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Multifaceted Integration: Memory for Faces Is Subserved by
Widespread Connections between Visual, Memory,
Auditory, and Social Networks

Michal Ramot, Catherine Walsh, and ©“Alex Martin
Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892

Our ability to recognize others by their facial features is at the core of human social interaction, yet this ability varies widely within the
general population, ranging from developmental prosopagnosia to “super-recognizers”. Previous work has focused mainly on the
contribution of neural activity within the well described face network to this variance. However, given the nature of face memory in
everyday life, and the social context in which it takes place, we were interested in exploring how the collaboration between different
networks outside the face network in humans (measured through resting state connectivity) affects face memory performance. Fifty
participants (men and women) were scanned with fMRI. Our data revealed that although the nodes of the face-processing network were
tightly coupled at rest, the strength of these connections did not predict face memory performance. Instead, face recognition memory was
dependent on multiple connections between these face patches and regions of the medial temporal lobe memory system (including the
hippocampus), and the social processing system. Moreover, this network was selective for memory for faces, and did not predict memory
for other visual objects (cars). These findings suggest that in the general population, variability in face memory is dependent on how well
the face processing system interacts with other processing networks, with interaction among the face patches themselves accounting for
little of the variance in memory ability.
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Our ability to recognize and remember faces is one of the pillars of human social interaction. Face recognition however is a very
complex skill, requiring specialized neural resources in visual cortex, as well as memory, identity, and social processing, all of
which are inherent in our real-world experience of faces. Yet in the general population, people vary greatly in their face memory
abilities. Here we show that in the neural domain this variability is underpinned by the integration of visual, memory and social
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circuits, with the strength of the connections between these circuits directly linked to face recognition ability.
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Introduction

Memory for faces is one of the core capacities of the human mind.
The ability to recognize people, and to know whether the person
in front of us is familiar or not, is fundamental to our social
functioning, a cornerstone of humanity. And yet, within the gen-
eral, healthy population there is a great degree of variance in
terms of ability to remember and recognize both familiar and
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novel faces (Carbon, 2008; Herzmann et al., 2008; Elbich and
Scherf, 2017).

The neural underpinnings of visual face processing have been
studied extensively (Bentin et al., 1996; Haxby et al., 1996; Grill-
Spector and Malach, 2004; Grill-Spector et al., 2004; Kanwisher
and Yovel, 2006; Pitcher et al., 2007), resulting in the identifica-
tion of several patches in the ventral visual stream along the fusi-
form gyrus such as the occipital face area (OFA), the fusiform face
area (FFA), and more recently, a more anterior patch in the ven-
tral anterior temporal lobe (ATL), which are highly selective for
face stimuli, responding more to faces than to other object cate-
gories (Rossion et al., 2012; Avidan et al., 2014). These regions,
along with the amygdala, parts of the lateral occipital sulcus
(LOS) and the posterior superior temporal sulcus (pSTS) are
largely regarded as the elements comprising the face network
(Collins and Olson, 2014; Jonas et al., 2015).
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Lesion and stimulation studies have shown that face percep-
tion and recognition are impaired when face-selective regions are
compromised (Damasio et al., 1982; Jonas et al., 2015). The de-
gree of neural activity and selectivity within this face network has
been linked to better performance on face memory tasks in nu-
merous studies (Golarai et al., 2007; Furl et al., 2011; Elbich and
Scherf, 2017), with patients with congenital prosopagnosia dem-
onstrating significantly reduced selectivity within these regions
(Duchaine and Nakayama, 2006b; Jiahui et al., 2018). Neural
activity in these regions can be also used to decode individual
faces (Davidesco et al., 2014). However, studies investigating the
link between resting state functional connectivity and face recog-
nition memory abilities have been scarce and limited in scope,
focusing almost exclusively on correlations within the face net-
work itself, and of the face network with early visual cortex. These
studies have shown decreased connectivity between these nodes
in individuals with congenital prosopagnosia (Avidan et al., 2014;
Lohse et al.,, 2016), and predictive value for the correlation be-
tween OFA and FFA for performance on face perception tasks, as
well as a long-term recognition task for famous faces (Zhu et al.,
2011). Using diffusion tensor imaging, reduced structural con-
nectivity in white matter tracts projecting along the ventral oc-
cipitotemporal cortex from the occipital face regions to anterior
temporal regions has been reported (Thomas et al., 2009), as has
white matter abnormalities in the vicinity of FFA (Gomez et al.,
2015; Song et al., 2015).

Although face processing has been one of the most thoroughly
researched topics in vision science, the story of face recognition
memory, across the full range of abilities, from cases where it is
severely disrupted without any apparent brain insult, such as in
congenital prosopagnosia, through typical individuals to those
with exceptional abilities, has so far been examined primarily
through the face network with perhaps one exception that exam-
ined correlations between face regions and other brain areas but
reported conflicting results (Wang et al., 2016). Surely though,
given the nature of the processes involved in face recognition
memory and the context in which it is constantly performed in
actual everyday life, both memory and social networks must also
be profoundly involved. We therefore set out to characterize the
relationship between the face patches and other brain networks
relevant for face recognition memory by performing a whole-
brain search for regions whose connectivity with the ventral face
patches predict face memory ability.

Materials and Methods

Participants. Fifty-three participants (24 female) aged 16—30 (mean
age = 23.1) were recruited for this experiment. All participants were
screened for any history of neurological and psychiatric disorders. In
addition, all participants had normal to corrected-to-normal vision. One
participant was excluded from analysis because of abnormal brain struc-
ture, and two were excluded because of inattention on behavioral testing
(failure on the practice questions). The experiment was approved by the
NIMH Institutional Review Board (protocol 10-M-0027). Written in-
formed consent was obtained from all participants.

Behavioral testing. Before the scan, all participants completed two
memory tasks: the Cambridge Face Memory Task (CFMT; Duchaine and
Nakayama, 2006a) and the Cambridge Car Memory Test (CCMT; Den-
nett et al.,, 2012). All but 4 subjects completed the memory tasks directly
before the scan. The CFMT is comprised of three parts; in the first part,
participants are shown three views of a target face, and then presented
with a forced-choice test with the target face and two distractor faces.
Participants had to select the face that matched the original target face.
There are six target faces, each of which was presented three times, for a
total for 18 trials. In the second part, participants were presented with
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frontal views of the six target faces for 20 s, followed by 30 forced-choice
tests with one target face and two distractor faces. Next, subjects were
presented with the frontal views of the six target faces for 20 s, followed by
24 more forced-choice test displays presented with a Gaussian noise
overlay. The CCMT uses the same structure as the CFMT, but uses cars,
instead of faces. For both the CEMT and the CCMT, recognition scores
were the sum correct responses on the three sections. Subjects who had
two or more incorrect trials in the first introductory phase of the memory
tests were excluded because of concerns about attention to tasks.

Imaging data collection and MRI parameters. All scans were performed
at the Functional Magnetic Resonance Imaging Core Facility on a 32-
channel coil GE 3T (GE MR 750 3.0T) magnet and receive-only head coil,
with online slice time correction. The scans included a 6 min T1-
weighted magnetization prepared rapid gradient echo sequence for ana-
tomical coregistration, which had the following parameters: TE = 2.7,
flip angle = 12, bandwidth = 244.141, FOV = 30 (256 X 256), slice
thickness = 1.2, axial slices. Functional images were collected using mul-
tiecho acquisition using the following parameters: TR = 2 s, voxel size =
3 X 3 X 3, flip angle = 60, multiecho slice acquisition with 3 echoes,
TE = 17.5, 35.3, and 53.1 ms, matrix = 72 X 72, slices = 28. Two
hundred and seventy TRs were collected for the rest scans, and 250 TRs
for the face/scene localizer scans. All scans used an accelerated acquisi-
tion (GE’s ASSET) with a factor of 2 to prevent gradient overheating.

Scan stimuli and experimental design. Each scan started with two 9 min
rest scans. During this scan, participants were presented with a uniformly
gray screen with a fixation cross. Participants were instructed to lie still,
not fall asleep, and look at the screen. After the rest scans, participants
completed two runs of an 8 min and 20 s face/scene localizer scan. Four
subjects completed a different, 9 min 20 s localizer scan, and they were
excluded from the face selectivity analysis relying on 3 weights, as those
were not comparable between localizer types. Each localizer began with a
20 s blank gray screen, followed by sixteen 20 s presentation blocks and a
10 s blank gray screen with a fixation cross. During presentation blocks,
20 grayscale pictures of faces (face blocks) or scenes (scene blocks) were
presented (stimulus duration = 200 ms, interstimulus interval = 700
ms), with one or two images repeating in succession in each block. Sub-
jects were instructed to look for these repetitions (1-back task) and re-
spond using a button box. There were eight face blocks and eight scene
blocks in each localizer run, with 320 exemplars from each category. Each
exemplar repeated no more than twice in each run. Exemplars were taken
from the stimulus set used by Stevens et al. (2015), and did not overlap
with stimuli used in the CEFMT or the CCMT.

MRI off-line data preprocessing. Post hoc signal preprocessing for the
functional images was performed in AFNI (Cox, 1996). The first four EPI
volumes from each run were removed to ensure all volumes were at
magnetization steady state. Any large transients that remained were re-
moved using a squashing function (AFNTI’s 3dDespike). Volumes were
slice-time corrected and motion parameters were estimated with rigid
body transformations (using AFNI’s 3dVolreg function). Volumes were
coregistered to the anatomical scan. The data were then processed using
AFNT’s meica.py to perform a multiecho ICA analysis. This process re-
moves nuisance signals such as hardware-induced artifacts, physiological
artifacts, and residual head motion (Kundu et al., 2013). The functional
and anatomical datasets were coregistered using AFNI, then transformed
to Talairach space.

ROI selection. The localizer data were used to define individual face
regions-of-interest (ROIs) for each subject. A standard general linear
model was used with a 20-s-long boxcar function. This was convolved
with a canonical hemodynamic response function, and de-convolved
using the AFNT function 3dDeconvolve. Face selective ROIs were found
using the faces > scenes contrast. All ROIs for each individual participant
were defined in Talairach space. In the faces > scenes contrast, we iden-
tified the center of mass for the bilateral FFA, OFA, and amygdala, in
addition to the right ATL face patch and right pSTS. We then defined a
spherical ROI of 6 mm radius around each of these centers of mass to
obtain eight individually localized visual ROIs. ROI coordinates given in
the table are converted to MNI coordinates using AFNIs lookup table.

Data analysis and statistical tests. All data were analyzed with in-house
software written in MATLAB, as well as the AFNI software package. Data
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on the cortical surface were visualized with SUMA (SUrface MApping;
Saad et al., 2004). Two-tail t tests were used for all p values on correla-
tions, unless otherwise stated. For the permutation test used to determine
the threshold of significance in the specificity for face memory segment,
we compared the correlation of the connectivity of each ROI pair to the
CEMT scores, to the partial correlation to CFMT scores using CCMT at
a regressor. The correlation and partial correlation (calculated used
MATLAB’s partialcorr function) scores for each ROI pair were first con-
verted to z-scores using Fisher’s transform, and then the difference be-
tween them was calculated. For each ROI pair, for 10,000 iterations, we
permuted the subject labels on the correlation values between that ROI
pair, and calculated the permuted correlation to the CFMT, the per-
muted partial correlation to the CFMT with the CCMT scores regressed,
and the difference between them, for each rest scan. We then took the
average for each iteration across the two rest scans, and set as the thresh-
old the result of the 95th percentile across all iterations across all possible
ROI pairs.

Whole-brain analysis cluster size correction. In addition to these indi-
vidually localized ROIs, we obtained 23 group-defined ROIs, by using
each of the eight individually defined ROIs as a seed. We first calculated
for each voxel its correlation to the seed (for each participant), trans-
formed to z-scores using Fisher’s transform, resulting in a vector for each
voxel with correlation scores per participant. We next calculated the
correlation of that vector for each voxel with the CFMT/CCMT scores, as
appropriate, resulting in a single predictiveness value per voxel. We did
this for each of the rest scans separately, and then combined the resulting
maps for each seed across both rest scans, by requiring that voxels be
significantly correlated with behavior in both rest scans at either p < 0.05
or p < 0.01 to be counted, resulting in eight maps, one per seed. We then
ran a permutation test cluster size correction for multiple comparisons,
for all eight maps together, by permuting the CEMT scores 10,000 times
and then testing correlations for each voxel, for each seed, and requiring
that voxels be significantly correlated in both rest scans at either p < 0.05
or p < 0.01 to be counted (these 2 tests are not identical, and have
different cluster size thresholds; a cluster can be smaller but also more
strongly correlated and still significant, or larger and less strongly corre-
lated). We then took the largest cluster at the 95th percentile across all
maps as our minimum cluster size for p < 0.05and p < 0.01, resulting in
eight fully corrected individual seed-based predictiveness maps. We next
calculated a conjunction map, in which the value of each voxel was the
number of predictiveness maps in which it was significant (ranging from
0 to 8). To be considered significant, a voxel had to be predictive in at
least three separate seed-based predictiveness maps, meaning a value of 3
or higher in the conjunction map. We therefore thresholded the conjunc-
tion map at 3, and identified the centers of mass in the surviving clusters.
ROIs were defined as 6 mm spheres around the centers of mass of these
clusters in the thresholded conjunction map, resulting in 23 ROIs for
CFMT, and none for CCMT. The eight individually localized visual
ROIs, in addition to the 23 group-defined ROIs, were used as targets in
subsequent analyses. Minimum cluster size for the global connectivity
analysis was determined in the same way. There were no significant clus-
ters for CCMT in any if the individual seed-based predictiveness maps,
not only in the conjunction map.

Results

Behavioral tests and ROI localization

Before the fMRI scan, participants came in for a behavioral test-
ing session, which included administration of the CFMT (Duch-
aine and Nakayama, 2006a), a widely used measure of face
memory ability, as well as the CCMT (Dennett et al., 2012) in
counterbalanced order, outside the MRI scanner. Performance
on the two tests was significantly correlated across our 50 partic-
ipants (r = 0.45, p < 0.0005, two-tailed ¢ test), and the tests were
well matched for difficulty, with no significant difference in the
mean scores of the tests (mean score = 78.2 for the CFMT, 75.1
for the CCMT, two-tailed paired £ test on the difference between
the means was insignificant, p = 0.19). Scores on the CFMT
ranged from 45% correct to 100% correct, with a SD of 11.
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Amygdala

ATL

Figure 1. Individual centers of the seven ventral face ROIs. Colored vertices represent the
location of the center of mass of each of the face patches, defined through the localizer for each
of the 50 participants. All eight face patches were individually defined for each participantin the
volume, and are projected here on the surface. ATL, blue; FFA, right: red, left: orange; OFA, right:
green, left: yellow. Right amygdala shown in purple, left amygdala in cyan. pSTS on the lateral
surface not shown. For all ROl analyses described later, ROIs were individually defined for each
participant by drawing 6 mm spheres in the volume around these individually localized centers
(for group localizer data, see Fig. 6).

CCMT scores ranged between 50 and 98, with a SD of 11.6. These
tests were chosen as they have been widely used in the literature,
and are well normed and validated (Wilmer et al., 2010). As by
Wilmer et al. (2010), we calculated internal reliability on the
CFMT and the CCMT in our sample using Cronbach’s «, and
found very high reliability for both tests (Cronbach’s a« = 0.86
and 0.85, respectively).

Participants then went on to do an fMRI scan, which included
two resting state runs and two face/scene localizer runs. All runs
were ~9 min long (see Materials and Methods for more details).
We began by using the face/scene localizer runs to identify the
ventral face patches (bilateral OFA, bilateral FFA, and right ATL),
as well as bilateral amygdala and right pSTS in each individual
participant (N = 50). Left ATL and pSTS were difficult to localize
in some participants (congruent with the known right bias for the
face network and specifically for ATL; Jonas et al., 2015) and were
therefore excluded. These ROIs were defined in each participant
as 6-mm-radius spheres around the center of mass of each clus-
ter. Figure 1 shows the location of these centers of mass for each of
the 50 participants for the seven ventral regions, and mean MNI
coordinates for all face regions across participants can be found
in Table 1.

Face selectivity

Next, we sought to reproduce previous findings linking selectivity
for faces within the face regions to performance on the face mem-
ory task (Golarai et al., 2007; Furl et al., 2011; Elbich and Scherf,
2017; Jiahui et al., 2018). We first defined selectivity as the 3
values of the face > scene condition in the localizer runs for each
participant, averaged across the voxels in each of our individually
defined face patches. We then correlated this selectivity value
across participants, with their performance on the CEFMT (faces)
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Table 1. Mean MNI coordinates for face patches

X y z
Right ATL 384 —-11%6 —31x5
Right FFA 41 =4 —50=*5 —19=*3
Left FFA —42*3 —50*5 =19%2
Right OFA N4 =75*5 -12x4
Left OFA —41*+4 —77=*5 -Nn=x3
Right amygdala 192 —3=*2 —16 £ 2
Left amygdala —18x2 —-3=*2 —16£2
Right psTS 53+5 —49 %6 9+4
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Figure 2.  Face selectivity predicts CFMT score. Face—scene 8 during the two localizer runs

averaged across all voxels in the eight individually defined face patches (bilateral OFA, bilateral
FFA, bilateral amygdala, right STS, and right ATL) shown on the x-axis per participant, with
CFMT scores shown on the y-axis. r = 0.41, p = 0.004, N = 46, as four participants were
excluded because they had been given a different version of the localizer task (see methods).

and CCMT (cars). Selectivity of the right FFA and right OFA was
significantly correlated with performance on the CFMT (FFA:
r = 0.34, p = 0.024; OFA: r = 0.32, p = 0.03), but not with
performance on the CCMT (FFA: r = 0.15, p = 0.3; OFA: r =
—0.02, p = 0.88). The other face ROIs were not significantly
correlated to either face (CFMT, right ATL: r = 0.18, p = 0.24;
rightamygdala: r = 0.12, p = 0.41; right pSTS: r = 0.17, p = 0.27;
left FFA: r = 0.02, p = 0.87; left OFA: r = 0.11, p = 0.46; left
amygdala: r = 0.11, p = 0.48) or car memory (CCMT, right ATL:
r=0.14, p = 0.36; right amygdala: r = 0.05, p = 0.74; right pSTS:
r=0.2,p = 0.21; left FFA: r = 0.12, p = 0.44; left OFA: r = 0.16,
p = 0.3; left amygdala: r = 0.14, p = 0.35). Although when tested
individually, only selectivity in the FFA and OFA was significantly
predictive of face memory performance, selectivity averaged
across all eight face patches was also significantly predictive of
face memory ability (CFMT: r = 0.41, p = 0.004; Fig. 2). The
average selectivity across all face patches was not predictive of car
memory performance (CCMT: r = 0.19, p = 0.19). To directly
compare the correlation of the selectivity to both the CFMT and
the CCMT and to better understand what degree of the variance
in this correlation between selectivity and CFMT performance is
explained by the CCMT, we also calculated the partial correlation
of selectivity to CEMT score, accounting for CCMT score. There
was no significant change in any of the correlations. The partial
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Figure3. FFA—OFA correlation to memory. Correlation between right FFA and right OFA for

each participant, plotted against their score on the CFMT. Note the wide range of correlations
between right FFA and right OFA, despite the high mean correlation of these two regions
(r=0.72).

correlation of the selectivity of right FFA and right OFA to CFMT
remained significant (r = 0.31, p = 0.036 and r = 0.35,p = 0.017,
respectively; no other regions were significant). The partial cor-
relation of the average selectivity to CEMT likewise did not sig-
nificantly change (r = 0.37, p = 0.013).

Resting state correlations within the face regions fail to
predict face memory

Having reproduced the findings relating to the correlation be-
tween selectivity and face memory abilities within the face net-
work in the localizer data, we turned to the resting state data. We
began by examining the correlations among the face patches
themselves during rest. As expected, these correlations were
strong, with the strongest correlations (averaged across partici-
pants and across both rest scans) occurring between right and left
FFA (r = 0.75), right and left OFA (r = 0.74), and right FFA to
right OFA (r = 0.73). The average pairwise correlation across all
the eight face patches (averaged across participants and rest
scans) was 0.49.

We then sought to determine whether any of the resting-state
correlations between the ROIs would predict performance on the
CEMT as the 3 weights had done. To this end, we compared the
correlations between pairs of regions and memory test perfor-
mance for each of the 28 pairs of face regions as well as for the
average of all the pairwise correlations. None of these correlations
were significantly predictive of face memory ability, and values
ranged between r = 0.05 and r = 0.23 (for instance, the correla-
tion of the connectivity between right FFA and right OFA to
CEMT score was r = 0.11; Fig. 3).

This discrepancy between the predictive value of the selectiv-
ity of the face patches during the localizer and the predictive value
of the resting state correlations between them suggests that these
measures do not capture the same intersubject variance. To verify
this, we tested whether the resting state correlation between each
pair of face patches was correlated to the selectivity of these same
face patches during the localizer (measured by the face-scene
betas of the pair being tested) across participants. We found no
significant correlation between the two measures for any of the
pairs (correlations ranged from r = —0.1 to r = 0.16). As the
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Figure 4.

Significantly predictive voxels and group defined ROI locations. Conjunction map of the eight predictiveness measure seed maps, which shows the voxels that were significantly

predictive of CFMT scores in at least three seed maps. Colors indicate number of seed maps for which this voxel was significantly predictive, across both rest scans. Overlaid are the locations of all 23
group defined ROIs represented schematically by circles. Light green, somatosensory; blue, insula and anterior insula; dark purple, STG/auditory cortex; magenta, mid-STS; brown, pSPL; yellow,
medial parietal; orange, cuneus; white, LOC; black, thalamus; cyan, hippocampus; red, parahippocampus; dark green, parahippocampus2. Insets, Locations of the ROIs in the volume, including

separately for left and right hippocampus.

selectivity of the face patches became more predictive of CFMT
score when averaging across all face patches, we also examined
the correlation between the average resting state connectivity
among the face patches (measured by the average pairwise corre-
lation between them), and the average selectivity of the face
patches (measured by the average face-scene 3 across all the face
patches) and found those to be uncorrelated as well (r = —0.05,
p = 0.85). Thus, although the time-series measured during rest
in the individually localized face patches were highly intercor-
related, connectivity between these regions was uncorrelated
to the selectivity measured by the localizer scans, indicating
that the selectivity of the face patches is not driven by their
interconnectedness.

Extending the network

The discrepancy between the selectivity of the face patches and
the correlations between them, both in terms of their ability to
predict face memory performance and the lack of correlation
between the two measures, reinforced the need to expand the
search for meaningful interactions in relation to face memory
abilities outside the face network. To this end, we took each one
of our face ROIs as a seed and calculated the correlation of the
time course of that seed during rest with every other voxel in the
brain, for each participant. We then calculated for each voxel,
across participants, the correlation of that connectivity measure
with the CEMT score. This gave us a measure for each voxel of
how predictive its correlation with the face seed region was to

behavior, as measured by the CEMT score. This measure is here-
after referred to as the predictiveness measure. We repeated this
analysis for each of the 8 face ROIs, and separately for each rest
scan. To validate the findings, we constrained our results for each
seed to voxels for which this predictiveness measure was signifi-
cant on both rest scans, corrected for multiple comparisons using
astrict cluster size permutation test (see Materials and Methods),
for a final results of eight seed-based predictiveness maps con-
taining the significant clusters. A similar analysis was conducted
with correlation to the car memory scores, as measured by the
CCMT, but no significant clusters were found.

To search for consistency across the eight seed-based predic-
tiveness maps we constructed a conjunction map in which the
value of each voxel is the number of maps in which that voxel was
significant (after all corrections), so that each voxel can have a
value of between 0 and 8. To best identify the regions whose
connectivity to the face patches was significantly and consistently
correlated with face memory performance we required that vox-
els be significantly predictive of CFMT scores in at least three of
the seed-based predictiveness maps (by thresholding the con-
junction map at 3 seeds). These results are displayed in Figure 4.
Significant clusters were found in medial parietal and medial
temporal regions, in somatosensory regions, along the insula,
auditory cortex in the superior temporal gyrus, and in the poste-
rior superior parietal lobule (pSPL). This analysis also picked out
a region in the lateral occipital cortex (LOC) and another in the
mid-superior temporal sulcus (mid-STS). For later statistical
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Table 2. MNI coordinates for the 23 group-defined ROIs

X y z
Right LOC 40 —76 8
Left LOC —44 —67 0
Right pSPL 32 —68 40
Left pSPL -2 —76 38
Cuneus 0 —84 32
Right parahippocampus 20 —56 -2
Left parahippocampus —16 —56 —4
Left parahippocampus2 —40 —36 —16
Left hippocampus -32 —18 -10
Right anterior hippocampus 32 —4 —26
Right medial parietal 12 —44 40
Left medial parietal —6 =50 2
Right insula 42 -8 8
Left anterior insula —30 28 0
Leftinsula —36 4 12
Right mid-STS 56 —16 —4
Left mid-STS =52 —36 4
Right STG 44 —32 16
Left STG —42 —-32 14
Right somatosensory 56 -8 28
Left somatosensory =52 -8 36
Right thalamus 16 —22 0
Left thalamus -8 —20 0

analyses, we next identified the peaks of these significantly pre-
dictive clusters and defined those as new ROIs, with 6-mm-radius
spheres (see Materials and Methods for details). Twenty-three
such ROIs were identified. The locations of these ROIs are also
shown in Figure 4, overlaid on top of the conjunction map for the
eight individual seeds, and their MNI coordinates are listed in
Table 2.

This analysis revealed that it is the connectivity between the
face network and other visual/memory/social networks that un-
derlies face memory. To further explore the whole-brain under-
pinnings of face memory, we also took a completely data driven
approach, independent of the face ROIs defined by the localizer
scans. Instead, we calculated for each participant for each voxel
the global connectivity of that voxel (i.e., the average correlation
of that voxel to all other voxels), and then calculated the correla-
tion of the global connectivity with the CFMT scores, i.e., global
predictiveness. Figure 5 shows the corrected map of voxels in
which global predictiveness was significant in both rest scans
separately, with the conjunction map from the face patch predic-
tiveness analysis overlaid. Importantly, as illustrated, the peaks of
the two analyses overlap almost entirely. The global predictive-
ness analysis also picks out the face ROIs. This is because this map
is driven by the average connectivity of each voxel with all other
voxels in the brain, not the pairwise strength of connectivity be-
tween specific nodes, such as between the different face patches.
We performed a similar analysis looking at the correlation be-
tween the global connectivity and the CCMT scores but found no
significant clusters.

Overlap with the face network

To further characterize the regions identified in the above analy-
sis, we tested the degree of overlap between the regions whose
correlation to the face ROIs predicted performance on the CFMT
and face selective cortex. We overlaid the conjunction map based
on the previous seed-based analysis on the group defined GLM of
the face > scenes contrast. This is depicted in Figure 6. Remark-
ably, the overlap with face selective regions was very minimal,
regardless of the threshold used in the GLM analysis. Specifically,
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only 31% of the predictive voxels have Face—Scene 3 values that
are greater than zero, and only 6.3% are significantly more selec-
tive for faces than scenes at the very liberal threshold of g = 0.1. At
a threshold of g = 0.05 (Fig. 6), only 5% of the predictive voxels
are more selective for faces. Thus, fully 95% of the face memory
predictive voxels fall outside the face-selective regions as defined
by the face localizer data.

Examining the relationship among all nodes

To gain a better understanding of the network structures involv-
ing these newly identified regions predictive of face memory, we
examined the peaks of the 23 clusters identified in the face con-
nectivity analysis described above, represented by the 23 ROIs
defined as 6 mm spheres around those peaks. We then calculated
the full correlation matrix between all 31 ROIs, consisting of the
8 face ROIs defined from the localizer, and these additional 23
ROIs, averaged across all participants and both rest scans. Pre-
dictably, correlations between homologous regions were the
highest, as were correlations between FFA and OFA as noted
above, and insula with somatosensory cortex. To see which con-
nections were most predictive of face memory abilities as op-
posed to simply which areas were most strongly intercorrelated,
we again performed the predictiveness analysis of connectivity to
behavior, calculating the correlation across participants of the
correlations of each pair of ROIs to the CEMT scores. This was
performed for each rest scan separately, and we once again con-
strained the results by requiring that this predictiveness be signif-
icant in both rest scans.

The resulting predictiveness matrix, shown in Figure 7, shows
all the ROI whose correlation was significantly predictive of per-
formance on the CFMT, in each rest scan. Note that this matrix
includes both the individually and independently localizer-
defined face ROIs, and the group defined ROIs during the rest
scans, which were chosen for the correlation between their con-
nectivity to the face ROIs and CFMT performance. The purpose
of this analysis is not to directly compare the localizer-defined
and rest-defined ROIs, but rather (1) to show the direct ROI
analysis of the connectivity of each of the individual face ROIs
with the 23 new ROIs in correlation to CFMT performance (top
rows, first columns), and (2) to explore all the other possible
relationships within the group rest-defined ROIs (bottom right),
because these have previously only been considered in relation to
the face ROIs, and not to each other.

As this figure shows, none of the correlations between the face
ROI pairs were significantly predictive of face memory abilities,
as discussed above. Apart from the predictive connections be-
tween the face patches and the group rest-defined ROIs, which
are to be expected given how these ROIs were defined, the most
predictive connections were within medial temporal lobe, and
between STG/somatosensory cortex to the medial temporal lobe.
To ensure that the predictive value of an ROI pair (or lack
thereof) was not because of the degree of variance between par-
ticipants in the correlation between the two nodes, we calculated
the variance in the correlations across participants between each
pair of ROIs (across all 31 ROIs) and tested whether there was a
correlation between this variance and the predictive value of the
ROI pairs, but found none (r = 0.0015, p = 0.97, permutation
test).

Specificity for face memory

To further test whether the new ROIs, defined through their pre-
dictive value for the CFMT, are involved specifically in face mem-
ory or rather underpin more domain general memory processes,
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we redid the correlation analysis of the be-
tween ROI pair connectivity, this time to
the CCMT. The only ROI pair whose cor-
relation was significantly predictive of
scores on the CCMT, was right medial pa-
rietal with right LOC (r = 0.44, p =
0.0012, corrected for multiple compari-
sons through permutation test). Right
LOC as defined here (Talairach coordi-
nates: 37, —72, 7; MNI: 40, —76, 8) is
within 5 mms of previously described ob-
ject selective regions (Grill-Spector et al.,
1998, 1999). To more directly test the de-
gree of variance explained by domain gen-
eral rather than face specific processes in
the predictive power of the connections
within our network, we calculated the
partial correlations of the correlation of
each ROI pair with the CEMT scores, ac-
counting for the CCMT scores, and then
examined the difference for each ROI be-
tween the correlation with the CFMT, and
the partial correlation. We next ran a per-
mutation test to determine the threshold
at which this difference can be considered
significant (see Materials and Methods),
and the only significant differences were
found in the correlation of the right and
left medial parietal regions to right LOC
(correlation difference = 0.1 and 0.085,
p <0.021, p < 0.045, respectively).

Figure 5.

Discussion
The focus of this current work was to ex-
pand the study of face recognition mem-
ory beyond the traditional face network,
and identify additional networks which
are involved in the myriad of processes
which comprise face recognition mem-
ory. Using correlations to search for links
between whole-brain connectivity and
behavior, we were able to uncover a num-
ber of regions whose connectivity either
with the face patches, or with each other,
strongly and significantly predicted face
memory abilities, as measured by the
CEMT (Figs. 3, 4). Surprisingly, it was not
correlations within the face regions that
were most predictive, and in fact corr-
elations between FFA/OFA/ATL/pSTS/
amygdala did not significantly predict face
memory abilities (Fig. 7; and note also the
prominent absence of the other face
patches in the seed based CFMT predic-
tiveness map shown in Fig. 4, and the in-
congruence between the ROIs defined
from the face seed predictiveness analysis and face selective re-
gions observed in the localizer, Fig. 6). However, the degree of
selective activation for faces within the face patches was predic-
tive (Fig. 2).

The combination of the findings described above suggests that
while these face selective regions are clearly crucial for face mem-
ory, as evidenced by the correlation between selective activation

r=0.3
(corrected)

tvalues
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Global connectivity. Map shows voxels whose global connectivity, i.e., average connectivity with all the other voxels,
during rest s significantly correlated to performance on the CFMT, after corrections for multiple comparisons (orange/red voxels).
Overlaid in green is the conjunction map from the previous analysis which was displayed in Figure 4, indicating voxels whose
connectivity to at least three of the face ROIs was significantly predictive of performance on the CFMT. Note the high degree of
overlap between the two analyses.

Figure6.  Overlap with the face network. Map shows the group level Faces > Scenes contrast, with face selective voxels shown
in red, and scene selective voxels in blue. Map is thresholded at an FDR corrected value of ¢ < 0.05. Overlaid in green is the
conjunction map from the previous analysis which was shown in Figure 4, using the face ROIs as seeds. Note the lack of overlap
between these face memory predictive voxels and the face network.

for faces and CFEMT scores, and they are strongly linked to each
other, as can be seen by the strong correlation between them at
rest, the degree of the connectivity between them is not what
explains normal variation in face memory (though the connec-
tivity between FFA and OFA has previously been found to be
lower in prosopagnosia; Avidan et al., 2014; Lohse et al., 2016).
Previous research linking correlations between FFA and OFA to
behavior has focused mostly on face perception tasks, rather than
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ROI pair correlations with behavior. Correlations of the connectivity between each of the ROI pairs (consisting of the 8 individually localized ROIs from the localizer, and the 23

group-defined ROIs from the seed analysis) and CFMT. Values indicate how predictive the correlation between each ROl pair is of performance on the CFMT. Blue denotes a nonsignificant correlation
(determined through a permutation test, which was used to correct for multiple comparisons). Note the lack of significant predictive value of the correlation between the different face ROIs (top left).

memory tasks (Zhu et al., 2011). Moreover, while the selectivity
of the face patches is predictive (Fig. 2), we find that selectivity, as
measured by the 8 weights during the localizer, is not at all cor-
related to the connectivity during rest. Instead, looking at the
whole-brain analysis, we find evidence that memory for faces,
even unknown faces such as those presented in the CEMT, ex-
tends well beyond the visual face patches, and is supported by
widespread networks involved in visual, memory, social cogni-
tion, and even auditory processing. Thus, in our sample, it is not
a perceptual difficulty that drives poor face memory performance
(correlations between the face patches are strong in all partici-
pants), but rather suboptimal communication between the per-
ceptual face patches and higher-level memory/social regions.
Zhu et al., 2011 also found a correlation between the connec-
tivity of FFA and OFA with performance on a famous faces
recognition task, though the correlation was stronger with per-
formance on the perceptual face inversion task. This discrepancy
between Zhu etal., 2011 and our results might be explained by the
very different nature of the memory tasks; whereas the CFMT is a
learning task, the famous faces recognition task tests long-term
memory. It should also be noted that there were only 18 partici-
pants in that paper who completed the famous faces task, and the

correlation was only barely significant (p =
replication.

The correlations between face regions and other networks in
relation to face memory have scarcely been studied previously. A
recent study did investigate the connectivity within broadly de-
fined face selective regions versus the average correlation of the
face selective regions with the rest of the brain (Wangetal., 2016).
However, although the authors reported that the degree of within
face network connectivity versus between face to non-face net-
work connectivity significantly predicted face recognition ability
(albeit weakly), these non-face networks were not described.
Moreover, the effects were in opposite directions in FFA and
OFA, making the results difficult to interpret (Wang et al., 2016).

The predictive peaks that came up in our analysis can be
roughly divided as belonging to visual, memory related, social,
and auditory regions. Medial temporal lobe regions, such as the
hippocampus and parahippocampus, have long been associated
with memory processes (Squire and Zolamorgan, 1991; Yoneli-
nas, 2002; van Strien et al., 2009), as have medial parietal regions
(Wagner et al., 2005; Gilmore et al., 2015). On the other hand,
somatosensory cortex has been found in multiple studies to be

0.04), requiring
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implicated in social processing (Damasio et al., 2000; Adolphs,
2009; Frith and Frith, 2010), and this same region of somatosen-
sory cortex identified here, was previously found to be under-
connected both globally, and specifically to other social brain
regions such as mid ST, in patients with autism spectrum disor-
der compared with typically developing individuals (Gotts et al.,
2012; Cheng et al., 2015; Ramot et al., 2017). Insular cortex has
been shown to receive input from somatosensory cortex among
others (Schneider et al., 1993), and to also be involved in social/
emotional processing (Gallese et al., 2004; Caruana et al., 2011).
One of the most unexpected findings was that face memory per-
formance was strongly predicted by the correlation between the
peaks found in STG, along Heschel’s gyrus (Zarate and Zatorre,
2008; Yarkoni et al., 2011; Maudoux et al., 2012) and regions of
the face processing network (in particular right FFA; r = 0.45).
This is congruent with previous findings linking listening to
voices to FFA activation, even in the absence of face stimuli (von
Kriegstein and Giraud, 2006; von Kriegstein et al., 2006). The
same key predictive regions were also found using the data driven
global connectivity approach.

Figure 7 shows that it is not only the correlation of these
regions to the face patches that is important for face memory
abilities, but also their correlation to each other. In particular, the
connectivity of the non-face visual regions to memory and social
related regions was predictive of CFMT scores, as was the con-
nectivity of the memory regions to each other, and to visual and
social regions. This indicates the existence of a network outside of
face-selective visual cortex, which is involved in face memory.

The other intriguing finding relates to the specificity of these
connections for face memory. The CCMT is identical to the
CFMT in format and is matched for difficulty (Dennett et al.,
2012), and therefore involves the same general cognitive and
memory processes, with the only difference being the object of
memory, cars in one and faces in the other. That there were no
significant correlations elsewhere in the brain of connectivity
with the face patches and the CCMT is expected, as the face
patches were defined specifically by their selectivity for faces, and
it is therefore unsurprising that they are not involved in memory
for other visual objects such as cars. However, the 23 new ROIs
that were defined could equally underlie domain general memory
processes rather than face-specific ones, and yet the only ROI pair
that significantly predicted performance on the CCMT was the
right medial parietal ROI, with right LOC. Similarly, when re-
gressing out the variance explained by the CCMT, the predictive
value of most ROI pairs to the CFMT did not significantly
change, with the only exception again being the medial parietal
ROIs with right LOC. Without an individual car/object localizer
it is difficult to directly compare the predictive value of each of
these ROIs separately for face memory versus car memory, but
from the above partial correlation analysis it appears that the
network described in these results, with connections not only
between the face patches and memory/social regions, but also
within memory/social regions, is largely specialized specifically
for face memory and not for other objects such as cars (with the
possible exception of the medial parietal regions). This is also in
line with previous findings, showing the specialization of the an-
terior hippocampus for processing emotion and affect (Fanselow
and Dong, 2010), and category selectivity in the medial temporal
lobe (Robin et al., 2019).

Together, these findings indicate that the networks underlying
face memory integrate visual information with inferences about
the social and auditory properties associated with faces, even
when these faces were previously unknown, such as those in the
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CFMT. Some of the memory regions identified in this study, such
as the anterior region in hippocampus as well as specific regions
in the medial temporal lobe, appear to be strongly biased toward
face processing if not specific to faces, and warrant further study
to determine the degree of their selectivity.
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