (99), as it seemed
the only way accountability could be ensured was to make
data available to other investigators (99). Remarkably, studies
receiving mainly public funding can, a quarter of a century on,
still survive without making their data available in a useful
way. In the UK a series of studies—the Avon Longitudinal
Study of Parents and Children (ALSPAC) (100), UK Biobank
(101), and Born in Bradford (102), among others—have surely
been exemplary in promoting data accessibility. Conflicts of
interest are substantial within epidemiology, as Neil Pearce has
laid out (103), and, as Greenland discusses (104), these are not
just corporate. Cognitive and financial conflicts of interest can
co-exist, for example, when research depends upon a heavily
promoted methodology and the researchers do not want to
revisit the occasions when these methods publicly fail nor allow
others to do so. Hopefully, epidemiologists will collectivelymake
it clear that such practices are not welcomewithin our discipline.

It was sobering, tome at least, to face the fact that some impor-
tant epidemiologic questions that the field struggled with when I
entered it were simply unanswerable by conventional epide-
miologic methods. The advances that would allow some of
these questions to receive better answers today using epidemio-
logic approaches are, in particular, due to the ability to incorpo-
rate the stunning developments in biology into an epidemiologic
framework. As epidemiologists, our task is to ensure that this
undoubtedly game-changing progress remains embedded
within a population-sciences framework. Allowing the apparent
autonomy of biological processes to go unchallenged underlies
regrettable trends, from the new “polygenic eugenics” through
to overpersonalized medicine. A return to pre-Modern epide-
miologic theory, with its focus on population aggregates in
actual rather than hypothetical peoples, can help keep us
grounded (1, 2, 105).
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This commentary relates to investigation of the etiology of
disease, but in pre-Modern epidemiology, it was recognized
that cognizance of distributions of disease was a necessary
part of causal inference. Thus, Morris noted that the then-
dominant theory that peptic ulcer was caused by stress was
simply incompatible with the population trends and distribu-
tion of the disease (36). He was, of course, proved right (2), and
identifying the primary causal agent as a treatable bacterial
infection has probably considerably reduced collective human
misery. The much-denigrated Bradford Hill (non) criteria (29)
recognized the importance of population distributions of dis-
ease, as did more elaborate formulations of the same basic prin-
ciples by Susser (106) and others. The mapping of social,
ethnic, gender, and other inequalities are key to epidemiology,
beyond its concern (as a public health science) with inequity.
For those epidemiologists who denigrate our discipline for
engaging with social deprivation (107), it is perhaps worth
considering that health inequalities for particular causes can
favor the less powerful social groups (108, 109), and this pro-
vides at least as much evidence regarding disease etiology as
does the more usual (but apparently uninteresting) concentra-
tion of misery on the expropriated.

Population distributions of disease are of importance to etio-
logical epidemiologists because they provide a cornerstone for
the appropriate triangulation of evidence (72, 73, 84): deliber-
ately gathering evidence from sources producing (near) orthog-
onal biases to strengthen causal inference. Indeed, from Snow
(110, 111), Goldberger (112, 113), Sydenstricker (114) , and Frost
(115) onwards, the formal history of epidemiology has involved
drawingmental (or physical)maps of how the underlying external
environment produced, through increasingly proximal processes,
disease. In an innovative series of papers, Gerald Lower
(116–118) developed an elaborate model of how molecular
data could substantiate the causal nature of upstream socio-
environmental influences. The recent ability to generate such
biological data at scale and to utilize germline genomics as a
source of causal anchors (119) now allows these paths to be
constructed. Thus, the effects of greater educational attainment on
disease outcomes can be interrogated using quasi-experimental
upstream perturbations (120, 121), and probabilistic causal chains
leading to disease investigated. Multistep Mendelian randomiza-
tion (122) can demonstrate how particular exposures influence
the biology of the specific tissues of relevance to the disease being
studied (123, 124), and the triangulation of evidence can include
such highly compelling evidence of biological plausibility (another
ofBradfordHill’s noncriteria (29)).

Recent advances in biological knowledge also throw light on
the multitude of stochastic processes likely involved in human
development and disease (45, 125). Indeed, it is the fact that, at
an individual level, chance plays a considerable role in who gets
disease, while at the aggregate population level, risk can be
sharply defined, that underlies fundamental aspects of epidemi-
ologic theory (45, 126). Geoffrey Rose’s influential notion that
the determinants of the incidence rate experienced by a popula-
tionmay explain little of the variation in risk between individuals
within the population (127)—that sick individuals and sick po-
pulations require different explanatory models—is indeed diffi-
cult to rationalize without this understanding (45, 48).

To conclude with a final example, readers can imagine what
Morris would make of papers claiming substantial reductions

in mortality consequent on religious service attendance (128).
The apparent reductions in total mortality consequent on ser-
vice attendance are larger than the differences by smoking re-
ported by Doll and Hill in the seminal prospective British
Doctors’ Study in 1956 (129). The exposures have the same rela-
tive distribution (the “protective” not smoking and service atten-
dance having roughly the same prevalence in the populations
under study). However, as Morris noted (1), all-cause mortality
in the United Kingdom showed unfavorable trends in mortality
among men as smoking levels increased in the population. In
contrast, mortality rates in many countries showed unprece-
dented improvements during periods in which there were
very substantial reductions in religious service attendance.
The counterbalancing effects must, at a population level, be
larger than any identified single cause (e.g., considerably
larger than smoking). The fact that advanced causal infer-
ence methods were applied to the religious attendance study,
including detailed sensitivity analysis, and yet no consider-
ation was paid to underlying trends in the exposure or out-
come under study (all-cause mortality) exemplifies modern
epidemiology (130).

The central tenets of this commentary have been better artic-
ulated by many others (105, 115, 131–134) yet have had rela-
tively little discernible influence on the discipline. As has been
suggested, the views I express here may well reflect the last
spasms emitted by a redundant and diminishing group refus-
ing to recognize its superfluousness (135). I maintain that re-
flecting on how previously recalcitrant problems became
solvable is a solid ground for advancing epidemiology, how-
ever. In addition to biology—from germline and somatic
genomics through a cascade of mediating and interacting,
including microbiological, processes—environmental moni-
toring, digital data collection, wearables, ingestibles (136), and
more could be the drivers of future problem-solving. Connect-
ing population health (with its understanding of broader social,
economic, historical, geographic, and physical environmental
influences) withmethodological developments would allow epi-
demiologists to escape the fate Pearce envisaged (103), of us
becoming phlebotomists for molecular biologists. As Bruno La-
tour explained in a different context, the argument that we
should become postmodern is predicated on the false belief that
we ever managed to assimilate modernity (137). Engagement
with transformative understandings from other disciplines would
allow etiological epidemiology to finally becomemodern.
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