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Comprehensive and accurate annotation of the repeatome, including transposons, is critical for deepening our understanding of
repeat origins, biogenesis, regulatory mechanisms, and roles. Here, we developed Generic Repeat Finder (GRF), a tool for
genome-wide repeat detection based on fast, exhaustive numerical calculation algorithms integrated with optimized dynamic
programming strategies. GRF sensitively identifies terminal inverted repeats (TIRs), terminal direct repeats (TDRs), and
interspersed repeats that bear both inverted and direct repeats. GRF also detects DNA or RNA transposable elements
characterized by these repeats in plant and animal genomes. For TIRs and TDRs, GRF identifies spacers in the middle and
mismatches/insertions or deletions in terminal repeats, showing their alignment or base-pairing information. GRF helps
improve the annotation for various DNA transposons and retrotransposons, such as miniature inverted-repeat
transposable elements (MITEs), long terminal repeat (LTR) retrotransposons, and non-LTR retrotransposons, including
long interspersed nuclear elements and short interspersed nuclear elements in plants. We used GRF to perform TIR/TDR,
interspersed-repeat, and MITE detection in several species, including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa),
and mouse (Mus musculus). As a generic bioinformatics tool in repeat finding implemented as a parallelized C11 program, GRF
was faster and more sensitive than the existing inverted repeat/MITE detection tools based on numerical approaches (i.e. detectIR and
detectMITE) in Arabidopsis and mouse. GRF is more sensitive than Inverted Repeat Finder in TIR detection, LTR_FINDER in short
TDR detection (#1,000 nt), and phRAIDER in interspersed repeat detection in Arabidopsis and rice. GRF is an open source available
from Github.

It is estimated that the human (Homo sapiens) genome
is composed of 50% to 70% repetitive sequences (i.e.
repeatome) including tandem, inverted, and inter-
spersed repeats (de Koning et al., 2011). Unfortunately,
because of low accuracy in current repeat annotation
methods, we still do not know much about the origins,
compositions, structures, and biological relevance of
these repetitive elements (de Koning et al., 2011;
Padeken et al., 2015). Inverted repeats (IRs) are nucle-
otide sequences that can form self-complementary
pairing between their two halves. Perfect IRs are also
known as palindromes, and imperfect IRs contain nu-
cleotide pairs that are not reversely complementary (i.e.
mismatches in two arms), have gaps/indels in arms, or
have a nonpalindromic spacer in the middle (Lilley,
1980; Smith, 2008). Terminal IRs (TIRs) are actually

IRs with a spacer in the middle. IRs can form hairpins
and cruciforms to serve as target sites for DNA- or
RNA-binding proteins (Chasovskikh et al., 2005;
Brázda et al., 2011). For example, some DNA-binding
proteins have an IR arrangement for their two binding
sites in DNAs (Strawbridge et al., 2010). In vivo, IRs as
short as 14 nt demonstrate the ability to form hairpin
structures (Nag and Petes, 1991). Cruciform formation
requires IRs of $6 nt (Brázda et al., 2011). Poly(ADP-
ribose) polymerase-1 is a ubiquitous DNA-binding
protein responsible for many catalytic activities in
cells that participate in regulation of chromatin struc-
ture, DNA methylation, and transcription (Lonskaya
et al., 2005; Pelham et al., 2013). Using atomic force mi-
croscopy images, human poly(ADP-ribose) polymerase-
1 has been shown to bindwith the cruciform structure of
a 106-nt IR in an Escherichia coli plasmid in vitro
(Chasovskikh et al., 2005).
IRs can be transcribed into single- and double-

stranded RNAs to participate in important biological
processes such as RNA editing, microRNA (miRNA)
and small interfering RNA biogenesis, gene silencing,
and alternative splicing/polyadenylation (Melquist and
Bender, 2004; Kawahara and Nishikura, 2006;
Martinez-Contreras et al., 2006; Piriyapongsa and
Jordan, 2007; Gentry and Meyer, 2013; Matzke and
Mosher, 2014; Zhang et al., 2014). For example, the
human miRNA gene has-mir-548 is derived from a
transposable element (TE) that has a pair of 37-nt TIRs
with a 6-nt internal sequence. When it transcribes into a

1This work was supported by the Office for the Advancement of
Research and Scholarship (OARS) and Biology Department at Miami
University.

2Author for contact: liangc@miamioh.edu.
3Senior author.
The author responsible for distribution of materials integral to the

findings presented in this article in accordance with the policy de-
scribed in the Instructions for Authors (www.plantphysiol.org) is:
Chun Liang (liangc@miamioh.edu).

J.S. and C.L. designed the software. J.S. implemented the software
and performed the data comparison and analysis. J.S. and C.L. wrote
the manuscript.

www.plantphysiol.org/cgi/doi/10.1104/pp.19.00386

Plant Physiology�, August 2019, Vol. 180, pp. 1803–1815, www.plantphysiol.org � 2019 American Society of Plant Biologists. All Rights Reserved. 1803

http://orcid.org/0000-0003-1996-6027
http://orcid.org/0000-0003-1996-6027
http://orcid.org/0000-0003-1996-6027
http://crossmark.crossref.org/dialog/?doi=10.1104/pp.19.00386&domain=pdf&date_stamp=2019-07-20
mailto:liangc@miamioh.edu
http://www.plantphysiol.org
mailto:liangc@miamioh.edu
http://www.plantphysiol.org/cgi/doi/10.1104/pp.19.00386


single-stranded RNA, a highly stable hairpin loop can
be formed, which is then recognized and processed
by the protein machinery to generate a 22-nt mature
miRNA (Piriyapongsa and Jordan, 2007). In plants, IRs
have been shown to produce double-stranded RNAs
that can be processed by DICER-LIKE enzymes to
produce small interfering RNAs (21–24 nt in size;
Zhang et al., 2014).

It is alsowell known that repeat sequences contribute to
genome instability and are linked to many human dis-
eases (Gordenin et al., 1993; La Spada and Taylor, 2010;
Gu et al., 2015; Lee et al., 2015). For example, in prokary-
otes, palindromic structures (e.g. GAATTC) are fre-
quently recognized and cleaved by endonucleases, and
short palindromes of #22 nt are generally more stable
than longer ones (Muskens et al., 2000). In E. coli, in vitro
constructions of perfect palindromes$30 nt are not stable
(Leach and Stahl, 1983), and the addition of an ;150-nt
spacer into palindromes can enhance their stability
(Muskens et al., 2000). In yeast (Saccharomyces cerevisiae),
long IRs .100 nt without a spacer or with a short spacer
are a threat to chromosome integrity (Zhang et al., 2013).
In renal carcinoma, a type of kidney cancer, palindromic
AT-rich IRs are thought to contribute to chromosomal
translocation and rearrangement (Kato et al., 2014).

Among repetitive elements, TEs are a popular focus
of research because more and more evidence supports
the idea that they interact with epigenetic components
to offer phenotypical plasticity for organisms and to
enable a species to rapidly fine-tune phenotypic re-
sponses to changing environments (Gao et al., 2016;
Rey et al., 2016). TEs are generally categorized into ei-
ther retrotransposons or DNA transposons. Retro-
transposons are often characterized by terminal direct
repeats (TDRs; e.g. retrotransposons with long terminal
repeats [LTRs]) or terminal inverted repeats (TIRs; e.g.
DIRS-like elements [Poulter and Goodwin, 2005;
Piednoël et al., 2011]); and some retrotransposons (e.g.
long interspersed nuclear elements [LINEs] and short
interspersed nuclear elements [SINEs]) are essentially
interspersed repeats (Wicker et al., 2007). The terminal

sequences of LTR retrotransposons range from;100 nt
to .5,000 nt in size (Wicker et al., 2007). LINEs have
a size of ;6,000 nt (Ostertag and Kazazian, 2001;
Sargurupremraj and Wjst, 2013). SINEs range from
50 nt to 500 nt in size (Sun et al., 2007). DNA transpo-
sons such as miniature inverted-repeat transposable
elements (MITEs) are often characterized by TIRs
(Wicker et al., 2007). As shown in Figure 1, a MITE
(50–800 nt in size) in the human genome is composed
of an internal sequence and the conserved flanking TIR
pair ($10 nt), and the whole MITE is flanked by a pair
of direct repeats or target site duplication (TSD; 2–10 nt;
Ye et al., 2016). In general, MITEs don’t encode proteins
and cannot transpose by themselves. They usually lo-
cate in introns or intergenic regions (Wright et al., 2003;
Lu et al., 2012) and have a copy number of $3 in ge-
nomes (Ye et al., 2016). Neither a TIR nor a TDR is
necessarily equivalent to a TE, and TEs may have TIRs
or TDRs in their sequences, but TIRs or TDRs are de-
fined in terms of purely structural features. For exam-
ple, in the Arabidopsis (Arabidopsis thaliana) genome,
TTGTTCATCA ... TGATGAACAA (chromosome 2;
strand,1; start, 1259356; end, 1259556) is a TIR but not
annotated with any TE so far, and ATAGAGATCTA ...
ATAGAGATCTA (chromosome 2; strand, 1; start,
15818542; end, 15818606) is a TDR, but is not annotated
with any TE element yet.

Obviously, more comprehensive and accurate an-
notation of the repeatome, including transposons, will
be critical for us to deepen our understanding of their
origins, biogenesis, regulatory mechanisms, and roles
in genome integrity, gene structures, and gene expres-
sion regulation. Unfortunately, current bioinformatics
tools used in detecting repeats and transposons
have obvious limitations and miss appropriate anno-
tations of many repeats and transposons in genomes
(Sreeskandarajan et al., 2014; Ye et al., 2014, 2016).
Recently, using algorithms of numerical calculation-
and-comparison that replace conventional string
search-and-comparison, we developed three MATLAB
tools (i.e. findIR [Sreeskandarajan et al., 2014], detectIR

Figure 1. The typical structure of a MITE. A MITE detected in the human genome is composed of an internal sequence and the
conserved flanking TIR pair, and the whole MITE is flanked by a pair of TSDs. Thewhole length of a MITE varies from 50 to 800 nt.
The TIR is usually$10 nt, and the TSD is usually 2 to 10 nt. At left is a list of theMITEs detected byGRF in the human genome,with
the format: “chromosome:start:end:modified CIGAR:TSD”. The CIGAR string represents the base-pairing information of theTIRs.
In our modified CIGAR string, which is different from the standard CIGAR, “m” indicates a reverse-complementary pair;
“M” means unpaired or mismatch; “I” means insertion, and “D” means deletion.
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[Ye et al., 2014], and detectMITE [Ye et al., 2016]) to
detect IRs and MITEs that are characterized by their
TIRs. For instance, the numerical calculation-and-
comparison method in detectIR and detectMITE uses a
complex number scoring system to calculate the cu-
mulative scores of each nucleotide and all subsequences
of certain length for chromosomes efficiently using the
vector operation (linear time); it then examines the cu-
mulative scores of all subsequences to find pairs that are
separated by a predefined distance and have an abso-
lute value of the sum of cumulative scores of #2 (de-
fault), which allows at most one mismatch (no insertion
or deletion [indel]) in the base complementarity of the
minimum pair of TIRs. Thus, the candidate TIRs can be
quickly detected. In contrast, the conventional string
search-and-comparisonmethod (without optimization)
needs to compare each subsequence with all other
subsequences of a chromosome to find the candidate
pairs (reverse complementary pairs), and it has qua-
dratic time complexity to find all TIR candidate pairs.
Using these numerical calculation-and-comparison
tools, we are able to detect many perfect IRs (or palin-
dromes; Sreeskandarajan et al., 2014), imperfect IRs
with or without spacers in the middle (Ye et al., 2014),
andMITEs (Ye et al., 2016) that were missed by existing
popular tools or databases.
However, the popular terminal-repeat (TR) detection

tools such as Inverted Repeat Finder (IRF; Warburton
et al., 2004), LTR_FINDER (Xu and Wang, 2007),
detectIR (Ye et al., 2014), and detectMITE (Ye et al.,
2016) cannot accurately detect TR pairs that bear
indels. Moreover, there is no bioinformatics tool that
utilizes numerical calculation algorithms for efficient,
sensitive, and comprehensive detection of TDRs and
interspersed repeats on a genome scale. Thus, we de-
veloped a new parallel C11 tool called Generic Repeat
Finder (GRF) to solve these problems. Based on an al-
gorithm that combines numeric calculation approaches
with optimized dynamic programming strategies, GRF
can identify TIRs, TDRs, and interspersed repeats
bearing both inverted and direct repeats in genomes
more sensitively and comprehensively. For TIRs and
TDRs, GRF can detect spacers in the middle and mis-
matches/indels in TRs, and can show sequence align-
ment or base-pairing information of TRs. GRF can help
improve the annotation for various DNA transposons
or retrotransposons such as MITEs (characterized by
TIRs), LTR retrotransposons (characterized by TDRs),
and non-LTR retrotransposons, such as LINEs and
SINEs (interspersed repeats). In this study, we per-
formed short TIR and TDR (not exceeding 1,000 nt)
detection to demonstrate the use of GRF. We
also compared the performance and output of GRF in
Arabidopsis and mouse (Mus musculus) with those of
other popular repeat and TE detection tools, such as
detectIR (Ye et al., 2014), detectMITE (Ye et al., 2016), IRF
(Warburton et al., 2004), LTR_FINDER (Xu and Wang,
2007), Red (Girgis, 2015), and phRAIDER (Schaeffer
et al., 2016). GRF is an open source tool (https://github.
com/bioinfolabmu/GenericRepeatFinder).

RESULTS

Overview of Algorithms
TIR Detection

We assume that any TIR pair must bear a minimum
of fragments without indels in the boundaries (seed
regions). We used the following steps: (1) Use the
complex number scoring system A 5 1, T 5 21, C 5 j,
G 5 2j to calculate the cumulative score for each nu-
cleotide of an entire chromosome. (2) Calculate the cu-
mulative scores of all subsequences of certain length
(e.g. 10 nt by default) for all chromosomes efficiently
using the vector operation: C 5 V(l:n) – [0 V(1:n 2 l)]
(Ye et al., 2014). (3) Examine the cumulative scores of
all subsequences and find pairs (seed regions) that are
separated by predefined distances and allow at most
one mismatch (no indel) in the base complementarity of
the minimum pair of TIRs. (4) Perform base-by-base
verification for qualified pairs. (5) Inwardly extend the
seed regions (minimum TIRs) according to base com-
plementarity (Fig. 2A). To improve the efficiency of
alignments for long sequences, a block-by-block align-
ment strategy was used with the assumption that a pair
of TIRs should have a high similarity after reverse
complementary transformation (Fig. 2B). (6) Remove
redundant results. (7) Optionally, output a selection of
high-quality IRs (i.e. length ratio of spacer/total IR

Figure 2. Major algorithm for TIR/TDR detection with indels. A, The
base extension of inverted repeats. Blue “XXX...XXX” denotes the
inverted repeats, and red arrows show the extension direction. The red
“C” is the first unpaired base during base comparison. CAAACCCCTTT
outlined by the green rectangle needs to be aligned with its reverse
complementary part AAAGGGGTTTG. B, Block-by-block alignment.
Here are two long sequences (.100 nt) shown by horizontal arrows.
Red and green rectangles represent blocks (100 nt). The alignment of the
sequences will be conducted first between two red blocks; if the end
position of the best alignment is near the end of the red block, the
alignment will continue between the green blocks. C, The base exten-
sion of direct repeats. Blue “XXX.XXX” denotes two direct repeats, and
red arrows show the extension direction. The red “C” is the first un-
paired base during base comparison. The sequences in the green rect-
angles are the parts that need alignment. CTTTCCCC will be aligned to
TTTGGGGG.
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sequence is#0.2) and long-stem IRs (i.e. the stem length
is $100 nt).

TDR Detection

The algorithm of TDR detection is similar to TIR
detection, except: (1) Seed regions are examined by
identity instead of reverse complementarity and (2)
during the seed region extension phase, the direction of
base alignment is concurrent (Fig. 2C).

Interspersed repeat detection

(1) Use a new scoring system: A5 (1, 0, 0, 0), T5 (0, 1,
0, 0), C 5 (0, 0, 1, 0), G 5 (0, 0, 0, 1) to calculate cu-
mulative scores for subsequences of certain length (e.g.
20 nt by default) for all chromosomes. (2) Filter out the
scores of subsequences with low complexity. (3) Perform
transformation to make sure each sequence and its re-
verse complementary sequence have the same score. (4)
Group sequences with the same scores together using a
hash table. (5) Find candidate repeats (seed regions)
within each group by comparing nucleotide sequences.
(6) In each repeat group, extend the seed regions by
allowing mismatches in both upstream and downstream
flanking regions. (7) Compare repeat copies with the
consensus sequence in a group and remove the ones with
more than the predefined number of mismatches. (8)
Merge repeat groups with the same consensus sequences
and remove redundant repeat copies in a merged group.

Genome-Wide Repeat Detection by GRF in
Different Species

We used GRF to perform TIR/TDR, interspersed
repeat, and MITE detection in Arabidopsis, rice (Oryza
sativa), Physcomitrella patens, Populus trichocarpa, maize
(Zea mays), Plasmodium falciparum, mouse, and humans
(see “Materials and Methods”). We further filtered out
TIRs/TDRs containing tandem repeats using Phobos
(Leese et al., 2008; Mayer et al., 2010). We also filtered
out TIRs with total sizes (including internal spacers)
,80 nt and TDRs with TR sizes (one-side repeat size)
,40 nt. The example of a TIR bearing an indel in
CIGAR (Li et al., 2009), dot bracket notation (DBN), and
alignment formats is shown in Supplemental Figure S1,
A–C. Overall, the distributions of structures (i.e. per-
fect/imperfect TRs; with/without spacer), mismatches,
indels, and sizes of TIRs and TDRs were similar in these
species (Supplemental Figs. S2 and S3; Supplemental
Tables S1 to S3). We used GRF to detect interspersed
repeats in these species (see “Materials and Methods”),
filtered out interspersed repeats containing tandem
repeats using Phobos, and filtered out interspersed
repeats with sizes ,40 nt. The example of an inter-
spersed repeat group with alignments against the
consensus sequence is shown in Supplemental Figure
S1D. Overall, the distributions of copy number and size
of interspersed repeats in these species are similar

(Supplemental Fig. S4; Supplemental Table S4). Inter-
estingly, maize has many more interspersed repeats
than mouse and human even though they have similar
genome sizes (Supplemental Table S4). We also found
that a small portion of the TIRs/TDRs (0.01–5.57%)
were overlapped (see “Materials and Methods”) with
interspersed repeats (Supplemental Table S5). We used
GRF to detected MITE candidates in these species (see
“Materials and Methods”) and CD-HIT (Fu et al., 2012)
to cluster similar MITE candidates into MITE families.
Overall, the distributions of structures, mismatches,
indels, and sizes of MITEs are similar in these species
(Supplemental Fig. S5; Supplemental Tables S1 to S3).
Interestingly, rice and maize have more MITEs than
other species (Supplemental Table S1).We also detected
nested MITEs (i.e. small MITEs are included in large
MITEs without overlapped TIRs, whose biological
functions are not clear and need further study) and
found 255 cases in rice, 2 cases in P. patens, 8 cases in
P. trichocarpa, 973 cases in maize, 2 cases in human, and
none in Arabidopsis, P. falciparum, and mouse. The
summary of repeat detection results by GRF in different
species is shown in Table 1. The performances includ-
ing the runtime andmemory consumption of TIR, TDR,
interspersed repeat, and MITE candidate detection in
different species using different parameters are shown
in Supplemental Tables S6 and S7.

High-Quality and Long-Stem IRs in Different Species

We used GRF to detect high-quality (spacer/total IR
length ratio # 0.2) and long-stem IRs (stem $100 nt;
the overall IR size might not be long) separately in
Arabidopsis, rice, P. patens, P. trichocarpa, maize,
P. falciparum, mouse and human (see “Materials and
Methods”). The reasons we think low spacer/total IR
length ratio is important for annotating high-quality IRs
are as follows: (1) more complementary pairs will fa-
cilitate the formation of hairpins in single strand or
cruciforms in double strand; (2) they tend to have
higher integrity in terms of two-arm architecture with
relatively smaller spacers; (3) they can be examined
visually and easily for human validation of hairpin or
cruciform structures; and (4) they can be used as a good
reference to compare accuracy and comprehensiveness
in IR detection among different tools. We further filtered
out IRs containing tandem repeats using Phobos. Overall,
the distributions of structures, mismatches, indels, and
sizes of both high-quality IRs and long-stem IRs are
similar in these species (Supplemental Figs. S6 and S7;
Supplemental Tables S8 to S10). Interestingly, the number
of high-quality IRs is much higher than that of long-stem
IRs in these species (Supplemental Table S8).

Comparison of IR Detection between GRF and Other Tools

For IR detection, we compared GRF with other
popular tools, such as detectIR (Ye et al., 2014) and IRF

1806 Plant Physiol. Vol. 180, 2019

Shi and Liang

http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00386/DC1


(Warburton et al., 2004). We also compared GRF and
detectMITE (Ye et al., 2016) in detecting MITEs, which
bear TIRs.
detectIR is a MATLAB tool for IR detection allowing

spacers in the middle and mismatches/uncomplimen-
tary pairs within two TIRs (stems), based on numeric
calculation algorithms (Ye et al., 2014). We performed
IR detection in Arabidopsis and mouse using both GRF
and detectIR with compatible settings (see “Materials
and Methods”), and compared their performances and
outputs. In Arabidopsis, GRF (0.21 min and 0.81 giga-
byte [GB] random access memory [RAM] with a single
thread) was faster and consumed less memory than
detectIR (5.50 min and 3.29 GB RAM with a single
thread) and had the same 32,774 results. In mouse, GRF
(5.34 min and 6.97 GB RAM with a single thread) was
faster and consumed less memory than detectIR
(48.65 min and 20.39 GB RAMwith a single thread) and
had the same 1,147,783 results. Clearly, when using
similar parameters, GRF is much faster. However, GRF
could achieve higher sensitivity in IR detection since it
allows the presence of indels within stems whereas
detectIR cannot. We found that in Arabidopsis, GRF
(0.28 min and 0.81 GB RAM with a single thread) can
detect 23,127 IRswith indels in stems that aremissed by
detectIR; in mouse, GRF (6.94 min and 6.97 GB RAM
with a single thread) can detect 378,579 IRs with indels
in stems that are missed by detectIR. These suggest that
GRF is faster, more memory efficient, and more sensi-
tive than detectIR due to the fact that GRF can detect
TIRs bearing indels.
IRF is a popular tool for identifying approximate IRs

(Warburton et al., 2004). It finds short fragments of
paired repeats (seed regions) and then uses the align-
ment strategy to verify and extend the candidates
(Warburton et al., 2004). To compare GRF and IRF, we
generated simulated datasets of TIRs from protein-
coding genes, noncoding genes, and intergenic se-
quences of Arabidopsis and mouse as the control sets
and performed head-to-head comparisons between
GRF and IRF. For each sequence type, we randomly
selected 10,000 fragments of genomic sequences rang-
ing from 0 to 1,000 nt in length as the spacers. For the
positive sets (the TIR dataset), we used the first-order
Markov model (Sarich et al., 2014) to generate a new
random sequence as one TIR repeat arm (10–100 nt,
10–200 nt, 10–500 nt, 10–1,000 nt, and 10–2,000 nt), and
added it to the 59-end of the spacer with its reverse

complementary sequence added to the 39-end of the
spacer. We also mutated the reverse complementary
sequence to allow at most 10% errors including mis-
matches and indels. For the negative sets (the non-TIR
dataset), two random sequences with the same lengths
were added to both ends of the spacer. We used the
positive and negative datasets as the inputs for com-
parison. If the detected TIR regions covered $90% of
the simulated sequences at ends (i.e. true TIRs in the
positive set or random sequences in the negative set), it
was labeled as positive, otherwise as negative. As
shown in Supplemental Table S11, GRF is more sensi-
tive than IRF in TIR detection for Arabidopsis and
mouse, with consistently higher sensitivity and speci-
ficity values. We also performed IR detection in
Arabidopsis and rice genomes using both GRF and IRF
with compatible settings and filtrations (see “Materials
and Methods”) and compared their performances and
outputs. In Arabidopsis, IRF took 0.49 h and 0.18 GB
RAM with a single thread (no multithreading capabil-
ity) to finish detection while GRF took 0.32 h and 1.42
GB RAM with 64 threads. In rice, IRF took 1.12 h and
0.25 GB RAM with a single thread to finish detection
while GRF took 1.04 h and 2.12 GB RAM with 64
threads. Due to multithreading ability, it is possible for
GRF to screen the genomes using less time. We down-
loaded the public transposon annotations of Arabi-
dopsis from the Araport database (Cheng et al., 2016;
https://www.araport.org/) that integrates homology
approaches with manual curation (https://www.
araport.org/download_file/TAIR10_genome_release/
annotation/gff/transposons/README.transposons)
and the public transposon annotations of rice from
RAP-DB (Kawahara et al., 2013; Sakai et al., 2013;
http://rapdb.dna.affrc.go.jp), extracted DNA transpo-
son annotations with compatible sizes, and compared
the GRF and IRF results with these annotations (see
“Materials and Methods”). As shown in Supplemental
Table S12, for TIR detection, GRF covers significantly
more annotations than IRF in Arabidopsis (51.35%
versus 3.2%), as well as in rice (46.81% versus 3.54%).
Based on numeric calculation algorithms (Ye et al.,

2016), detectMITE is a MATLAB tool for MITE detec-
tion allowing mismatches in TIRs. We performedMITE
candidate detection without further family cluster-
ing by CD-HIT (Fu et al., 2012) in Arabidopsis and
mouse using both GRF and detectMITE (Ye et al., 2016)
with compatible settings (see “Materials andMethods”)

Table 1. Summary of repeat detection results by GRF (after phobos filtration) in different species

Species TIR High-Quality IR Long-Stem IR TDR MITE Nested MITEs Interspersed repeat

Arabidopsis 5,010,983 48,179 232 123,617 126 0 679,068
O. sativa 12,085,468 236,356 2,052 896,812 20,063 255 7,407,771
P. patens 28,322,280 380,058 518 291,698 751 2 10,866,199
P. trichocarpa 23,482,569 359,694 284 1,129,750 908 8 5,004,661
Z. mays 59,910,445 1,712,978 5,794 7,973,830 49,971 973 157,798,471
P. falciparum 4,529,681 46,067 0 127,944 35 0 56,580
M. musculus 79,262,280 874,188 4,180 3,743,729 1,619 0 42,073,336
H. sapiens 111,625,482 1,423,589 24,694 8,119,622 2,431 2 37,331,960
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and compared their performances and outputs. In
Arabidopsis, GRF (8.84 min and 0.60 GB RAM with
four threads) was faster and consumed less memory
than detectMITE (186.92 min and .10 GB RAM with
four processes). Comparing the outputs, none of the
unique results (32,742) of detectMITE (i.e. results
detected by detectMITE but missed by GRF) was a
qualified MITE candidate (i.e. minimum TIR length
$10; AC/GT content $20%; no homopolymer or di-
nucleotide stretch of a length$8 in TIRs), but all unique
results (228,678) of GRF (i.e. results detected byGRF but
missed by detectMITE) were qualified (Supplemental
Table S13). In mouse, GRF (1.29 h and 5.89 GB RAM
with 16 threads) was faster and consumed less memory
than detectMITE (53.39 h and .130 GB RAM with
16 processes). None of the unique results (550,074) of
detectMITE was qualified, but all unique results
(4,562,949) of GRF were qualified (Supplemental Table
S13). These suggest that GRF is more sensitive, faster,
and more memory efficient than detectMITE.

Comparison of TDR Detection between GRF and
Other Tools

The intermediate detection results of some LTR ret-
rotransposon detection tools, such as LTR_FINDER
(Xu andWang, 2007), are essentially TDRs. They can be
used for comparison of TDR detection. Here, we com-
pared GRF andmodified LTR_FINDER (which outputs
intermediate TDR results) in TDR detection. We also
compared the GRF integrated hybrid approach (i.e.
GRF 1 modified LTR_FINDER that takes TDRs
from GRF as the input) with LTR_FINDER in LTR ret-
rotransposon detection.

LTR_FINDER is a tool for de novo LTR retro-
transposon detection (Xu andWang, 2007) and does the
following: (1) searches for all exactly matched string
pairs in input sequences using a suffix-array algorithm
(Ko and Aluru, 2005); (2) uses alignment strategy to
combine short close repeat pairs into a longer pair (LTR
candidate); and (3) filters LTR candidates and predicts
LTR retrotransposons (Xu and Wang, 2007). We mod-
ified the source code of LTR_FINDER to output inter-
mediate results (i.e. the genomic locations of LTR
candidates) and generated simulated datasets of TDRs
in Arabidopsis andmouse as the control sets to perform
side-by-side comparisons between GRF and
LTR_FINDER using the an approach similar to that
described in the previous section. As shown in
Supplemental Table S14, GRF is more sensitive than
LTR_FINDER in TDR detection for Arabidopsis and
mouse, with consistently higher sensitivity and speci-
ficity values. We also performed TDR detection in
Arabidopsis and rice genomes using both GRF and
LTR_FINDER with compatible settings and filtrations
(see “Materials and Methods”) and compared their
performance and output. In Arabidopsis, LTR_FINDER
(0.25 h and 0.42 GB RAM with a single thread (no mul-
tithreading capability) was faster than GRF (0.60 h and

3.51GBRAMwith 64 threads). In rice, LTR_FINDER took
1.11 h and 0.59 GB RAM with a single thread while GRF
took 1.06 h and 3.97 GB RAM with 64 threads. We
extracted LTR transposon annotations with compatible
sizes from the aforementioned public transposon anno-
tations and compared the GRF and LTR_FINDER results
with these annotations (see “Materials andMethods”). As
shown in Supplemental Table S12, GRF covers more an-
notations than LTR_FINDER in Arabidopsis (0.79% ver-
sus 0.54%), and also in rice (0.89% versus 0.54%). Both
GRF and LTR_FINDER have low coverage, probably
because the extracted annotations of LTR transposons
do not have well-defined TDR structures or long enough
TDRs (i.e. $40 nt).

We also modified the source code of LTR_FINDER
(Xu andWang, 2007) to make it accept TDRs from GRF
as the input for downstream transposon detection.
Then we performed LTR retrotransposon detection in
Arabidopsis and rice using both LTR_FINDER and the
GRF integrated hybrid approach with compatible set-
tings and compared their performances and outputs
(see “Materials and Methods”). In both LTR_FINDER
and the hybrid approach, we restricted the length of the
LTR retrotransposon to 1,200–27,000 nt (default pa-
rameter of LTR_FINDER). We extracted the LTR
transposon annotations with compatible sizes from the
aforementioned public transposon annotations and
compared the LTR_FINDER and hybrid approach
results with these annotations (see “Materials and
Methods”). Overall, the hybrid approach is much
slower and consumes more memory than
LTR_FINDER, because the TDR detection step in the
hybrid approach has a very large search space (i.e. the
distance between seed regions can range from 1,090 nt
to 27,000 nt and indels are allowed). In Arabidopsis,
LTR_FINDER covers 13.87% of the annotated LTR
retrotransposons, whereas the hybrid approach covers
12.65% of the annotated LTR retrotransposons; in rice,
LTR_FINDER covers 15.75% of the annotated LTR
retrotransposons, whereas the hybrid approach covers
14.31% of the annotated LTR retrotransposons
(Supplemental Table S15). These results suggest that
the GRF integrated hybrid approach has lower sensi-
tivity and performance than LTR_FINDER in LTR ret-
rotransposon (1,200–27,000 nt) detection inArabidopsis
and rice. Clearly, GRF needs further improvement in
long TDR detection.

Comparison of Interspersed Repeat Detection between
GRF and Other Tools

Red is a fast and accurate tool for de novo repeat
detection using machine learning methods (Girgis,
2015). It is reported (Girgis, 2015) that Red is much
faster than popular repeat detection tools, such as
RepeatScout (Price et al., 2005) and ReCon (Bao and
Eddy, 2002), has a much lower false positive rate than
WindowMasker (Morgulis et al., 2006), and is highly
sensitive to both transposons and tandem repeats.
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phRAIDER is a de novo repeat element detection tool
incorporating the PatternHunter spaced seed model
(Schaeffer et al., 2016). It is reported (Schaeffer et al.,
2016) to be much faster than RepeatScout (Price et al.,
2005) with similar accuracy. Accordingly, we compared
GRF with Red and phRAIDER for interspersed repeat
detection.
We performed interspersed repeat detection in

Arabidopsis and rice using both GRF and Red with
compatible filtrations (see “Materials and Methods”)
and compared their performances and outputs. In
Arabidopsis, Red (5.44 min and 1.41 GB RAM with a
single thread) was faster than GRF (20.03 min and 2.53
GB RAM with a single thread). In rice, Red (18.24 min
and 2.86 GB RAMwith a single thread) was faster than
GRF (1.26 h and 8.57 GB RAMwith a single thread).We
extracted transposon annotations other than DNA or
LTR transposons with compatible sizes from the
aforementioned public transposon annotations and
compared the GRF and Red results with these annota-
tions (see “Materials and Methods”). As shown in
Supplemental Table S12, GRF covers more annotations
than Red in Arabidopsis (2.00% versus 0.21%), but
fewer in rice (1.10% versus 6.96%). On the other hand,
Red (1) does not cluster interspersed repeats into
groups, whereas GRF does; (2) does not consider
inverted interspersed repeats (i.e. interspersed repeats
in opposite directions), whereas GRF does, because
GRF reports the orientation of the entire repeats in a
group so we know whether any two repeats in a group
are in inverted orientation or not.
We performed interspersed repeat detection in

Arabidopsis and rice using both GRF and phRAIDER
with compatible settings and filtrations (see “Materials
and Methods”) and compared their performances and
outputs. In Arabidopsis, phRAIDER (13.17 s and 746.08
MB RAM with a single thread) was faster than GRF
(20.03 min and 2.53 GB RAM with a single thread). In
rice, phRAIDER (1.78 min and 5.40 GB RAM with a
single thread) was faster than GRF (1.26 h and 8.57 GB
RAM with a single thread). We extracted transposon
annotations other than DNA or LTR transposons with
compatible sizes from the aforementioned public
transposon annotations and compared the GRF and
phRAIDER results with these annotations (see “Mate-
rials and Methods”). As shown in Supplemental Table
S12, GRF covers more annotations than phRAIDER in
Arabidopsis (2.00% versus 0.01%), as well as in rice
(1.10% versus 0.02%). These suggest that GRF is more
sensitive than phRAIDER in interspersed repeat de-
tection in Arabidopsis and rice. On the other hand,
phRAIDER does not consider inverted interspersed
repeats, but GRF does.

DISCUSSION

In TIR and TDR detection, our numeric approaches
are faster than conventional string search-and-
comparison approaches (Sreeskandarajan et al., 2014;

Ye et al., 2014), because we calculate the cumulative
scores of all pairs of subsequences (length 5 10 by de-
fault) of a chromosome separated by a specific distance
in linear time using efficient vector operations and
narrow down the search space for TR candidates by
limiting the cumulative scores. Thus, the number of
sequences requiring base-by-base verification for com-
plementarity is greatly reduced, and the seed regions
(minimum TRs) can be quickly and exhaustively
detected. In the extension of seed regions, mismatches/
indels are allowed and the dynamic programing strat-
egy optimized with block comparison is used to speed
up alignment. The length of the seed region determines
the sensitivity of the detection. The detection with a
shorter seed region will be more sensitive but slower
because it increases the number of sequences requiring
base verification and alignment and vice versa. By de-
fault, the length of seed region is 10 nt, and users can
adjust it according to their needs (minimum length5 5
nt). In TIR detection of Arabidopsis, the detection with
seed length5 10 nt can cover 63.06% of the results from
the detectionwith seed length5 5 nt but is;543 faster.
In the extension of seed regions, we adopt a block-by-
block alignment strategy (block size 5 100 nt by de-
fault) to improve performance. Compared with the
regular dynamic programing strategy, this strategy can
achieve similar accuracy but is much faster. For in-
stance, in TIR detection of Arabidopsis, block-by-block
alignment can correctly detect .99.99% of the align-
ments that the regular dynamic programing strategy
can detect but is 15.4 times faster. Users can increase the
block size to achieve higher alignment accuracy. In in-
terspersed repeat detection, we reduce the search space
by clustering all subsequences (length 5 20 nt by de-
fault) with the same cumulative scores into groups, and
then verify repeat sequences within groups. In the
verification process, we consider both direct and
inverted interspersed repeats and provide the strand
information in the output, which is not available in Red
(Girgis, 2015) and phRAIDER (Schaeffer et al., 2016).
Inverted interspersed repeats can be candidates for
inverted SINEs, which have been shown to have neg-
ative effects on gene expression (Tajaddod et al., 2016).
We also add OpenMP-assisted central processing unit
parallelization in TR and interspersed repeat detection
to reduce the runtime without largely increasing the
memory consumption. In TIR, TDR, and interspersed
repeat detection, some of the GRF outputs could be
low-complexity sequences (e.g. ATATATATATATA-
TAT). We provided scripts to filter out the outputs
containing tandem repeats using Phobos. Users can
adjust the parameters of Phobos and remove these low-
complexity sequences using our scripts. In TIR detec-
tion, we allow users to select high-quality (based on the
spacer/total IR sequence length ratio) and long-stem
IRs as outputs, which can significantly reduce the size
of outputs.
Compared with other numeric calculation-and-

comparison-based tools (i.e. detectIR [Ye et al., 2014]
and detectMITE [Ye et al., 2016]), GRF is faster, more
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memory efficient, and more sensitive (allowing indels
in stems). Compared with other popular repeat de-
tection tools, such as IRF (Warburton et al., 2004),
LTR_FINDER (modified to output intermediate re-
sults; Xu and Wang, 2007), Red (Girgis, 2015), and
phRAIDER (Schaeffer et al., 2016), GRF is more sensi-
tive because the numeric approach can exhaustively
search the seed regions in the genome and detect lots of
putative results missed by the other detection methods,
which is helpful in improving the current repeat and TE
annotations. Our new approach to simulate TIRs/TDRs
based on the first-order Markov model is useful in
evaluating the accuracy of different TR detection tools
in any species. For DNA transposon detection, we have
implemented the MITE detection module based on the
algorithm of detectMITE (Ye et al., 2016). Compared
with detectMITE, GRF is faster and more sensitive and
supports nested MITE detection. For LTR retro-
transposon detection, GRF outputs TDRs as LTR can-
didates, and other tools, such as LTR_FINDER (Xu and
Wang, 2007), can be used for downstream LTR identi-
fication and filtration. For non-LTR retrotransposons,
such as LINEs and SINEs, GRF identifies many inter-
spersed repeats missed by Red (Girgis, 2015) and
phRAIDER (Schaeffer et al., 2016) for further filtration
and verification. GRF covers more public transposon
annotations than IRF (TIR detection), LTR_FINDER
(modified to output intermediate results; TDR detec-
tion), and phRAIDER (interspersed repeat detection) in
Arabidopsis and rice. In the future, it is possible to use
high-throughput short reads to reduce the false nega-
tive of these tools in transposon detection (Kang et al.,
2016). Other functions of GRF, such as showing the
alignments of TIRs/TDRs/interspersed repeats and
extracting sequences with specific lengths of spacers/
TRs, can help biologists better understand and examine
the results, and these functions are not available in the
aforementioned repeat detection tools.

Obviously, future work is needed in GRF to improve
its performance of long TIR/TDR detection (e.g..1,000
nt) with indels and to allow gap openings in inter-
spersed repeat detection due to the limitation of its
current algorithm. For interspersed repeat detection,
we can quickly locate the seed regions based on our
current numeric algorithm, but allowing gaps in the
extension phase of the seed regions is challenging for
the following two reasons. First, the extension needs
multiple sequence alignment (MSA), which is a heavy
computational task. For N individual sequences, the
naive method requires constructing the N-dimensional
equivalent of the matrix formed in standard pairwise
sequence alignment. The search space thus increases
exponentially with increasing N and is also strongly
dependent on sequence length. A naive MSA takes
O(LengthN) time to produce. To find the global opti-
mum for N sequences this way is an non-deterministic
polynomial-complete problem (Wang and Jiang, 1994;
Just, 2001; Elias, 2006). Even though there are different
MSA algorithms to improve the alignment speed with
high alignment correctness (Lipman et al., 1989; Edgar,

2004; Grasso and Lee, 2004; Collingridge and Kelly,
2012), MSA is still a challenging computational task in
the bioinformatics community. If we have a large
number of long sequences (e.g. n . 100; length .1,000
nt) that need MSA, it will take a long time to finish.
Second, it is hard to determine when to stop the seed
region extension, becausewe do not knowhow long the
interspersed repeats could be. Nevertheless, we will be
committed to improve GRF in the future so that it can
allow indels in interspersed repeat detection.

CONCLUSION

In conclusion, GRF is a generic and sensitive tool for
genome-wide repeat and TE detection. It not only can
improve repeatome annotation of genomes but also can
help deepen our understanding of the origins, struc-
tures, and biological relevance of repetitive elements.
GRF needs further development to improve its perfor-
mance of long TIR/TDR detection with indels and to
allow gap openings in interspersed repeat detection.

MATERIALS AND METHODS

Algorithms and Design

TIR Detection

Based on the algorithm of detectMITE (Ye et al., 2016), which can detect IRs
bearing spacers in the middle and mismatches in TRs, a new strategy was used
that combines numerical calculation and dynamic programming approaches to
allow indels in TR detection. It was assumed that any TIR pair must bear a
minimum of fragments (default 5 10 nt, adjustable as a parameter) without
indels in their boundaries. The algorithm is as follows: (1) Use the complex
number scoring system: A5 1, T521, C5 j, G52j to calculate the cumulative
score for each nucleotide of an entire chromosome. For instance, the cumulative
score for each nucleotide of the sequence AAATTTis (1, 2, 3, 2, 1, 0). (2) Calculate
the cumulative scores of all subsequences of certain length (length 5 10 by
default) of a chromosome efficiently using the vector operation C 5 V(l:n) –
[0V(1:n2 l)] (Ye et al., 2014). Here, l denotes the length of subsequences (I5 10,
by default); n denotes the length of the chromosome; V denotes the cumulative
scores of all nucleotides of the chromosome, obtained from step 1; C denotes the
cumulative scores of all subsequences with length I. For instance, the cumula-
tive scores of all subsequences (length 5 4) of sequence AAATTT(i.e. AAAT,
AATT, ATTT) 5 V(4:6) – [0 V(1:2)] 5 (2, 0, 22). (3) Examine the cumulative
scores of all subsequences and find pairs that are separated by predefined
distances (from 0 to 980 by the resettable default, limiting the total IR length to
20–1,000) and have the absolute value of the sum of cumulative scores #2
(default), which allows at most one mismatch (no indel) in the base comple-
mentarity of the minimum pair of TIRs. For instance, the absolute value of the
sum of cumulative scores of AAAAAGCCCCCandGGGGGATTTTT5 j(51 4j)
1 (242 5j)j5 2, which are complementary TIRs (pairs) bearing one mismatch.
(4) Perform base-by-base verification for qualified pairs; only sequences with
true complementarity are kept and considered as seed regions. (5) Inwardly
extend the seed regions according to base complementarity. If indels in TRs are
not enabled, direct base-by-base comparisons will be used, and the inward
extension will stop when the maximum number of mismatches (adjustable) is
reached or all bases are compared, and the percentage of unpaired bases in the
stem will be checked (at most 10% by default). If the stem does not satisfy the
percentage requirement, the longest substem satisfying the percentage re-
quirement will be reported. Otherwise, block-based dynamic programing ap-
proach will be used. In such cases, base-by-base comparisons are still used to
find the first unpaired bases, and the Needleman-Wunsch algorithm
(Needleman and Wunsch, 1970) is used to find the best alignment of the se-
quence between the unpaired bases against its reverse complementary bases
(Fig. 2A). The best alignment must have the highest alignment score in all
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qualified alignments (i.e. alignments satisfying structure constraints such as the
maximum number of mismatches/indels and maximum percentage of un-
paired bases). To improve the efficiency of alignments for long sequences, a
block-by-block alignment strategy is used with the assumption that a pair of
TRs should have a high similarity after reverse complementary transformation
(Fig. 2B). For short sequences with lengths #2 3 block size (the default size is
100), regular base-by-base alignment is used. For the best alignment in the
current block, if the length of aligned sequences is#0.8 * block size (default), the
alignment procedure will stop and the end position of the best alignmentwill be
returned. Otherwise, a new block will be created and the alignment will con-
tinue from the current end position. The detections of IRs with different dis-
tances between two seed regions including steps 3 to 5 can be performed in
parallel. (6) Remove redundant results (i.e. small TRs that are part of LTRs) by
making an index of positions of TRs in the chromosome. (7) Filter high-quality
IRs (based on the spacer/total IR sequence length ratio; adjustable) and long-
stem IRs.

TDR Detection

TDRs are a pair of direct repeats separated by a spacer. The algorithm of IR
detection is modified and applied to TDR detection with the following differ-
ences. (1) After obtaining the cumulative scores of all subsequences of a chro-
mosome, the absolute value of the difference of cumulative scores of each pair
separated by a spacer is calculated, and the pairs with an absolute value of the
difference #2 (default) are kept as the two seed regions. Further verification of
the seed regions is based on base identity, allowing one mismatch. (2) During
the seed region extension phase, the direction of base alignment is concurrent,
and the inner sequence between two seed regions is aligned against the forward
extended sequence with the same length (Fig. 2C).

Interspersed Repeat Detection

Interspersed repeats are identical or nearly identical DNA sequences that are
spread out through the genome (Treangen and Salzberg, 2011). They are dif-
ferent fromTRpairs and have two ormore copies in different chromosomes and
strands. The following numeric algorithm for interspersed repeat detection was
developed. (1) Use a new scoring system, A5 (1, 0, 0, 0), T5 (0, 1, 0, 0), C5 (0, 0,
1, 0), G 5 (0, 0, 0, 1), to calculate cumulative scores for subsequences (length 5
20 nt by default) of all chromosomes. For instance, ATCGATCG has a cumu-
lative score of (2, 2, 2, 2). (2) Filter out the scores of subsequences with low
complexities (i.e. G/C or A/T content ,20%, or Lempel-Zic complexity value
,0.675; Han andWessler, 2010; Ye et al., 2016), whichmight be tandem repeats.
(3) Perform the following transformation to make sure each sequence and its
reverse complementary sequence have the same score. For score (nA, nT, nC, nG),
if nA, nT, swap nA and nT, and swap nC and nG; if nA5 nT and nC, nG, swap nC
and nG. (4) Group sequences with the same scores together using a hash table
(linear time). (5) Find candidate repeats (seed regions) within each group by
comparing nucleotide sequences. For every two repeats, if their sequences are
the same or reverse complementary, they are grouped together and considered
to be copies in the same repeat group. For each repeat group, the copy number
must be $3 (by default). (6) In each repeat group, extend the seed regions
allowing mismatches in both upstream and downstream flanking regions. In
the extension phase, if $80% (default) of the sequences have the same base in
one position, the base will be defined as a determined base; otherwise, it will be
undetermined (marked as “N”). The extension will stop when the maximum
number of undetermined bases (default5 1 in either direction) is reached, and a
consensus sequence will be generated (including determined and undeter-
mined bases). (7) Compare repeat copies with the consensus sequence in a
group and remove the ones with more than two mismatches (adjustable de-
fault; excluding undetermined bases). (8) Merge repeat groups with the same
consensus sequences and remove redundant repeat copies in a merged group.
The copy number of a merged group must be $3 (by default). Steps 2, 3, 5, 6,
and 7 can be performed in parallel.

Removing TIRs, TDRs, and Interspersed Repeats Containing
Tandem Repeats (Optional)

Some of the detected TIRs, TDRs, or interspersed repeats could be low-
complexity sequences (e.g. “ATATATATATATATAT” has a valid structure
of IRs), and scripts in the GRF package were provided for users to filter out the
output sequences containing tandem repeats using Phobos, a highly accurate
tandem repeat search tool for complete genomes.

Implementation of GRF

GRFwas implementedwithC11andusedOpenMP(DagumandMenon,1998)
for CPU parallelization. GRF was tested on Ubuntu 14.041with g11 4.91. Inside
the “bin” folder of theGRFpackage, theprogramgrf-main is for TIR, TDR, andMITE
candidate detection; grf-intersperse is for interspersed repeat detection; grf-mite-cluster
is forMITE family clusteringandfiltration;grf-nest is for nestedTIR/MITEdetection;
grf-dbn shows the DBN structures of TRs; grf-alignment shows the sequence align-
ment/pairing of TRs; grf-alignment2 shows the consensus sequences and alignments
of interspersed repeats. grf-filterfilters repeats according to the lengths of TRs and/or
spacers. grf-main, grf-intersperse, and grf-mite-cluster are parallel programs. Users can
adjust many parameters in TIR, TDR, interspersed repeat, and MITE detection (see
“readme.txt” in the GRF package). The relationship of the programs in the GRF
package is shown in Figure 3.

Other Useful Functions of GRF

Comparedwith existing numerical approach based tools that can only detect
IRs (Sreeskandarajan et al., 2014; Ye et al., 2014) or MITEs (Ye et al., 2016), GFR
has the following new functions: (1) adding more sequence structure con-
straints (i.e. the maximum number of mismatches/indels and maximum per-
centage of unpaired bases in TIRs/TDRs); (2) showing the base-pairing of TIRs
in modified CIGAR (Li et al., 2009; “M” is for mismatch and “m” for match,
instead of “m” for both match and mismatch, as in the standard CIGAR), DBN,
and alignment formats; (3) showing the base identity of TDRs in modified
CIGAR and alignment formats; (4) showing the consensus sequences andMSAs
for interspersed repeats (in the consensus sequences, each base is the base with
the highest frequency); (5) filtering repeats according to the lengths of TRs and/
or spacers; (6) removing redundant TRs (i.e. small TRs that are part of large TRs)
in the output; (7) detecting nested TIRs/MITEs.

Application of GRF in Transposon Detection

MITE (DNA Transposon) Detection

Additional modules were developed so that GRF can be used in genome-
wide MITE detection directly. Since MITEs (50 to 800 nt) are characterized by
TIRs, a TIR detection algorithm was first used to locate MITE candidates and
then use specific structure constraints (Ye et al., 2016) to filter candidate se-
quences. The algorithm is as follows. (1) Find short TIR pairs (default length 5
10; at most one mismatch allowed) separated by a distance (from 30 to 780 by
default, limiting the total IR length from 50 to 800) using the numeric calculation
approach. (2) Only keep the candidate pairs with TSDs (i.e. 2- to 10-nt direct
repeats) in the flanking regions. (3) Extend the remaining TIR pairs allowing
indels/mismatches. (4) Filter out candidate MITE sequences with low com-
plexity (Ye et al., 2016) in TIR regions. (5) Cluster candidate MITEs into families
according to sequence similarities by tools such as CD-HIT (Fu et al., 2012). (6)
Filter out MITE families with the genome copy number,3 (default) and select
the representative sequence for each family using the methods described in
detectMITE (Ye et al., 2016). In addition, GRF can detect nestedMITEs (i.e. small
MITEs are included in large MITEs without overlapped TIRs), whose biological
functions are not clear and need further study.

LTR Retrotransposon Detection

SinceLTRretrotransposonsarecharacterizedbyTDRs,theTDRsdetectedbyGRF
can be further filtered to predict LTR retrotransposons. Popular de novo LTR ret-
rotransposon detection tools such as LTR_FINDER (Xu and Wang, 2007) and
LTRharvest (Ellinghaus et al., 2008) can be modified and used as the downstream
filtration tool. The source code of LTR_FINDER (included in the GRF package) was
successfully modified to accept the TDRs detected by GRF as the input.
LTR_FINDERcan further adjust alignments, detect signals, and recognize important
enzyme domains to produce reliable results (Xu andWang, 2007). In this article, this
new hybrid approach was compared with the original LTR_FINDER using public
LTR retrotransposon annotations as the benchmark.

Genome-Wide Repeat Detection by GRF in
Different Species

Genome sequences of Arabidopsis (Arabidopsis thaliana; TAIR10.31), Populus
trichocarpa (JGI2.0), rice (Oryza sativa; IRGSP-1.0), maize (Zea mays; AGPv4), and
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Physcomitrella patens (ASM242v1) were downloaded from the Ensembl plant
database (http://plants.ensembl.org/index.html); Plasmodium falciparum
(ASM276v2) was downloaded from the National Center for Biotechnology
Information database (https://www.ncbi.nlm.nih.gov/); and human (Homo
sapiens; GRCh38 primary assembly) and mouse (Mus musculus; GRCm38 pri-
mary assembly) were downloaded from the Ensembl database (http://useast.
ensembl.org/index.html; Yates et al., 2016). GRF was used for TIR/TDR, in-
terspersed repeat, and MITE detection in our Ubuntu server (4x Intel Xeon E7-
4870 2.40 GHz; 10C/20T; 512 GB RAM). For TIR/TDR detection, the following
parameters were used in GRF: minimum TR length 5 10 nt; distance between
seed regions5 0–980 nt; seed region length5 10 nt; at most one mismatch was
allowed in the seed region; at most 10% unpaired bases were allowed for TRs
(no limit for the maximum number of mismatches or indels). “script/extract_tr.py”
was used in the GRF package to extract the TRs (without spacers) in the TIR/TDR
outputs, and Phobos (version 3.3.12; http://www.ruhr-uni-bochum.de/ecoevo/
cm/cm_phobos.htm) was used with default parameters and output format “0” to
detect tandem repeats in the extracted TRs. Then “script/filter.py”was used to filter
out the TIRs/TDRs containing tandem repeats based on Phobos outputs. TIRswere
furtherfiltered outwith total sizes (including internal spacer),80 nt and TDRswith
TR sizes (one-side repeat size) ,40 nt.

For interspersed repeat detection, the following parameters were used in
GRF: seed region length 5 20 nt; minimum copy number 5 3; maximum
number of undetermined bases (in either direction) 5 1; the minimum identity
for a determined base in the consensus sequence 5 80%; maximum number
of mismatches for a repeat copy compared with the consensus sequence
(excluding undetermined bases) 5 2. “script/convert.py” was used to convert
the interspersed repeat outputs to FASTA format, and Phobos (only accepting
the FASTA file as input) was used to detect tandem repeats in the converted
FASTA file. Then, “script/filter2.py” was used to filter out the inter-
spersed repeats containing tandem repeats based on Phobos outputs and
“script/format.py”was used to format the filtered results (each repeat group is
separated by dashed lines). The interspersed repeats with copy number ,3
were filtered out after Phobos filtration. Interspersed repeats with total sizes
,40 nt were further filtered out.

ForMITEdetection, the followingparameterswere used inGRF: the distance
between seed regions 5 30–780 nt, and other settings were the same with TIR
detection. For MITE family clustering, “cd-hit-est” was used in the CD-HIT
package (version 4.6.8; Fu et al., 2012) with the following settings: (1) sequence
identity threshold (“-c”) 5 0.9 (default); (2) alignment coverage for the longer
sequence (“-aL”)5 0.99 and length difference cutoff (“-s”)5 0.8. To detect high-
quality IRs, in GRF (grf-main), “-r 0.2” was set, which means that maximum

spacer/total IR sequence length ratio 5 0.2; to detect long-stem IRs, “–min_tr
100” was set, which means that minimum TR length 5 100 nt. To find the
overlapped portion of TIR/TDR results and interspersed repeat results, each
TIR/TDR result was examined, and if it is completely covered (from start to
end) by any interspersed repeat detected by GRF, this TIR/TDR result will be
considered to be covered by interspersed repeat results, and the same rule was
used to examine each interspersed repeat result. The following optional pa-
rameters were also used to make another run of TIR and TDR detection to
measure the performance of GRF: (1) minimum TR length5 40; (2) seed region
length 5 40; (3) maximum mismatch number in seed region 5 4.

Comparison of IR Detection between GRF and detectIR

IR (total length 5 22 nt including internal spacer) detection was performed
allowing at most one mismatch in stems and at most two bases in the spacer in
Arabidopsis and mouse using both GRF and detectIR. In detectIR, the module
detectPerfectIRwas used to detect perfect IRs with repeat length5 22 nt, and the
module detectImperfectIR_S1.mwas used to detect IRs allowingmismatches and
gaps (spacers) with the following settings: (1) minimum and maximum se-
quence length 5 22 nt; (2) maximum mismatch 5 1; and (3) maximum gap
(number of bases in the spacer) 5 2. In GRF, the following compatible settings
were used to detect perfect and imperfect IRs: (1) minimum TIR length5 10 nt;
(2) seed region length5 10 nt; (3)maximummismatch in the seed region5 1; (4)
minimum and maximum distances between seed regions 5 2; (5) maximum
mismatch in TIR 5 1; (6) maximum percentage of unpaired bases in TIRs 5
100% (i.e. no requirement for the percentage of unpaired bases). IR (length5 22
nt) detection was also performed using GRF allowing at most one mismatch
and one indel in stems and at most two bases in the spacer in Arabidopsis and
mouse, and the results of GRF were compared with the results of detectIR
obtained above. Here, in GRF, the following settings were used: (1) minimum
seed region length 5 5; (2) maximum number of indels 5 1; (3) minimum and
maximum distances between seed regions 5 12; other settings were kept the
same as in the previous run. In the comparison of outputs, any results from the
two programs that have the same start and end positions were considered to be
common results.

Comparison of IR Detection between GRF and IRF

In the comparisons of simulated data, the following compatible settingswere
used in IRF (version 3.07) andGRF. In IRF, (1) alignment scoreswere11 (match),

Figure 3. The relationship flowchart of the
component programs within the GRF
package.
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21 (mismatch), and 22 (indel), for a minimum score of 8; (2) match probabil-
ity 5 80% and indel probability 5 10%; (3) maximum stem length to report 5
10,000 nt (this cannot be set to a smaller value); and (4) maximum loop length
to report 5 1,000 nt. In GRF, (1) alignment scores were 11 (match), 21 (mis-
match), and 22 (indel); (2) minimum TIR length 5 10 nt; (3) seed region
length 5 10 nt; (4) at most one mismatch was allowed in the seed region; (5)
minimum distance between seed regions 5 0 and maximum distance between
seed regions was adjusted according to different TIR lengths in different runs of
simulated data (i.e. maximum TR length of simulated TIRs 5 100, 200, 500,
1,000, or 2,000 nt and maximum spacer length of simulated TIRs 5 1,000 nt, so
the corresponding maximum distance between seed regions is 1,180, 1,380,
1,980, 2,980, or 4,980 nt); (6) at most 10% unpaired bases are allowed in TIRs. IR
detection was performed in Arabidopsis and rice using GRF and IRF with
compatible settings. In IRF, the same settings were used as described previously
in this section for IRF. In GRF, the same settings were used as described
previously in this section except that the maximum distance between seed
regions was set to 980 nt, which guaranteed that the maximum length of IRs
was 1,000 nt. The results of GRF and IRF were filtered by total sequence
length (80 to 1,000 nt), the results of IRF were filtered by the maximum
percentage of unpaired bases in TIRs (10%), and tandem repeats were fil-
tered out in GRF and IRF results using Phobos. The public transposon
annotations of Arabidopsis were downloaded from the Araport database
(https://www.araport.org/; Cheng et al., 2016), which integrates homol-
ogy approaches with manual curation (see https://www.araport.org/
download_file/TAIR10_genome_release/annotation/gff/transposons/README.
transposons) and the public transposon annotations of rice were down-
loaded from RAP-DB (Kawahara et al., 2013; Sakai et al., 2013; http://
rapdb.dna.affrc.go.jp), chromosomal DNA transposon annotations were
extracted with sizes ranging from 80 to 1,000 nt, and the GRF and IRF re-
sults were compared with these public annotations. In the comparison of
outputs, if the length of the overlapped part between an annotation and an
output sequence from the selected tool (i.e. GRF or IRF) was $80% of the
lengths of both the annotation and the output sequence, this annotation was
considered as having been discovered by the selected tool.

Comparison of TDR Detection between GRF
and LTR_FINDER

The source code of LTR_FINDER (version 1.0.6) was modified to output
intermediate TDR results (i.e. the genomic locations of LTR candidates) for the
comparison with GRF. In the comparisons of simulated data, the following
compatible settings were used in LTR_FINDER and GRF. In LTR_FINDER, (1)
alignment scores were 11 (match), 21 (mismatch), 22 (gap open), 22 (gap
extension), and22 (gap end); (2) minimum andmaximumdistances between 59
and 39 LTRs were 0 and 1,000 nt; (3) minimum length of LTR 5 10 nt and
maximum length of LTR was adjusted according to different TDR lengths in
different runs of simulated data (i.e. maximum TR length of simulated TDRs5
100, 200, 500, 1,000, or 2,000 nt); (4) minimum length of exact match pair5 10 nt;
and (5) threshold for joining new sequence in existed alignment 5 0.9. In GRF,
(1) alignment scores were 11 (match), 21 (mismatch), and 22 (gap); (2) seed
region length5 10 nt; (3) at most onemismatch is allowed in the seed region; (4)
the minimum TDR length5 10 nt; (5) minimum distance between seed regions
5 0 and maximum distance between seed regions is adjusted according to
different TDR lengths in different runs of simulated data (i.e. maximum TR
length of simulated TDRs 5 100, 200, 500, 1,000, or 2,000 nt and maximum
spacer length of simulated TDRs 5 1,000 nt, so the corresponding maximum
distance between seed regions is 1,090, 1,190, 1,490, 1,990, or 2,990 nt); (6) at
most 10% unpaired bases were allowed in TDRs. TDR detection was performed
in Arabidopsis and rice genomes using GRF and LTR_FINDER (modified to
output intermediate results) with compatible settings. In LTR_FINDER, the
same settings as described above were used except that the maximum length of
LTR was set to 500 nt and the maximum distance between 59 and 39 LTRs was
set to 980. In GRF, the same settings were used as described previously in this
section for GRF, except that the maximum distance between seed regions was
set to 980 nt (default). The results of GRF and LTR_FINDERwere filtered by the
maximum total sequence length (1,000 nt) and minimum TR length (40 nt), and
tandem repeats in GRF and LTR_FINDER results were filtered out using
Phobos. The chromosomal LTR transposon annotationswith sizes ranging from
80 to 1,000 nt were extracted from the aforementioned public transposon an-
notations and compared with the GRF and LTR_FINDER results with these
annotations using the method described previously in section "Comparison of
IR Detection between GRF and IRF".

Comparison of Interspersed Repeat Detection between
GRF and Red

Interspersed repeat detection was performed in Arabidopsis and rice using
both GRF and Red (version 05/22/2015) and their performances and outputs
were compared. In Red, the default settings were used. In GRF, the following
settings were used: (1) seed region length5 20 nt; (2) minimum copy number5
3; (3) maximum number of undetermined bases (in either direction) 5 1; (4)
minimum identity for a determined base in the consensus sequence 5 80%; (5)
maximum number of mismatches for a repeat copy compared with the con-
sensus sequence (excluding undetermined bases) 5 2. Output sequences con-
taining tandem repeats in GRF and Red were filtered out using Phobos and
output sequences ,40 nt in length were filtered out. The chromosomal trans-
poson annotations other than DNA or LTR transposons with sizes$40 nt were
extracted from the aforementioned public transposon annotations, and the GRF
and Red results were compared with these annotations using the method de-
scribed previously in section "Comparison of IR Detection between GRF
and IRF".

Comparison of Interspersed Repeat Detection between
GRF and phRAIDER

Interspersed repeat detection was performed in Arabidopsis and rice using
bothGRFandphRAIDER (version 2.0) and their performances andoutputswere
compared. In GRF, the same settings were used as described in the previous
section. In phRAIDER, the following settings were used: (1) minimum repeat
length 5 20 nt; (2) minimum number of repeats in a group 5 3. Output se-
quences containing tandem repeats in GRF and phRAIDER were filtered out
using Phobos and output sequences ,40 nt in length were filtered out. The
chromosomal transposon annotations other than DNA or LTR transposons
with sizes $40 nt were extracted from the aforementioned public transposon
annotations, and the GRF and phRAIDER results were compared with these
annotations using the method described previously in section "Comparison of
IR Detection between GRF and IRF".

Comparison of MITE Candidate Detection between GRF
and detectMITE

MITE candidate detection was performed in Arabidopsis and mouse using
both GRF and detectMITE (version 20160128) with the following settings: (1)
MITE length ranged from 50 to 800 nt; (2) minimum TIR length 5 10 nt; (3) at
most one mismatch (no indel) was allowed in TIRs; (4) four threads (GRF)/
processes (detectMITE) were used in Arabidopsis and 16 threads/processes
were used in mouse. In detectMITE, the maximum number of paralleled pro-
cesses was the same as the number of chromosomes of the input genome (i.e. 7
in Arabidopsis and 22 in mouse), so more threads/processes were not used in
the two programs. In the comparison of outputs, any result from the two
programs that had the same start and end positions was considered to be a
common result.

Comparison of LTR Retrotransposon Detection between
GRF Integrated Hybrid Approach and LTR_FINDER

The source code of LTR_FINDER (Xu and Wang, 2007) was modified to
make it accept TDRs from GRF as the input for downstream transposon de-
tection. The modified LTR_FINDER accepts TDRs from GRF as the LTR can-
didates (Xu andWang, 2007) and performs further analysis including adjusting
alignments, finding signals, and recognizing enzyme domains (Xu and Wang,
2007). LTR retrotransposon detection was performed in Arabidopsis and rice
using both LTR_FINDER and the hybrid approach (GRF 1 modified
LTR_FINDER that takes TDRs from GRF as the input). For the original
LTR_FINDER, default settings were used: (1) alignment scores were 12
(match), 22 (mismatch), 23 (gap open), 21 (gap extension), 21 (gap end); (2)
minimum and maximum distances between 59 and 39 LTRs 5 1,000 nt and
20,000 nt, respectively; (3) minimum and maximum lengths of LTR 5 100 nt
and 3,500 nt, respectively; (4) minimum length of exact match pair 5 20 nt; (5)
threshold for joining new sequence in existing alignment 5 0.7. For the hybrid
approach, GRF was first used to find TDRs with the compatible settings: (1)
alignment scores were 12 (match), 22 (mismatch), and 23 (indel); (2) seed
region length5 10 nt; (3) at most one mismatch was allowed in the seed region;
(4) minimum TDR length 5 100 nt; (5) minimum and maximum distances

Plant Physiol. Vol. 180, 2019 1813

Generic Repeat Finder: Tool for De Novo Repeat Detection

https://www.araport.org/
https://www.araport.org/download_file/TAIR10_genome_release/annotation/gff/transposons/README.transposons
https://www.araport.org/download_file/TAIR10_genome_release/annotation/gff/transposons/README.transposons
https://www.araport.org/download_file/TAIR10_genome_release/annotation/gff/transposons/README.transposons
http://rapdb.dna.affrc.go.jp
http://rapdb.dna.affrc.go.jp


between seed regions5 1,090 nt and 23,490 nt, respectively, which guaranteed that
theminimum andmaximum distances between the starts of 59 and 39 TRs were the
same with LTR_FINDER (i.e. 1,100 nt and 23,500 nt, respectively); (6) at most 30%
unpairedbaseswere allowed inTDRs. The output TDRswere thenfilteredusing the
length requirement from the original LTR_FINDER (TDR length, 100 to 3,500 nt;
spacer length, 1,000 to 20,000 nt), and the modified LTR_FINDER with default
settings for downstream analysis was used. For both approaches, the tRNA data-
base in the LTR_FINDERpackagewas used tofind signals, and PS_SCAN (Gattiker
et al., 2002) was used to find protein domains with a local copy of the PROSITE
database (ftp://ftp.expasy.org/databases/prosite/prosite.dat). The chromosomal
LTR transposon annotations with compatible sizes (i.e. 1,200 to 27,000 nt) were
extracted from the aforementioned public transposon annotations, and the original
LTR_FINDER and hybrid approach results were compared with these annotations
using the method described previously.
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Supplemental Figure S1. Examples of output TIRs and interspersed
repeats.
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