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Development/Plasticity/Repair

DREAM Mediates cAMP-Dependent, Ca®"-Induced
Stimulation of GFAP Gene Expression and Regulates Cortical
Astrogliogenesis

Beatriz Cebolla,"* Antonio Fernandez-Pérez,"* Gertrudis Perea,> Alfonso Araque,’ and Mario Vallejo!
nstituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Cientificas/Universidad Auténoma de Madrid, 28029 Madrid,
Spain, and ?Instituto Cajal, Consejo Superior de Investigaciones Cientificas, 28002 Madrid, Spain

In the developing mouse brain, once the generation of neurons is mostly completed during the prenatal period, precisely coordinated
signals act on competent neural precursors to direct their differentiation into astrocytes, which occurs mostly after birth. Among these
signals, those provided by neurotrophic cytokines and bone morphogenetic proteins appear to have a key role in triggering the neuro-
genic to gliogenic switch and in regulating astrocyte numbers. In addition, we have reported previously that the neurotrophic peptide
pituitary adenylate cyclase-activating polypeptide (PACAP) is able to promote astrocyte differentiation of cortical precursors via activa-
tion of a cAMP-dependent pathway. Signals acting on progenitor cells of the developing cortex to generate astrocytes activate glial
fibrillary acidic protein (GFAP) gene expression, but the transcriptional mechanisms that regulate this activation are unclear. Here, we
identify the previously known transcriptional repressor downstream regulatory element antagonist modulator (DREAM) as an activator
of GFAP gene expression. We found that DREAM occupies specific sites on the GFAP promoter before and after differentiation is initiated
by exposure of cortical progenitor cells to PACAP. PACAP raises intracellular calcium concentration via a mechanism that requires
cAMP, and DREAM-mediated transactivation of the GFAP gene requires the integrity of calcium-binding domains. Cortical progenitor
cells from dream ~'~ mice fail to express GFAP in response to PACAP. Moreover, the neonatal cortex of dream ~'~ mice exhibits a
reduced number of astrocytes and increased number of neurons. These results identify the PACAP-cAMP-Ca* " -DREAM cascade as a new

pathway to activate GFAP gene expression during astrocyte differentiation.
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Introduction

In the developing mammalian CNS, the generation of astrocytes
from neural progenitor cells occurs mostly during the early post-
natal period once neurogenesis is completed (Qian et al., 2000;
Sauvageot and Stiles, 2002). This is attributable, in part, to the
existence of mechanisms that actively prevent the differentiation
of astrocytes during the neurogenic period, even in the presence
of astrogliogenic signals (Park et al., 1999; Nieto et al., 2001; Sun
et al., 2001; Takizawa et al., 2001; Hermanson et al., 2002; Nami-
hira et al., 2004; Angelastro et al., 2005). The capacity of neural
precursors to switch from neurogenesis to gliogenesis is favored
by certain extracellular factors (Qian et al., 1997; Viti et al., 2003)
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as well as by induced chromatin remodeling of gliogenic genes
(Song and Ghosh, 2004; Fan et al., 2005).

Whether neural progenitor cells generate neurons or astro-
cytes also depends on the type of extracellular signals to which
they are exposed. Thus, it has been shown that the differenti-
ation of astrocytes is triggered by cytokines such as ciliary
neurotrophic factor (CNTF), leukemia inhibitory factor or
cardiotrophin-1, by bone morphogenetic proteins (BMPs),
or by pituitary adenylate cyclase-activating polypeptide
(PACAP) (Gross et al., 1996; Bonni et al., 1997; Rajan and
McKay, 1998; Vallejo and Vallejo, 2002; Barnabé-Heider et al.,
2005; Cebolla and Vallejo, 2006).

Expression of glial fibrillary acidic protein (GFAP), which
provides a phenotypic marker characteristic of astrocytes, is in-
duced by activation of intracellular signaling mechanisms that
directly stimulate GFAP gene transcription. Thus, neurotrophic
cytokines activate Janus kinases (JAKs) at their receptors, result-
ing in the phosphorylation and nuclear translocation of signal
transducer and activator of transcription (STAT) proteins, which
in turn act at specific regulatory sites of the GFAP gene promoter
(Joheetal., 1996; Bonni et al., 1997; Koblar et al., 1998; Rajan and
McKay, 1998; Park et al., 1999; He et al., 2005). However, the
signaling pathways activated by BMP involve the activation of
Smad proteins, which then translocate to the nucleus to stimulate
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GFAP gene transcription (Gross et al., 1996; Mehler et al., 1997;
Mabie et al., 1999; Nakashima et al., 1999).

Previous work in our laboratory led to the identification of an
additional intracellular signaling mechanism for the generation
of astrocytes that involves activation of a cAMP-dependent path-
way (McManus et al.,, 1999; Vallejo and Vallejo, 2002). This
mechanism is activated by PACAP, which promotes astrocyte
differentiation without influencing neuronal or oligodendroglial
lineages by acting on specific PACAP type 1 (PAC1) receptors to
induce the synthesis of cAMP in cortical precursor cells. In turn,
activation of a cAMP-dependent signaling system is required for
astrogliogenesis induced by this peptide (Vallejo and Vallejo,
2002). However, the molecular mechanism by which PACAP and
cAMP stimulate GFAP gene expression and induce astrogliogen-
esis in vivo are unknown. In the present study, we identified the
requirement of transcription factor downstream regulatory ele-
ment antagonist modulator (DREAM) bound to the GFAP pro-
moter as a major effector of this response, and we demonstrate
that DREAM responds to cAMP-dependent increases in intracel-
lular calcium concentration ([Ca®"];) to stimulate expression of
GFAP in cortical progenitor cells.

Materials and Methods

Plasmids. Luciferase reporter plasmids for the rat GFAP gene promoter
have been described previously (Bonni et al., 1997; Krohn et al., 1999;
Cebolla and Vallejo, 2006). DRE1 and DRE2 sites in GFAP-A7Luc were
mutated by oligonucleotide directed mutagenesis using Pfu Turbo DNA
polymerase from a QuikChange kit (Stratagene) and the following prim-
ers: DREl mutant, 5-CAAGTATGCACGCGTAAACCAGGCCT-3';
and DRE2 mutant, 5'-GCCAGGACTGCAGGGGCAGATCCAGT-3'".
Expression vectors encoding DREAM (Carrién et al., 1999; Ledo et al.,
2000a) were provided by Dr. J. R. Naranjo [Centro Nacional de Biotec-
nologia, Consejo Superior de Investigaciones Cientificas (CSIC), Ma-
drid, Spain].

Cell culture and transfections. Primary cortical cell cultures from the
cerebral cortex from fetal brains of embryonic day 17 (E17) Wistar rats or
E16 mice were prepared as described previously (Vallejo and Vallejo,
2002; Cebolla and Vallejo, 2006). Cells were seeded in serum-free DMEM
containing N1 supplement (Sigma) and 1 mm sodium pyruvate (defined
medium), as well as 20 ng/ml basic fibroblast growth factor (bFGF) (Pep-
roTech) at a density of 2—4 X 104 cells/cm?, and were expanded at 37°C
for 3—4 d. Medium was replaced every 2 d. Differentiation experiments
were performed as described (Vallejo and Vallejo, 2002; Cebolla and
Vallejo, 2006). Cells (4 X 10* cells/cm?) were plated into 35 mm dishes
and incubated at 37°C. After 24 h, bFGF-containing medium was re-
placed with bFGF-free defined medium, and PACAP (100 nm) or CNTF
(50 ng/ml) was immediately added.

Transfections of primary cortical precursor cells prepared from E17
Wistar rat fetuses have been described in detail (Cebolla and Vallejo,
2006). Cells were incubated with 6 ug of reporter plasmid DNA mixed
with 10 ul of FuGENE 6 transfection reagent (Roche) in defined medium
for 4 h. Expression vectors encoding DREAM were used at 1 pg unless
stated otherwise, and total DNA amount was kept constant in all trans-
fections by adding empty vector when necessary. The medium-DNA mix
was removed and substituted with fresh defined medium, or with defined
medium containing PACAP (100 nm) or 8Br-cAMP (1 mwm). In experi-
ments with the calcium ionophore A23187 (0.02 um), cells were treated
for 15-20 min 24 h after transfections. Luciferase activity was determined
with a commercial assay system (Promega) 48 h after transfection. Lu-
ciferase activity from a Rous sarcoma virus enhancer reporter plasmid
(RSV-Luc) was used as an independent standard for normalization, and
efficiencies were corrected by using the Renilla luciferase assay system
(Promega). All of the values are expressed as mean *= SEM of at least
three independent experiments performed in duplicate.

Neurosphere cultures. Pieces from cerebral cortex dissected from E18
mouse fetuses were mechanically triturated in serum-free DMEM and
then filtered through a 40 wm nylon cell strainer (BD Biosciences). After
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centrifugation, the pellet was resuspended in a solution containing 0.25%
trypsin with 0.1 mm EDTA (Invitrogen), 1 wg/ml hyaluronidase (Sigma),
and 30 ug/ml DNase (Promega), and incubated with agitation at 37°C for
1 h. Cells were then centrifuged and resuspended in Dulbecco’s PBS
(Invitrogen) containing 0.9 M sacarose, centrifuged again, and washed in
Dulbecco’s PBS containing 4% BSA. Finally, cells were resuspended in
DMEM-F12 mixture (1:1) medium (Invitrogen) containing B27 supple-
ment (Invitrogen) and were seeded in six-well plates (BD Biosciences).
Basic FGF and epidermal growth factor (EGF) (PeproTech) were added
to a concentration of 10 ng/ml each, and the cultures were maintained in
a 37°C incubator. From the second day on, bFGF and EGF were added
daily at a concentration of 5 ng/ml each. After 7 d, neurospheres were
transferred onto poly-ornithine-coated glass coverslips in 24-well dishes
containing DMEM-F12 medium without bFGF or EGF to allow them to
attach, and BDNF (PeproTech) was added to a concentration of 50 ng/ml
to induce neurogenesis. After an additional period of 5 d in culture,
neurospheres were fixed and processed for immunocytochemistry fol-
lowed by confocal microscopy.

ChIP assays. For chromatin immunoprecipitation (ChIP) assays (Ger-
rish et al., 2001), cells were treated with 1% formaldehyde for 10 min,
pelleted by centrifugation in PBS, and sonicated. Chromatin was diluted
in buffer containing 1% Triton X-100, 2 mm EDTA, 20 mum Tris-HCI, pH
8.0, 150 mm NaCl, and protease inhibitors. Immunoprecipitations were
performed using an anti-DREAM rabbit polyclonal IgG (FL-214; Santa
Cruz Biotechnology), or control normal rabbit IgG (s.c.-2025; Santa
Cruz Biotechnology). Antibody-protein-DNA complexes were isolated
by incubation with protein A-Sepharose. The DNA was eluted and de-
tected by PCR using oligonucleotide primers that amplify a 270 nucleo-
tide fragment of the proximal promoter region of the GFAP gene. The
sequences of the oligonucleotide primers were as follows: forward, 5'-
CCCTCTCCTGACCCATTTACCAGAA-3'; reverse, 5'-GCCCCTGA-
CCATCGTCTCGGAGGAG-3'. PCR conditions were as follows: 95°C
for 5 min, followed by 30 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C
for 30 s, after which a 5 min incubation at 72°C followed. As a negative
control, PCR was performed using oligonucleotide primers that amplify
a 430 nucleotide fragment of the promoter of the somatostatin gene. In
this case, PCR conditions were 95°C for 5 min, followed by 30 cycles of
94°C for 30 s, 55°C for 30 s, and 72°C for 30 s, followed by a 5 min
incubation at 72°C. The sequences of the oligonucleotide primers were as
follows: forward, 5'-GATTGGACAAAGTGATGCTC-3’; reverse, 5'-
AGTGAGGGGAGGCGACAC-3". PCR products were run on a 1% aga-
rose gel, stained with ethidium bromide, and photographed.

Electrophoretic mobility shift assays. Nuclear protein extracts from pri-
mary cortical precursor cells were prepared and electrophoretic mobility
shift assays were performed exactly as described (Cebolla and Vallejo,
2006). The sequences of the oligonucleotides used were as follows (sense
strand): DREI, 5'-GATCCAAGTATGCACTGTCAAACCAGGCA-3';
mutated DRE1 (DRElm), 5'-GATCCAAGTATGCACGCGTAAAC-
CAGGCA-3"; DRE2, 5'-GATCCGCCAGGAAGTCAGGGGCAGA-3';
DRE2m, 5'-GATCCGCCAGGACTGCAGGGGCAGA-3'.

For supershift experiments, nuclear extracts were preincubated with
anti-DREAM antiserum Ab 1013 (Link et al., 2004) provided by Dr.J. R.
Naranjo (Centro Nacional de Biotecnologia, CSIC, Madrid, Spain), be-
fore the addition of the labeled probes.

Measurement of [Ca’" ], variations. Ca*” levels in primary cortical
precursor cells were monitored by fluorescence microscopy. Cultures
were incubated at 37°C for 20—45 min with the Ca*" indicator Fluo-
3-AM (10 pg/ml; Invitrogen). Cells were illuminated with a xenon lamp
at 490 nm using a monochromator Polychrome IT (T.I.L.L. Photonics)
during 200-500 ms, and imaged using a CCD camera (Retiga EX; QIm-
aging) attached to an upright BW50WI Olympus microscope. Images
were acquired every 15-30 s. The control of the Polychrome II and the
CCD camera, and the quantitative epifluorescence measurements, were
made using the IPlab software (Scanalytics). [CaH]i variations were
estimated as AF/F, after background subtraction, and cells were consid-
ered to respond to the stimulation when the fluorescence signal increased
both five times above the SD of the basal signal and >5% for at least two
consecutive images. Data are expressed as mean = SEM.

Mice. DREAM-deficient mice (Cheng et al., 2002) were provided by
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For immunofluorescence, sections were in-

N L1 No treatment DRE1 DRE2 cubated with an anti-S1008 monoclonal anti-
%‘ 500 W PACAP -1546 F=—t—{Luc] GFAP-A7 body (1:400; Sigma), followed by incubation
3 | B 8Br-cAMP -1342 GFAP-AG with 488-Alexa anti-mouse secondary antibod-
g 1040 e Luic | GFAP-AS ies (1:1000; Invitrogen). Nuclei were counter-
@ 300 384 fmmmm Luc | GFAP-A3 stained with TO-PRO-3 (Invitrogen). Images
ko] ] 106 ==={ Luc| GFAP-A2 were taken using a Leica TCS SP5 confocal
§ 100 -35 = Luc] GFAP-A9 microscope. o
= Cell counts were performed on digital images
° L e— taken from sections corresponding to identical
GFAP-A7 rostrocaudal levels, using calibrated AnalySIS
imaging software (Soft Imaging System). De-
C D fined areas from the dorsal and lateral regions
300+ C—8Br-cAMP o 600 (] - PACAP of the cortex (see Fig. 6C) or the hippocampus
2 B+ 8Br-cAMP £ W + PACAP were used on both sides. At least three animals
-% " 4001 per experiment were used, and a total of five
< 200+ g sections per animal were analyzed. Quantitative
% o results provided represent the mean * SEM.
S 1 001 E 200 Statistical analysis was performed using Stu-
S S dent’s 7 test.
= -_'9. Western immunoblot. Mouse cerebral cor-
Lo A7 A6 A5 A3 A2 A9 =Dy WT DRE1DRE2 tex or cultured cells were lysed and proteins
mut  mut (20 ug) were resolved by SDS-PAGE and
GFAP-A7 blotted onto a nitrocellulose membrane.
GFAP immunoreactivity was detected with a
Figure 1.  Stimulation of the GFAP promoter by PACAP depends on the integrity of DRE sites. A, Relative levels of luciferase  specific monoclonal antibody (clone G-A-5,

activity elicited in primary cortical precursor cells transfected with the reporter plasmid GFAP-A7Luc. Cells were left untreated, or
were treated with PACAP (100 nm) or 8Br-cAMP (1 mm). B, Schematic depiction of the 5'-deletion constructs of the rat GFAP-
luciferase fusion gene used in transfection studies for deletional analysis of the promoter. The relative positions of DRE1and DRE2
are indicated. C, Relative luciferase activities elicited in primary cortical precursor cells transfected with the luciferase reporter
plasmids indicated above to map the location of promoter regions required for the response to cAMP. Note that deletion to
nucleotide —106 (GFAP-A2) abolishes the response to 8Br-cAMP, even though DRE2 is present. D, Mutations of either DRET or
DRE2 identical to those depicted in Figure 2 Cabolish basal and PACAP-stimulated luciferase activity in primary cortical precursor
cells transfected with the luciferase reporter plasmid GFAP-A7. Values represent the mean == SEM of three independent experi-

ments performed in duplicate.

Dr.J. M. Penninger (University of Toronto, Toronto, Canada) and were
maintained in a C57BL/6 background. Null mutants were produced by
mating heterozygote animals, and genotyping was performed by PCR
using genomic DNA as described previously (Cheng et al., 2002).

Immunocytochemistry. DAB immunocytochemistry was performed
exactly as described previously (Vallejo and Vallejo, 2002), using a
GFAP-specific monoclonal antibody (1:500 dilution, clone G-A-5;
Sigma) and immunoperoxidase staining with a Vectastain ABC kit (Vec-
tor Laboratories). For double antigen immunofluorescence, cells were
grown on glass coverslips, and coincubation with anti-GFAP monoclo-
nal antibody and rabbit polyclonal anti-DREAM IgG was followed by
incubation with 594-Alexa anti-rabbit and 488-Alexa anti-mouse sec-
ondary antibodies (1:1000; Invitrogen). Images were taken using confo-
cal microscopy.

Neurospheres attached to coverslips were incubated with anti-neuronal-
specific class III B-tubulin (Tujl) monoclonal antibody (1:500; Sigma) fol-
lowed by incubation with a 488-Alexa anti-mouse secondary antibody (1:
1000; Invitrogen). Nuclei were counterstained with Hoechst (Invitrogen).
Digital images were taken using confocal microscopy. Cell counts were per-
formed on the crown of cells attached to the plate surrounding the neuro-
sphere. The percentage of Tujl-positive cells relative to the total number of
cells was determined. The number of neurospheres analyzed was 17-20 in
three different experiments. Data represent the mean * SEM. Statistical
analysis was performed using the Student’s # test.

Immunohistochemistry. DAB immunohistochemistry (Schwartz et al.,
2000) was performed on cryostat sections (14 um) of brains fixed in 4%
paraformaldehyde and incubated at 4°C overnight with anti-GFAP (1:
400, Sigma) or anti-neuronal-specific nuclear protein (NeuN; 1:100,
Millipore) monoclonal antibodies. Immunodetection was performed
with immunoperoxidase staining with a Vectastain ABC kit (Vector Lab-
oratories). For NeuN, staining was performed in the presence of nickel
ammonium to yield a dark blue color. Images were taken on a Nikon
microscope equipped with an Olympus DP50 digital camera.

Sigma; 1:10,000 dilution) followed by incu-
bation with a horse anti-mouse peroxidase-
conjugated secondary antibody (1:5000 dilu-
tion) (Bio-Rad). Immunoreactive bands were
visualized using an enhanced chemilumines-
cence detection system (GE Healthcare).
Membranes were subsequently stripped with
stripping buffer (70 mm Tris, pH 6.8, 10%
SDS, and 0.7% B-mercaptoethanol) for 20
min at 60°C, washed, and reprocessed
using a monoclonal anti-a-tubulin antibody
(1:20,000; Sigma). Films were scanned and densitometry measure-
ments of bands were performed using NIH Image] 1.37b software.

Results

DREAM binds to specific sites of the promoter of the

GFAP gene

To search for the existence of regulatory elements in the GFAP
promoter that could mediate transcriptional responses to stimu-
lation by PACAP/cAMP, we performed transient transfections in
primary cortical precursor cells obtained from E17 rat fetuses.
These are proliferating nestin-positive cells that differentiate into
astrocytes in response to treatment with PACAP (supplemental
Fig. 1, available at www.jneurosci.org as supplemental material)
or with the cAMP analog 8Br-cAMP, a system that we have char-
acterized in detail in previous studies (McManus et al., 1999;
Vallejo and Vallejo, 2002; Cebolla and Vallejo, 2006). We ob-
served that the activity of the luciferase reporter plasmid GFAP-
A7Luc, spanning 1.5 kb of the GFAP promoter (Bonni et al.,
1997), is stimulated in transfected cells treated with either
PACAP or 8Br-cAMP (Fig. 1A). Because PACAP induces astro-
gliogenesis via stimulation of a cAMP-dependent signaling path-
way (Vallejo and Vallejo, 2002), we then used 8Br-cAMP to map
the promoter region responsible for the observed transcriptional
effect by deletional analysis. We found that 8Br-cAMP failed to
stimulate luciferase activity when a plasmid with a deletion to
nucleotide —106 (GFAP-A2Luc) or to nucleotide —35 (GFAP-
A9Luc) was used, indicating the location of putative cAMP-
responsive regulatory elements downstream from nucleotide
—384 (Fig. 10).



6706 - J. Neurosci., June 25, 2008 - 28(26):6703- 6713

This region does not contain a typical cAMP-response ele-
ment, but we noticed the presence of two sites with GTCA motifs
similar to those found in the prodynorphin and c-fos genes that
bind DREAM (Carrién et al., 1998, 1999). Because DREAM par-
ticipates in the regulation of transcriptional mechanisms that
depend on cAMP stimulation (Ledo et al., 2000a), we termed
these sites DREI (nucleotides —373 to —367) and DRE2 (nucle-
otides —62 to —59) and we sought to determine whether they are
important for transcriptional transactivation in response to
PACAP. Mutations in any one of these sites completely inhibited
basal and PACAP-stimulated luciferase activity (Fig. 1D), sug-
gesting that both DRE1 and DRE2 are important sites for trans-
activation of the GFAP gene. Thus, we investigated whether
DREI and DRE2 are recognized by DREAM in cortical progeni-
tor cells.

DREAM is expressed in primary cortical precursor cells before
astrocyte differentiation was induced, and also in GFAP-
expressing cells differentiated by PACAP (Fig. 2A). To determine
whether DREAM binds to the endogenous GFAP gene in the
context of native chromatin in vivo, we performed ChIP assays.
The anti-DREAM antiserum specifically immunoprecipitated a
fragment of chromatin corresponding to the proximal region of
the GFAP promoter both in undifferentiated primary cortical
precursor cells (Fig. 2B, left) and in cells treated with PACAP
(Fig. 2 B, right). ChIP specificity was tested on the promoter of
the somatostatin gene, which was not amplified in samples ob-
tained after immunoprecipitation with the anti-DREAM anti-
serum (Fig. 2B). Thus, these experiments indicate that DREAM
occupies the GFAP promoter before the differentiation response
is triggered, and remains bound after GFAP expression has been
initiated.

Direct binding of DREAM to DRE1 and/or DRE2 was tested
by electrophoretic mobility shift assays (Fig. 2C-E). Sequence-
specific DNA-protein complexes were observed with nuclear ex-
tracts from primary cortical cells from E17 rat fetuses and DRE1
or DRE2 oligonucleotides, and the presence of DREAM in these
complexes was detected by adding a specific anti-DREAM anti-
serum. Consistent with the results from the ChIP experiments
mentioned above, treatment of cells with PACAP did not result in
loss of binding of DREAM to either DRE1 or DRE2 (Fig. 2D, E).
Thus, DREAM expressed in cortical precursor cells can bind spe-
cifically to the DRE1 and DRE2 sites of the GFAP promoter.

Stimulation of the GFAP promoter by DREAM requires the
integrity of Ca®*-binding domains
To investigate whether DREAM activates the GFAP gene in re-
sponse to PACAP, we cotransfected primary cortical precursor
cells with the GFAP-A7Luc reporter and with an expression vec-
tor encoding DREAM (100 ng to 3 ng). We found that DREAM
did not modify basal or PACAP-induced luciferase activity (data
not shown), suggesting that DREAM is bound to the GFAP pro-
moter in saturating amounts. Thus, we sought to confirm a pos-
sible involvement of DREAM in the regulation of GFAP gene
expression by cotransfecting GFAP-A7Luc with expression plas-
mids encoding dominant negative mutants of DREAM generated
by mutations in the functional calcium-binding EF-hand do-
mains, or in the leucine-charged domains (LCD) required for
direct interactions with a-cAMP-responsive element modulator
(aCREM) in response to increased levels of cAMP (Fig. 3A) (Car-
rién et al., 1999; Ledo et al., 2000a,b; Scsucova et al., 2005).

We found that DREAM-EFm/LCDm, which has both EF-
hand and LCD motifs inactive, did not alter basal luciferase ac-
tivity but completely inhibited the stimulation of reporter activity
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Figure 2.  DREAM expressed in cortical neuroepithelial precursors induced to differentiate with

PACAP occupies the promoter of the GFAP gene. A, DREAM immunofluorescence (red) in primary
cortical neuroepithelial cells unexposed (left) or exposed (right) to PACAP (100 nm) for 2 d. Al cells
were processed for double-label DREAM (red) and GFAP (green) immunofluorescence. B, Chromatin
immunoprecipitation assays indicating that DREAM occupies the promoter of the endogenous GFAP
gene in primary cortical neuroepithelial cells. A specific anti-DREAM antiserum (c.DREAM) or control
normal rabbit IgG were used for immunoprecipitations. Undifferentiated primary cortical precursors
(left) or GFAP-expressing cells differentiated with PACAP (100 nm) for 2 d (right) were used. PCR
amplifications were not obtained with the control somatostatin (SMS) gene (bottom). €, Sequence of
the wild-type or mutated DRET and DRE2 oligonucleotides used in the electrophoretic mobility shift
assays. The consensus DREAM-binding sites are underlined, and the nucleotides mutated are indi-
cated in bold. The nucleotide numbers relative to the transcription initiation site are indicated in
parenthesis. D, Electrophoretic mobility shift assays showing the binding of proteins presentin nuclear
extracts of cortical precursor cells cultured from E17 rat brains to an oligonucleotide probe correspond-
ing to a region of the rat GFAP promoter that contains the DRE1-binding site (nucleotides —381 to
—359). Cells were left untreated or were treated with PACAP (100 nm) for 2 d before nuclear extracts
were prepared. Nuclear extracts were incubated in the absence (—) or presence of a competing
oligonucleotide of identical probe sequence (DRE1) or in the presence of a nonspecific competing
(NSC) oligonucleotide of unrelated sequence, oramutated DRE1 oligonucleotide (DRE1m), each used
in a 100-fold molar excess. In addition, binding reactions were performed in the presence of either
nonimmune rabbit serum (NRS) or anti-DREAM antiserum. Arrows indicate bands corresponding to
protein-DNA complexes containing DREAM (DR) and to the supershifted (SS) complexes. E, Experi-
ments similar to those described in D, but using a probe corresponding to the DRE2 element. In this
case, addition of the anti-DREAM antiserum results in inhibition of binding. The asterisk indicates a
nonspecific hand.
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Figure3. DREAM mediates calcium-dependent stimulation of the GFAP promoter by PACAP

and cAMP. 4, Schematic depiction of the wild-type and mutated versions of DREAM used in the
transfection experiments. The mutated LCD or EF-hand motifs are indicated by asterisks. B,
Relative luciferase activities elicited in primary cortical precursor cells cotransfected with the
reporter plasmid GFAP-A7Luc, and expression vectors encoding wild-type or mutated versions
of DREAM, asindicated schematically in A. Cells were left untreated, or treated with PACAP (100
nm). G, Relative luciferase activities elicited in primary cortical precursor cells cotransfected with
GFAP-A7Luc, and expression vectors encoding wild-type DREAM or a version of DREAM in which
the EF-hands have been mutated. In this case, cells were treated with 8Br-cAMP (1 mw). D,
Mutations of either DRET or DRE2 abolish basal and calcium ionophore A23187-stimulated
luciferase activity in primary cortical precursor cells transfected with the GFAP-A7Luc reporter.
E, Relative luciferase activities elicited in primary cortical precursor cells cotransfected with
GFAP-A7Luc, and expression vectors encoding wild-type DREAM or mutated versions of DREAM
in which either the LCD domain or the EF-hand domains had been mutated. Cells were left
untreated or treated with the calcium ionophore A23187 (0.02 wm). In all cases, values are
expressed as percentages of the activities elicited by GFAP-A7Luc, and represent the mean =
SEM of at least three independent experiments performed in duplicate.

elicited by PACAP (Fig. 3B), suggesting that DREAM mediates
PACAP-induced GFAP promoter activation via mechanisms that
involve cAMP- and/or calcium-dependent signaling. Because
stimulation of GFAP expression by PACAP requires cAMP
(Vallejo and Vallejo, 2002), we hypothesized that PACAP could
act by promoting the interaction of phosphorylated «CREM with
the LCD domains of DREAM, a mechanism by which DREAM
mediates cAMP-dependent responses (Ledo et al., 2000a). How-
ever, DREAM-LCDm, which contains intact EF-hands and a
double mutation (L47,52V) in the first LCD whose integrity is
required for cAMP-dependent DREAM-aCREM interactions
(Ledo et al., 2000a), did not alter significantly the stimulation of
luciferase activity induced by PACAP (Fig. 3B), indicating that
interactions with «CREM are not involved in this response. Fur-
thermore, we did not observe alterations in the luciferase activity
induced by PACAP when an expression vector encoding «CREM
was cotransfected, or when cells were pretreated with the protein
kinase A inhibitor H89 (data not shown). In contrast, mutations
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of the three functional EF-hand motifs completely blocked the
capacity of PACAP or 8Br-cAMP to stimulate GFAP-A7Luc ac-
tivity (Fig. 3 B, C). Thus, these results suggest that the transcrip-
tional activation of the GFAP gene induced by PACAP and cAMP
involves a Ca**-dependent mechanism.

To investigate this, we first determined whether an increase in
[Ca?*]; is sufficient to stimulate transcription from the GFAP
promoter. We found that in transfected cells, treatment with the
calcium ionophore A23187 stimulated GFAP-A7Luc activity
with a magnitude similar to that obtained with PACAP, but this
activation was dependent on the integrity of DRE sites (Fig. 3D).
To test whether DREAM mediates this response, we cotrans-
fected GFAP-A7Luc with expression vectors encoding dominant
negative inhibitors. We found that the LCD mutant version of
DREAM did not alter the stimulation of luciferase activity in-
duced by A23187. In contrast, an EF-hand DREAM mutant com-
pletely inhibited the stimulation induced by A23187 (Fig. 3E).
Thus, these experiments demonstrate that DREAM mediates the
calcium-dependent transcriptional transactivation of the GFAP
promoter.

PACAP increases [Ca’"]; in cortical precursor cells in a
cAMP-dependent manner
Astrocyte differentiation of cortical precursors induced by
PACAP is blocked by the cAMP antagonist Rp-adenosine 3,5'-
cyclic monophosphorothioate (Rp-cAMPS) (Vallejo and Vallejo,
2002). To determine whether treatment of cortical precursor cells
with PACAP rises [Ca®"]; in a cAMP-dependent manner, we
monitored changes in the intensity of the fluorescence emitted by
cortical precursor cells that had been loaded with the calcium
indicator Fluo-3-AM in response to different types of treatments.

Incubation of cells with PACAP (1 uMm) resulted in a relatively
slow but sustained increase in cell fluorescence values that be-
came evident between 1 and 5 min after the administration of the
peptide, and lasted for >15 min (~75% of cells were active 15
min after the onset of treatment) (Fig. 4). These changes were
specifically caused by the effect of PACAP, because administra-
tion of equimolecular amounts of the related vasoactive intestinal
peptide (VIP) did not have any significant effect (Fig. 4B), con-
sistent with our previous observation that PACAP acts on cortical
precursor cells via activation of specific PACI receptors that are
not recognized by VIP (Vallejo and Vallejo, 2002). Importantly,
pretreatment of cells with the cAMP antagonist Rp-cAMPS com-
pletely blocked the effect of PACAP on [Ca”"]; increase (Fig.
4 A, B). These results indicate that the activation of specific recep-
tors by PACAP induces elevations in [Ca*™ |, in cortical precursor
cells via a cAMP-dependent pathway.

Furthermore, we found that exposure of cells to thapsigargin,
a Ca”"-ATPase inhibitor that depletes internal Ca** stores, did
not significantly modify the capacity of PACAP to increase
[Ca**]; (Fig. 4C). In contrast, when cells were incubated in
Ca**-free medium PACAP failed to increase [Ca**]; (Fig. 4C).
Thus, these experiments indicate that cAMP-dependent PACAP-
induced increase in [Ca**]; is caused by calcium influx from the
extracellular medium.

DREAM is necessary for PACAP-induced GFAP expression in
cortical precursors and regulates astrocyte differentiation

All of the above experiments indicate that PACAP induces the
expression of GFAP by increasing [Ca**]; in a cAMP-dependent
manner, and that calcium acts on DREAM to transactivate the
GFAP promoter. Therefore, we tested whether DREAM is impli-
cated in astrocyte differentiation using knock-out mice in which
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Figure4. PACAP elicits cAMP-dependent increasesin [Ca*];in Fluo-3-AM-loaded primary
cortical precursor cells. A, Pseudocolor images representing fluorescence intensities of Fluo-3-
AM-loaded cells before (left, 0 min) and after (right, 15 min) exposure to PACAP (1 um). Cells
depicted in the bottom panels were treated with the cAMP antagonist Rp-cAMPS (10 rum)
before exposure to PACAP. Scale bar, 30 pum. B, Relative changes in fluorescence intensity
observed in cortical precursor cells in the absence (blue circles) or presence of PACAP (red
circles). Fluorescence intensity observed in cells pretreated with the cAMP antagonist Rp-
cAMPS before exposure to PACAP is depicted by yellow circles. As an additional control for
specificity, a group of cells was treated with the PACAP-related peptide VIP (white circles). In
each condition, 75—120 cells from at least six coverslips were analyzed. C, Relative changes in
fluorescence intensity observed in cells treated with PACAP in the absence (red circles) or pres-
ence (green circles) of thapsigargin (1 wm). An additional group of cells was incubated in
medium lacking calcium (purple circles), and in that case PACAP did not elicit increases in
[Ca®™7; (light blue circles). In each condition, >45 cells from at least four coverslips were
analyzed. Significant differences from control values were established at *p << 0.001.

the DREAM-encoding gene had been deleted by homologous
recombination (Cheng et al., 2002). Initially, we tested for the
induction of GFAP expression by immunocytochemistry in pri-
mary cultures of E16 mouse cortical precursor cells. As observed
with rat cells cultured in similar conditions (McManus et al.,
1999; Vallejo and Vallejo, 2002; Cebolla and Vallejo, 2006), ex-
posure of cells prepared from wild-type mice to either PACAP or
CNTF over a period of 2 d in culture resulted in the expression of
GFAP accompanied by the extension of processes (Fig. 5A). In
contrast, when cells prepared from dream ~'~ mice were used,
exposure to CNTF stimulated the expression of GFAP but expo-
sure to PACAP did not (Fig. 5A). Western immunoblot con-
firmed lack of GFAP expression in DREAM-deficient PACAP-
treated cells (Fig. 5B).

These experiments indicate that stimulation of GFAP expres-
sion by PACAP in cortical precursor cells requires the presence of
DREAM. Because PACAP has been proposed to act as a neuro-
trophic signal during cortical development to regulate astrocyto-
genesis (Vallejo and Vallejo, 2002; Cebolla and Vallejo, 2006),
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lack of DREAM could be predicted to impair cortical gliogenesis
in vivo. To test this notion, we measured GFAP levels by Western
immunoblot in the cerebral cortex of mice at postnatal day 1
(P1), a time that coincides with active astrogliogenesis. We found
that dream '~ mice contain GFAP levels that are reduced by
>50% relative to those of control wild-type animals (Fig. 6).
Reduced levels of GFAP were observed in DREAM-deficient mice
for at least up to P3, although the magnitude of the difference at
this time was smaller (Fig. 6A, B).

In addition, we demonstrated that the reduced levels of GFAP
in the brains of DREAM-deficient mice are caused by a primary
defect in astrocyte differentiation and not to a decrease in the
expression of the GFAP gene at the transcriptional level, because
the number of cortical astrocytes, as assessed by immunohisto-
chemistry for the astroglial markers GFAP and S1003, was deter-
mined to be smaller in dream-mutant mice than in control ani-
mals (Fig. 6 D-G). The numbers of immunoreactive cells per
square millimeter in wild-type and knock-out animals were
1262 = 80 and 817 * 104, respectively, for GFAP, and 1021 * 66
and 637 = 109, respectively, for S1008 (in both cases, p < 0.002,
Student’s t test). Furthermore, this is not a local effect restricted
to the cortex, because we also observed reduced numbers of
GFAP-stained cells in other areas of the brain including white
matter tracts such as the corpus callosum (supplemental Fig. 2,
available at www.jneurosci.org as supplemental material). These
data indicate that generation of astrocytes in DREAM deficient
mice is defective, underscoring the importance of DREAM for
astrogliogenesis during the development of the cerebral cortex.

Lack of DREAM delays the timing of the neurogenic to
gliogenic switch

Because it is well established that the onset of astrogliogenesis
takes place after neurogenesis is mostly completed, and that at
least some gliogenic signals coordinately inhibit neurogenesis
(Miller and Gauthier, 2007), we examined whether the apparent
delay in the onset of gliogenesis was accompanied by an alteration
in the number of neurons that could indicate a concomitant delay
in the inhibition of neurogenesis. To this end, we performed
NeuN immunohistochemistry and counted the number of im-
munopositive cells in the cortex of P1 mice. We found that in P1
dream-deficient mice, the number of NeuN-immunopositive
neurons is increased by ~20% relative to wild-type controls
(4072 = 170 vs 3298 =+ 172 neurons/mm?; p < 0.005, Student’s ¢
test) (Fig. 7A). When we performed a similar analysis in P7 mice,
we found that the number of neurons was still higher in dream-
deficient than in control animals (2066 = 122 vs 1740 = 69
neurons/mm? p < 0.03, Student’s ¢ test), indicating that this
effect persists and is sustained well beyond the time of completion
of neurogenesis.

One possible explanation for this observation is that, apart
from its involvement in the mechanisms that promote astroglio-
genesis in response to specific signals, DREAM could participate
coordinately in restrictive mechanisms opposing the generation
of neurons at the end of the period of neurogenesis. Therefore, if
DREAM regulates the generation of neurons negatively, a predic-
tion would be that DREAM-deficient neural precursors would
show an enhanced capacity to generate neurons. To test this pre-
diction, we analyzed the number of neurons generated from cor-
tical precursors in neurospheres allowed to differentiate in the
presence of BDNF. We found that the percentage of Tujl-
immunoreactive cells was 15.3 = 2.2 in BDNF-treated neuro-
spheres from control animals and 26.2 = 2.3 BDNF-treated neu-
rospheres from DREAM-null mice ( p < 0.005, Student’s £ test).
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Thus, neurospheres prepared from DREAM-deficient mice gen-
erated a higher number of neurons than those prepared from
wild-type animals (Fig. 7B), consistent with a restrictive role for
DREAM on neurogenesis important for regulating the timing of
the neurogenic-to-gliogenic switch.

In light of these results, and given that newly generated neu-
rons appear to have a direct effect on the generation of astrocytes
by activating neurotrophic cytokine signaling (Barnabé-Heider
etal., 2005), which appears to be unaffected in DREAM-deficient
mice (Fig. 5), we sought to determine the GFAP content and the
number of astrocytes in older animals once astrogliogenesis has
been completed.

We found that GFAP expression in the cerebral cortex of
DREAM-deficient mice from P7 onwards is higher than in con-
trol animals (Fig. 8 A, B). In adult animals (12 weeks), GFAP im-
munostaining revealed a higher number of astrocytes in the
brains of mice lacking DREAM (86 * 4.2 GFAP ™ cells/mm?)
than in those of age-matched wild-type controls (72 * 2.3
GFAP™ cells/mm?; p < 0.05, Student’s t test) (Fig. 8C). This
increase in the number of astrocytes is probably not caused by
increased astrocyte proliferation, because we did not observe in-
creased number of proliferating GFAP-positive cells in DREAM-
deficient mice treated with intraperitoneal injections of bro-
modeoxyuridine (50 mg/kg) (data not shown). Thus, together,
our results indicate that during the early postnatal period lack of
DREAM results in increased number of neurons and delayed
astrogliogenesis, but that once astrocyte generation has started,

A

DREAM is required for expression of GFAP induced by PACAP in mouse fetal cortical precursor cells. A, Immunocyto-
chemical staining of GFAP in primary cells prepared from the cerebral cortex of E16 mouse fetuses and cultured in defined medium
in the presence of bFGF (control). To induce differentiation, bFGF was withdrawn and cells were treated for 2 d with PACAP (100
nm) or CNTF (50 ng/ml). No GFAP immunoreactivity was detected in untreated control cells, or in cells prepared from DREAM-
deficient mice treated with PACAP. B, Western immunoblots showing GFAP expression in extracts of mouse primary cortical cells
treated under the same conditions to those shown in A. Note that GFAP is not detectable in PACAP-treated cells prepared from
DREAM-deficient mice. c-Tubulinimmunoreactivity was used as a control to monitor the even loading of samples.
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compensatory mechanisms appear to be
activated to maintain the balance between
the number of neurons and the number of
astrocytes.

Discussion
-/- We showed previously that PACAP trig-

) gers astrocytogenesis by stimulating cAMP

synthesis after acting on specific PAC1 re-

ceptors present in cortical precursors

(Vallejo and Vallejo, 2002). Here, we show

that cAMP production induced by PACAP

in cortical precursor cells results in a raise

++ in [Ca®"], that Ca®" acts on DREAM to
stimulate transcription of the GFAP gene,
and that DREAM is required for the regu-
lation of normal astrocyte differentiation
in vivo. As the expression of PACAP and
PACAP receptors in the developing cortex
is well documented (Skoglésa et al., 1999;
Jaworski and Proctor, 2000; Suh et al.,
2001), we propose that the PACAP-
cAMP-Ca**-DREAM cascade constitutes
a novel signaling pathway to generate as-
trocytes in the developing brain.

DREAM as a transcriptional
transactivator of the GFAP gene

The observations that a dominant negative
mutant of DREAM inhibits GFAP pro-
moter stimulation by PACAP, and that
DREAM bound to the GFAP promoter in
cortical precursor cells remains in place af-
ter induction of astrocyte differentiation,
indicate that DREAM acts as a transcrip-
tional transactivator. This is an unex-
pected finding, because DREAM has been
shown previously to act as a repressor, allowing transcriptional
stimulation after dissociation from regulatory elements located
downstream of the transcription initiation site of target genes
(Carrion et al., 1999; Ledo et al., 2000a; Campos et al., 2003).
However, transcriptional transactivation by DREAM is not un-
precedented, because DREAM has been described to act as an
activator by binding to sites located upstream of a TATA box
(Scsucova et al., 2005).

The mechanism by which DREAM transactivates the GFAP
promoter in response to calcium is likely to involve changes in
protein conformation (Carrién et al., 1999; Osawa et al., 2001,
2005) that could be stabilized by interactions with other proteins
bound in close proximity (Rivas et al., 2004; Gomez-Villafuertes
et al., 2005; Scsucova et al., 2005). Of note, the transcription
factor nuclear factor-I is important for GFAP expression and
occupies a site in the GFAP promoter located adjacent to DRE2
(Cebolla and Vallejo, 2006). The observation that disruption of
DREAM binding to DNA by mutation of the DRE sites com-
pletely abolishes GFAP promoter activity further indicates that
DREAM may be a key component to assemble transcriptionally
competent protein complexes.

DREAM stimulates GFAP gene transcription in response to
PACAP via a Ca*"-dependent mechanism, as indicated by the
observation that integrity of the EF-hands is required for GFAP
promoter activation. Furthermore, the antagonist Rp-cAMPS in-
hibits PACAP-induced Ca*" entry (this study) and astrocyte dif-
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ferentiation (Vallejo and Vallejo, 2002).
These findings, together with our observa-
tions that cortical precursor cells from
dream '~ mice fail to activate GFAP expres-
sion after exposure to PACAP, and that lack
of DREAM results in delayed generation of
cortical astrocytes in vivo, support that
cAMP-dependent elevation of [Ca’*]; in-
duced by PACAP constitutes an important
signal to stimulate astrocytogenesis.

It is well established that PACAP in-
creases [Ca”™]; by mobilizing intracellular
pools or by increasing extracellular calcium
influx (Chatterjee et al., 1996; Przywara et al.,
1996; Osipenko et al., 2000; Morita et al.,
2002; Liu et al., 2003; Payet et al., 2003). Our
data favor the notion that in cortical precur-
sors PACAP promotes calcium entry from
the extracellular milieu, in agreement with
previous reports indicating that PACAP-
induced Ca*" influx requires the activation
of cAMP-dependent signaling (Przywara et
al., 1996; Osipenko et al., 2000). Also, this is
consistent with our observation that the
most abundant PACAP receptor isoform ex-
pressed in cortical precursor cells is the short
splice variant of the PACI1 receptor (Vallejo
and Vallejo, 2002), which couples to stimu-
lation of adenylate cyclase.

Fluctuations in [Ca®"]; in cortical pro-
genitor cells have been shown to occur as
coordinated waves that depend on intracel-
lular stores and modulate cell proliferation
or neuronal differentiation (Owens and
Kriegstein, 1998; Weissman et al., 2004), or
as a consequence of increased influx from the
extracellular milieu via activation of mem-
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Figure 6.  DREAM-deficient mice exhibit reduced number of astrocytes in the cortex during early postnatal period. 4,

Westernimmunoblots showing GFAP expression in extracts of cortices isolated from P1 or P3 DREAM-deficient (dream ~~) or
control wild-type (dream */*) mice. The numbers on top of each panel indicate individual mice from which samples were
obtained. c-Tubulin (ce-Tub) immunoreactivity was used as a control to monitor even loading of samples. B, Densitometric
analysis performed to quantify the relative intensity of DREAM-immunoreactive bands detected by Western immunoblot.
Results are expressed as percentage of increment of densitometry measurements of DREAM bands (in arbitrary units) relative
to the intensity of the corresponding c-tubulin bands. *p << 0.05; **p << 0.02. This figure represents one of four different
experiments with similar results. , Cresyl violet-stained brain section showing a schematic depiction of the dorsal and lateral
regions (boxed areas) of the cortex of P1 mice used to determine the number of astrocytes after immunohistochemical
staining. Cells from symmetrical regions on both sides were counted. D-G, Representative examples of sections from the
dorsal cortex of P1 wild-type (D, F) or dream-deficient (E, G) mice, processed for GFAP immunoperoxidase staining (D, E) or
$1003 immunofluorescence (F, G) used for quantitative analysis. Scale bars, 50 um.

brane channels (D’Ascenzo et al., 2006; Ma

et al., 2001; Sah et al., 1997). Thus, calcium can be mobilized
dynamically in different ways within neuroepithelial cells to par-
ticipate in different signaling processes that coordinately regulate
proliferation or differentiation into neurons or astrocytes.

Our results show that astrocytes can be generated by CNTF in
DREAM-lacking cortical precursor cells, although these do not
respond to PACAP. CNTF (and other neurotrophic cytokines)
generates astrocytes by activating a gp130-JAK-STAT pathway
(Bonni et al., 1997; Rajan and McKay, 1998; Nakashima et al.,
1999). Thus, although PACAP and CNTF can synergistically ac-
tivate GFAP expression (Cebolla and Vallejo, 2006), our results
indicate that the CNTF-gp130-JAK-STAT pathway can function
independently from the PACAP-cAMP-Ca>"-DREAM pathway.

Role of DREAM in astrocyte differentiation
The requirement of DREAM for appropriate expression of GFAP
during astrocytogenesis is indicated by our observations that cor-
tical precursor cells prepared from dream ~'~ mice fail to differ-
entiate into astrocytes in response to PACAP, and that these mice
exhibit lower levels of GFAP and reduced astrocytogenesis during
the early postnatal period. These observations are also consistent
with the finding that treatment of rats with a PACAP receptor
antagonist during late pregnancy significantly reduces the num-
ber of cortical astrocytes in the offspring (Zupan et al., 1998).
We found that lack of DREAM does not prevent, but delays,

GFAP expression and astrocyte formation in vivo, despite the
observation that cells lacking DREAM fail to respond to PACAP
in vitro. The observed decrease in the number of astrocytes was
accompanied by increased number of neurons at a time that co-
incides approximately with the onset of astrocyte generation after
transition from neurogenesis to astrogenesis. This observation is
consistent with the possibility that neurogenesis has not been
inhibited in time and precursor cells keep on producing neurons
instead of astrocytes. One possible interpretation of our results is
that in cortical precursors DREAM might be part of a signaling
mechanism involved in the coordinated inhibition of neurogen-
esis at the same time that it stimulates astrogliogenesis.

Signals acting on cortical precursors that stimulate astroglio-
genesis and at the same time inhibit neurogenesis are important
for regulating the timing of activation of the neurogenesis-to-
gliogenesis switch (Miller and Gauthier, 2007). It is possible to
predict that if these signals fail, the outcome would be an excess
production of neurons at the expense of astrocytes, which would
be present in lower numbers at the beginning of the astroglio-
genic period. Our observations fit with this model, and thus sup-
port the notion that DREAM may be part of the complex mech-
anisms that operate during the transition from neurogenesis to
astrogliogenesis.

Interestingly, the relatively high number of astrocytes gener-
ated in dream mutant mice after P7 indicates that mechanisms to
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Figure 7.  DREAM-deficient mice exhibit increased number of neurons in the cortex during
early postnatal period. 4, Photomicrograph depicting a lateral region of a coronal section of the
brain from postnatal day 1 mice similar to that shown in Figure 6C. Sections from wild-type (top)
or dream-deficient (bottom) mice were stained for NeuN immunoreactivity. The right panels
depict higher-magnification images corresponding to the areas indicated by a rectangle. EC,
External capsule; MZ, marginal zone. Scale bars, 100 wm. B, Tuj1 immunoreactivity (green)
detected in BDNF-treated attached neurosphere cultures prepared form the brains of wild-type
(left) or dream-deficient (right) mice. Blue indicates cells counterstained with Hoechst.

compensate for the initial loss of astrocytes are activated to match
the number of glial cells to that of neurons. The existence of this
type of compensatory mechanisms has been proposed previously
(Koblar et al., 1998; Barnabé-Heider et al., 2005; Miller and Gau-
thier, 2007) and could involve, at least in part, the activity of
neuron-derived neurotrophic cytokines (Barnabé-Heider et al.,
2005), which, in our case, would be present in higher amounts as
a consequence of the initial overproduction of neurons. There-
fore, in an environment relatively enriched in neurons, such as
the one found in the developing cortex of newborn DREAM-
deficient mice, this situation could yield to the delayed generation
of a relatively increased number of astrocytes.

Obviously such a situation requires that the signaling path-
ways used by neurotrophic cytokines in neural precursors have to
be intact. Neurotrophic cytokines secreted from newly differen-
tiated neurons, which provide a major signal promoting the gen-
eration of astrocytes (Barnabé-Heider et al., 2005), act via the
gp130-JAK-STAT pathway (Bonni et al., 1997; Koblar et al., 1998;
Rajan and McKay, 1998; Nakashima et al., 1999; Barnabé-Heider
et al., 2005). Our experiments with CNTF on cortical precursors
indicate that this signaling pathway is not affected by lack of
DREAM for the expression of GFAP. Whether the enhanced as-
trocyte generation observed in mice with defective DREAM-
dependent signaling after overproduction of neurons and de-
layed astrogliogenesis is indeed attributable to the existence of
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Figure 8. Increased number of astrocytes in the cortex of adult DREAM-deficient mice. 4,
Westernimmunoblots showing GFAP expression in extracts of cortices isolated from P7 DREAM-
deficient (dream ~' ™) or control wild-type (dream /Y mice. Numbers on top of each lane
indicate individual mice from which samples were obtained. c-Tubulin (c-Tub) immunoreac-
tivity was used as a control to monitor even loading of samples. Results from densitometric
analyses performed to quantify the relative intensity of DREAM-immunoreactive bands ex-
pressed as a percentage of the increment of densitometry measurements (in arbitrary units)
relative to the intensity of the corresponding ce-tubulin bands were 84 =+ 15 for wild-type mice
and 137 == 13 for DREAM-null mice (mean = SEM; p << 0.002, Student's t test). B, Western
immunoblots showing GFAP expression in extracts of cortices isolated from P20 DREAM-
deficient (KO) or control wild-type (WT) mice. The numbers on top of each lane indicate indi-
vidual mice from which samples were obtained. Actinimmunoreactivity was used as a control to
monitor the even loading of samples. Depicted to the right is the densitometric analyses per-
formed to quantify the relative intensity of DREAM-immunoreactive bands. Results are ex-
pressed as a percentage of the increment of densitometry measurements of DREAM bands (in
arbitrary units) relative to the intensity of the corresponding actin bands. Individual densito-
metric values are plotted. C, Representative examples of sections from the hippocampus of
dream-deficient (top) or wild-type (bottom) mice, processed for GFAP immunostaining used for
quantitative analysis. The right panels depict higher-magnification images corresponding to
the areas indicated by a rectangle. Scale bar, 100 m.

higher amounts of neuron-derived neurotrophic cytokines re-
mains the subject of further investigations.

DREAM has been shown to regulate the expression of differ-
ent neuronal genes acting as a transcriptional repressor (Carrién
et al., 1999; Link et al., 2004; Gomez-Villafuertes et al., 2005). In
this study, we present evidence indicating that in cortical precur-
sor cells DREAM can act as a transcriptional transactivator that
regulates GFAP gene expression during astrocyte differentiation
via cAMP-dependent calcium signaling. Thus, these findings
provide new insights into the mechanisms that regulate astrocy-
togenesis in the developing cortex.
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