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Multineuron firing patterns are often observed, yet are predicted to be rare by models that assume independent firing. To explain these
correlated network states, two groups recently applied a second-order maximum entropy model that used only observed firing rates and
pairwise interactions as parameters (Schneidman et al., 2006; Shlens et al., 2006). Interestingly, with these minimal assumptions they
predicted 90 –99% of network correlations. If generally applicable, this approach could vastly simplify analyses of complex networks.
However, this initial work was done largely on retinal tissue, and its applicability to cortical circuits is mostly unknown. This work also did
not address the temporal evolution of correlated states. To investigate these issues, we applied the model to multielectrode data contain-
ing spontaneous spikes or local field potentials from cortical slices and cultures. The model worked slightly less well in cortex than in
retina, accounting for 88 � 7% (mean � SD) of network correlations. In addition, in 8 of 13 preparations, the observed sequences of
correlated states were significantly longer than predicted by concatenating states from the model. This suggested that temporal depen-
dencies are a common feature of cortical network activity, and should be considered in future models. We found a significant relationship
between strong pairwise temporal correlations and observed sequence length, suggesting that pairwise temporal correlations may allow
the model to be extended into the temporal domain. We conclude that although a second-order maximum entropy model successfully
predicts correlated states in cortical networks, it should be extended to account for temporal correlations observed between states.
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Introduction
A major hypothesis in computational neuroscience is that neu-
rons process information through collective interactions. Despite
the importance of this assumption, much is still unknown about
how even small networks of neurons interact. For example, most
connections between cortical neurons, as measured by correla-
tions (Bartho et al., 2004) or synaptic strengths (Song et al.,
2005), appear to be very weak, yet multineuron firing patterns are
often observed in experiments. What could account for the abun-
dance of these correlated network states?

Recent work by two groups (Schneidman et al., 2006; Shlens et

al., 2006) has shown that it is possible to predict 90 –99% of
network correlations in retina where interactions between neu-
ron pairs are weak. To make these predictions, both groups used
a model which considered only firing rates and pairwise interac-
tions, and which was maximally uncommitted about all other
features (a second-order maximum entropy model). This prom-
ising approach suggests that neurons do not need strong individ-
ual connections to have strong collective interactions. It further
raises the possibility that activity in complex neural networks
might be adequately captured with relatively simple models.

However, this new work raises several additional questions.
First, how general are these results? Both groups demonstrated
their models on data taken primarily from retinal tissue, although
Schneidman et al. (2006) also considered one network of disso-
ciated cortical neurons. It therefore remains unclear whether a
maximum entropy approach can succeed in cortical circuitry. In
addition, the models of both groups were applied to correlated
states of spikes. Could such models also be applied to correlated
states of local field potentials (LFPs)?

A second issue concerns the temporal evolution of correlated
states. The maximum entropy model was intended to predict
multineuron firing patterns at one time bin only, yet several lab-
oratories have reported that correlated states can appear consec-
utively across several time bins in vitro (Beggs and Plenz, 2004;
Ikegaya et al., 2004; Segev et al., 2004) and in vivo (Lindsey et al.,

Received July 24, 2007; revised Nov. 29, 2007; accepted Dec. 3, 2007.
This work was supported by National Science Foundation (NSF) Grants 0343636 (J.M.B.) and PHY-0417175

(A.M.L.), the McKnight Foundation (A.M.L.), the Burroughs Wellcome Fund Career Award at the Scientific Interface
(A.S.), a MetaCyt award from the Eli Lilly Foundation to Indiana University (J.M.B.), NSF Research Experience for
Undergraduates (D.J.), and a Pence foundation grant awarded to J.L.S. We are grateful to David Feldheim of the
University of California Santa Cruz for use of his lab space during the 512 array recording sessions. We would also like
to acknowledge Jonathon Shlens for his very helpful comments on a previous version of this manuscript and for his
contributions to the spike sorting software used on the 512 electrode array data. We are also grateful to the patient
and his parents who allowed us to record from his excised peritumoral cortical tissue. We thank A. Grillo, P. Grybos,
and S. Kachiguine for technical development.

*A.T. and D.J. contributed equally to this work.
Correspondence should be addressed to John M. Beggs, Indiana University Department of Physics, 727 East Third

Street, Bloomington, IN 47405. E-mail: jmbeggs@indiana.edu.
DOI:10.1523/JNEUROSCI.3359-07.2008

Copyright © 2008 Society for Neuroscience 0270-6474/08/280505-14$15.00/0

The Journal of Neuroscience, January 9, 2008 • 28(2):505–518 • 505



1997; Prut et al., 1998; Villa et al., 1999; Chang et al., 2000). Here
we define a “sequence” as a series of correlated states appearing in
consecutive time bins. Do correlated states occur in a temporally
independent manner? If so, then concatenating the states pre-
dicted by the model should give a reasonable estimate of sequence
lengths. However, if observed sequence lengths are longer than
those produced by concatenated model states, then temporal de-
pendencies probably exist. If these dependencies are commonly
found, they should be accounted for by future models of neural
network activity.

To explore the first issue, we applied a second-order maxi-
mum entropy model to a wide variety of in vitro cortical net-
works, including acute slices from rat and human tissue, as well as
organotypic and dissociated cultures from rat. We explored the
model’s effectiveness in predicting correlated states of both spikes
and LFPs at one time bin. To address the second issue, we com-
bined states from the model and then compared them to consec-
utive states observed in the actual data.

Parts of this paper (preliminary results) have been published
previously in abstract form (Tang et al., 2007).

Materials and Methods
Tissue preparation and recording. All neural tissue from animals was pre-
pared according to guidelines from the National Institutes of Health and
all animal procedures were approved by the Indiana University Animal
Care and Use Committee. Slices of juvenile human cortex were taken
only from peritumoral tissue that was removed as part of treatment for
recalcitrant epilepsy. Recording from human slices was performed with
the consent of the patient’s parents and was approved by the Human
Subjects Committee of Indiana University.

Primary hippocampal and cortical neuronal cultures were prepared
according to the methods described by (Banker and Goslin, 2002). Hip-
pocampal and cortical tissues were dissected from Sprague Dawley rat
brains (Harlan–Sprague Dawley, Indianapolis IN) of embryonic (E) day
17–18 in Ca 2�/Mg 2�-free HBSS supplemented with 10 mM HEPES, pH
7.5/1 mM sodium pyruvate (buffered Hank’s) during the dissection (all
from Invitrogen, Carlsbad, CA). The tissues were incubated for 20 min in
0.25% trypsin (Invitrogen) in buffered Hanks’s at 37°C, washed 5 times
with buffered Hank’s, and dissociated using fire polished Pasteur pipettes
until a single cell suspension was obtained. The cells were diluted with 5
volumes of HBSS/1.5 mM CaCl2/0.5 mM MgCl2 and centrifuged at 200 �
g for 5 min. The cells were then resuspended in Neurobasal media sup-
plemented with B-27 (Invitrogen), 0.5 mM L-glutamine (Invitrogen) and
0.025 �M L-glutamate (Tocris Biosciences, Ellisville, MO) and 50 U/ml
Penicillin and Streptomycin (Brewer et al., 1993) and seeded onto 250
�g/ml poly-L-lysine (Sigma, St. Louis, MO) coated microelectrode ar-
rays. The microelectrode array dishes were sealed with a membrane lid
which allowed gas exchange and prevented water loss (Potter and De-
marse, 2001), then placed into an incubator (NuAire, Plymouth, MN)
with 5% CO2, 9% O2 and humidified atmosphere at 37°C. Half of the
media was replaced every 4 d with media having no added glutamate,
effectively decreasing the concentration of glutamate by a factor of 2
every 4 d. The cells were cultured for 21 d before recording. During
recording, cultures were removed from the incubator and placed in an
amplifier. A pipe carrying gas from the incubator was connected to the
membrane lid to prevent changes in gas content. Recordings were per-
formed at 37°C without perfusion of medium and typically lasted 2 h.

Organotypic cultures were prepared following the method of (Stop-
pini et al., 1991). Briefly, brains from postnatal day 1 (P1)–P3 Sprague
Dawley rat pups (Harlan) were removed under a sterile hood and placed
in chilled Gey’s balanced salt solution for 1 h at 8°C. After 30 min, half the
solution was changed. Brains were next blocked into �5 mm 3 sections
containing somatosensory cortex, striatum and thalamus. Blocks were
then sliced into coronal sections with a thickness of 450 �m using a
Vibratome 3000 slicer (Ted Pella, Redding, CA). Each slice was placed on
a small circular cutout of permeable membrane (Millipore, Billerica,
MA) that was then placed on top of a larger membrane that spanned a

culture well. Culture medium consisted of HBSS (Sigma; H9394) 1:4,
Mega cell medium (Sigma; M4067) 2:4, horse serum (Sigma; H1270) 1:4,
and 4 mM glutamine, with penicillin/streptomycin 1:100 volume of me-
dia (Sigma; P4083). This solution was then poured into the well so that
the slices were maintained at an interface between medium below and
atmosphere above. The plates of wells were next placed in an incubator
and constantly maintained at 37°C in humidified atmosphere with 5%
CO2. One-half of the medium was exchanged every three d. At 3 d in
vitro, 10 �l of mitosis inhibitor, consisting of 4.4 mM cytosine-5-�-
arabinofuranoside, 4.4 mM uridine, and 4.4 mM 5-fluorodeoxyuridine
(all from Sigma), were added for 24 h. After 3 weeks the cultures were
then gently placed on a microelectrode recording array by lifting the
small circular cutout of membrane with tweezers. Each culture was
placed tissue side down, with the membrane facing up. We attempted to
place the tissue so that neocortical layers I–V covered the array, whereas
striatum and thalamus were away from the array. During recording,
cultures were perfused at 1 ml/min with culture medium that was satu-
rated with 95% O2/5%CO2. Recording sessions lasted 2–7 h.

Acute slices were prepared from 14- to 35-d-old Sprague Dawley rats
(Harlan). Rats were deeply anesthetized with halothane and then decap-
itated. Brains were removed and immediately placed for 3 min in ice-cold
artificial CSF (ACSF) containing (in mM) 125 sucrose, 3 KCl, 1.25
NaH2PO4*H2O, 26 NaHCO3, 2 MgSO4*7H2O, 2 CaCl2*2H2O, and 10
D-glucose, saturated with 95% O2/5%CO2. After cooling, brains were
blocked into �5 mm 3 sections containing somatosensory cortex, stria-
tum and thalamus. Blocks were then sliced into coronal sections with a
thickness of 250 �m using the tissue slicer. After cutting, slices were
incubated for �1 h at room temperature in ACSF with the same ingre-
dients as listed above, but with 125 mM NaCl substituted for 125 mM

sucrose to restore Na � and allow cells to fire action potentials again.
After incubation, slices were adhered to microelectrode arrays with a
solution of 0.1% polyethelinamine that had been previously applied and
let to dry for 2 h (Wirth and Luscher, 2004). We attempted to place the
tissue so that neocortical layers I–V covered the array. Slices were main-
tained thermostatically at 37°C and were perfused at 1.0 ml/min with
ACSF solution containing 5 mM KCl and 0 mM Mg �2 during recording,
which typically lasted 5 h. These external ionic concentrations are known
to produce LFP activity in cortical brain slices (Schiff et al., 1994; Wu et
al., 1999).

Acute slices of epileptogenic cortex were obtained from the brain of a
14-year-old boy with medically intractable seizures who was undergoing
resection of a brain tumor and peritumoral epileptogenic zone for treat-
ment of his seizures. To do this, a small piece of cortex was harvested by
the pediatric neurosurgeon (J. Smith) from the right parietal lobe within
the epileptogenic zone just posterior to the patient’s tumor. The tissue
was taken from this area of cortex because it consistently demonstrated
large population spikes during intraoperative electrocorticography as
assessed by the surgical epileptologist (H. Patel). Immediately after its
removal, the tissue was placed in a beaker of chilled, oxygenated ACSF
(with sucrose substituted for NaCl, as described above) and then sliced
into 250 �m sections. Slices were then incubated for 1 h in room-
temperature ACSF containing NaCl rather than sucrose. Slices were next
gently placed on the 60-electrode array precoated with polyethelinamine.
For recording, slices were maintained at 37°C and perfused at 1 ml/min
with ACSF containing (in mM) 125 sucrose, 3.5 KCl, 1.25
NaH2PO4*H2O, 26 NaHCO3, 2 MgSO4*7H2O, 2 CaCl2*2H2O, and 10
D-glucose, saturated with 95% O2/5%CO2. Under these conditions, LFP
activity occurred spontaneously during the 1.5 h recording session.

Electrode arrays. All recordings, except those of spikes from organo-
typic cultures, were performed on microelectrode arrays from Mul-
tichannel Systems (Reutlingen, Germany). Each array had 60 electrodes,
where each electrode was 30 �m in diameter (see Fig. 1 A). For organo-
typic cultures, electrodes were flat (see Fig. 1 B), but for acute slices,
electrodes came to a point 30 �m high. In both cases, electrodes were
arranged in a square grid with 200 �m spacing between electrodes (see
Fig. 1C). Spikes from organotypic cultures were recorded with a custom-
made 512-electrode array (Litke et al., 2004). The flat electrodes here
were 5 �m in diameter and spaced 60 �m apart in a hexagonal lattice (see
Fig. 1 B).
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Spike sorting. Activity from dissociated cultures grown on 60-channel
microelectrode arrays was sampled at 20 kHz, and waveforms that
crossed a threshold of 8 SDs were cut out in 4 ms segments for later
sorting (see Fig. 1 A). Segments were decomposed into principal compo-
nents, and sorted based on clusters identified by an operator. Putative
neurons which violated a refractory period of 2 ms were excluded from
analysis. Pairs of neurons sharing correlations �0.75 were also excluded.
Sorting was done off line using software from Plexon (Dallas, TX).

Spiking activity from organotypic cortical cultures recorded on the
512-electrode array (see Fig. 1 B) was sampled at 20 kHz and sorted
automatically as described previously (Litke et al., 2004; Frechette et al.,
2005; Shlens et al., 2007). Briefly, signals that crossed a threshold of 3 SDs
were marked, and the waveforms found on the marked electrode and its
six adjacent neighbors were projected into five dimensional principal
component space. A mixture of Gaussians model was fit to the distribu-
tion of features based on maximum likelihood. Only the neurons that
had well separated clusters in principal components space and had no
refractory period violations were used in further analysis.

In cases where multiple spikes occurred in a single bin, they were
treated as a single spike, as explained further below.

LFP detection. Extracellular activity from organotypic cultures and
acute slices was sampled at 1 kHz and amplified before being stored to
disk for off-line analysis. Local field potentials that showed sharp nega-
tive peaks were detected in a manner similar to that previously described
(Beggs and Plenz, 2003, 2004). Briefly, if a waveform had a negative peak
below a threshold set at 3 SDs of the signal, then the time of the maximum
excursion was recorded as the time of that LFP (see Fig. 1C).

Maximum entropy model. We sought to account for the observed dis-
tribution of network states in small ensembles of neurons (N � 4, 6, 8,
10) by using only information about firing rates and pairwise interac-
tions. In doing this, we followed closely the methods of Schneidman et al.
(2006) as well as Shlens et al. (2006) who constructed maximum entropy
models of their data. Antecedents of these methods can be found in
(Martignon et al., 2000; Amari, 2001; Schneidman et al., 2003), and an
overview is given in (Nirenberg and Victor, 2007).

To explain this approach in more detail, it is necessary first to describe
several terms. The activity of neuron i within a given time bin was repre-
sented by �i, and could take on two values: �1 for the presence of one or
more spikes, and �1 for the absence of spikes. Similarly, the presence
(�1) or absence (�1) of suprathreshold LFPs at electrode i was repre-
sented by �i. For brevity, we will outline the methods here for spikes,
although they apply identically for suprathreshold LFPs. The expected
value of �i gave information about the firing rate and was given by the
following:

��i� �
1

T�
t�1

T

�i
t, (1)

where �i
t was the activity of neuron i at time t, and T is the number of time

bins in the recording. The expected value of the pairwise interaction
between neuron i and neuron j was given by the following:

��i� j� �
1

T�
t�1

T

�i
t � � j

t. (2)

The state, V, of an ensemble of N neurons at a particular time was given
by the following:

V � 	�1,�2,�3,. . .�N
. (3)

For N neurons, there were 2N possible states that could be observed
during a recording. Not all of these states were observed equally often,
and the goal of the second-order maximum entropy model was to predict
the probability of observing each state, given only the firing rates ��i�, and
the pairwise interactions ��i�j� from the data.

To predict the probability distribution of states, neural activities were
mapped onto the Ising model from physics (Landau and Lifshitz, 1958,
Schneideman et al., 2006) (see Fig. 2). It was assumed that each neuron

behaved like a small bar magnet, interacting with a local magnetic field
and with other neighboring bar magnets. The local magnetic field around
neuron i was given by hi, and the product �ihi gave the energy associated
with this interaction. A positive value of �ihi meant that the neuron was
in harmony with its local field; this interaction was energetically favor-
able and more probable, as explained below. The interaction of neuron i
with neuron j was given by Jij, and the product Jij�i�j gave the energy
associated with this interaction. As with the local field, a positive value of
Jij�i�j meant that the neuron was in harmony with its neighbor, and this
was energetically favorable and more probable. Note that when Jij was
positive, similar activity between neurons i and j was favored; when Jij was
negative, dissimilar activity was favored. As a first approximation, the
local magnetic field and the interactions were given as follows:

hi � ��i�; J � ��i� j�. (4)

The values of hi and Jij were adjusted later to provide better agreement
between the model and the data, as described below.

Just as an ensemble of magnets has an energy in the Ising model, the
energy E of an ensemble of N neurons in state V was given by the follow-
ing:

E�V� � � �
i�1

N

hi�i �
1

2�
i�1

N �
j�1

N

Jij�i� j, (5)

where summation in the second term was carried out such that i 
 j.
The next step involved mapping energies onto probabilities. To min-

imize unnecessary assumptions, the probability distribution with maxi-
mum entropy was chosen. The maximum entropy distribution for a data
set with a given mean is an exponential distribution (Jaynes, 1957), so the
probability of observing a particular state Vj was given by the following:

P�Vj� �
e�E�Vj�

�
i�1

2N

e�E�Vi�

, (6)

where the denominator is just a normalizing term (the partition function
in statistical mechanics) and was summed over all 2N possible states of
the ensemble. Note that this equation will make states with high energy
less probable than states with low energy.

Because this distribution gave the probability of each state, the ex-
pected values of the individual firing rates ��i�m and pairwise interactions
��i�j�m of the maximum entropy model could be extracted, where the
subscript m denotes the following model:

��i�m � �
j�1

2N

�i�Vj� � P�Vj� (7)

��i� j�m � �
k�1

2N

�i�Vk� � � j�Vk� � P�Vk�, (8)

and where �i(Vj) is the activity (either �1 or �1) of �i when the ensem-
ble is in state Vj. The expected values from the model were then compared
with ��i� and ��i�j� found in the data. Although the model parameters
were initially selected to match the firing rates and pairwise interactions
found in the data, a given set of parameters in general would not produce
harmony of every neuron with its local fields and interactions for every
state. To improve agreement between ��i�m, ��i�j�m and ��i�, ��i�j�, the
local magnetic fields hi and interactions Jij were adjusted by an iterative
scaling algorithm (Darroch and Ratcliff, 1972). Adjustments were made
as follows:

hi
new � hi

old � 	 � sign���i�� � log� ��i�

��i�m
�; (9)

Jij
new � Jij

old � 	 � sign���i� j�� � log� ��i�j�

��i�j�m
�, (10)
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where a constant 	 � 1 was used to keep the algorithm from becoming
unstable. We found 	 � 0.75 to be stable and adequately fast. Note that
when the model value was less than the actual value, this produced a
positive logarithm and led to an increase in either hi or Jij. Conversely, a
model value that exceeded the actual value led to a negative logarithm
and a reduction in hi or Jij. After adjustment, a new set of energies and
probabilities was calculated for the states, and this led to new values of hi

and Jij. Adjustments continued for 50,000 iterations for each ensemble,
until the local field and interactions were within �0.1% of their asymp-
totic values. Because the entropy is convex everywhere in this formula-
tion, there were no local minima and methods like simulated annealing
were not necessary. After iterative scaling, the final values of hi and Jij

were then re-inserted into equation (5) to calculate the energy of each
state, and then this energy was inserted into equation (6) to calculate the
probability of observing each state V.

Evaluating the model: one time bin. In explaining how we evaluated the
performance of the model, it is necessary to again introduce some terms.
Models of several orders could be used to capture the data. A first-order
model accurately represented the firing rates ��i� found in the data, but
assumed that all higher-order interactions, like ��i�j�, were independent
and were given by the product of first-order interactions: ��i�j� � ��i� �
��j� . We denoted the probability distribution produced by a first-order
model by P1, and sometimes referred to this as the “Poisson” model. A
second-order model, as described above, took into account the firing
rates and pairwise interactions, and produced a probability distribution
that was denoted by P2. An Nth-order model would likewise take into
account firing rates and all interactions from second-order (pairwise) up
to Nth order. Because an accurate Nth-order model captured all of the
higher-order interactions found in the data, its probability distribution,
PN, was identical with the probability distribution found in the data. The
entropy, S, of a distribution, P, was calculated in the standard way:

S � � �
i�1

2N

P�Vi� � log�P�Vi��. (11)

Because recordings were �1 h long, and because all ensembles were
relatively small (N 
 10), the errors in estimating entropy were expected
to be minor (Strong et al., 1998; Schneidman et al., 2006). Note that the
entropy of the first-order model, S1, was always greater than the entropy
of any higher-order models, S2,. . . SN, because increased interactions
always reduce entropy (Cover and Thomas, 1991; Schneidman et al.,
2006). The multi-information, IN, was the total amount of entropy pro-
duced by an ensemble, and was expressed as the difference between the
entropy of the first-order model and entropy of the actual data (Schnei-
dman et al., 2003):

IN � S1 � SN. (12)

The amount of information accounted for by the second-order maxi-
mum entropy model was given by the following:

I2 � S1 � S2. (13)

The performance of the second-order maximum entropy model was
therefore quantified by the fraction of the multi-information that it cap-
tured, denoted by f:

f �
I2

IN
. (14)

This fraction could range between 0 and 1, with 1 giving perfect perfor-
mance. For long recordings, the fraction can also be expressed as follows
(Cover and Thomas, 1991; Shlens et al., 2006):

f �
D1 � D2

D1
, (15)

where D1 is the Kullback–Leibler divergence between P1 and PN given by
the following:

D1 � �
i�1

2N

PN�Vi� � log2�PN�Vi�

P1�Vi�
�, (16)

and D2 is the Kullback-Leibler divergence between P2 and PN:

D2 � �
i�1

2N

PN�Vi� � log2�PN�Vi�

P2�Vi�
�. (17)

We calculated the fraction using the differences in entropy method and
the Kullback–Leibler divergence method, obtaining largely similar re-
sults. For brevity, only results from the second method were reported
here.

Evaluating the model: multiple time bins. In addition to assessing the
model’s performance in predicting the probability of network states, we
also sought to evaluate how well concatenated states from the model
could predict sequences of active states. As before, we must first explain
several terms. A sequence was defined as a series of consecutively active
states, bracketed before and after by inactive states. An active state was a
state in which at least one neuron was active, and an inactive state was a
state in which no neuron was active. This definition of a sequence was
identical to that given by Beggs and Plenz (2003) for a neuronal ava-
lanche. Two simple statistics of sequences of states were considered: se-
quence length and sequence size. Sequence length was merely the num-
ber of consecutively active states, and sequence size was the total number
of spikes/LFPs in the sequence. Note that this definition allowed a neuron
to be counted more than once in a given sequence. We sought to examine
whether the distribution of states given by the model could be used to
produce a good estimate of sequence lengths and sizes observed in the
data. We realized that the models of Schneidman et al. (2006) as well as
Shlens et al. (2006) were not originally intended for this purpose. How-
ever, their remarkable success in predicting the distribution of states at
one time point suggested to us that they might also succeed in some
aspects of sequence prediction. If they did not, we reasoned, this would
only point out that the appearance of correlated states was not temporally
independent. This might suggest modifications to the model so that it
could better predict such sequences.

To generate sequences from the data, we took the raster of activity (Fig.
1 D) and randomly selected a time within its range. From this start time,
we selected a period of length T/2, where T was the number of time bins
in the actual recording, allowing the end of the raster to wrap around to
the beginning, so that the raster was divided into two periods of equal
length. From one of these half-rasters, we extracted distributions of se-
quence lengths and sizes. This was done for each of the 250 ensembles of
neurons. We note that this procedure could have produced an artificially
long sequence at the wrapping point, where the end of the raster was
concatenated with the beginning. However, this occurred only once in 13
data sets and only when that data set was binned at 20 ms. This single
extra sequence out of thousands did not significantly affect our conclu-
sions. To estimate variability within the actual data group, we subtracted
the 125 pairs of distributions from each other, point by point, squaring
the differences and summing them. This sum of squares served as the
measure of variability within the actual data group.

To generate sequences by concatenation, we drew states from P2 in
proportion to their probability and then randomly concatenated them
until they had a length of T/2. In this manner, an artificial raster was
constructed for each of the 250 ensembles of neurons. In doing this, we
assumed temporal independence between states. From these rasters, we
next extracted distributions of sequence lengths and sizes. To estimate
variability within this group, we randomly selected 125 pairs of distribu-
tions and subtracted them from each other, squaring the differences and
summing them. This sum of squares served as the measure of variability
within the concatenation group.

To measure variability between concatenated and actual data, we ran-
domly selected 125 pairs of distributions (pair: 1 concatenated, 1 data)
and subtracted them from each other, squaring the differences and sum-
ming them. This between groups sum of squares was then compared with
the sum of squares from within each group. To compare these distribu-
tions, they were first sorted in ascending order and then cumulative
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probability distributions were constructed. Then the nonparametric
Kolmogorov–Smirnov test was applied to probe for significant differ-
ences between the cumulative distributions. The largest difference at any
point between two cumulative curves is termed D, and is the relevant
statistic. If the between-groups curve significantly exceeded both of the
within-groups curves, then the data were declared significantly different
from the concatenated sequences.

Significant correlations. To assess whether a correlation was significant,
we first used the hypergeometric distribution (Johnson et al., 1997) to
calculate the number of times, M, that spikes from neuron A and neuron
B would be expected by chance to occur in the same time bin:

M �
�nA � nB�

nb
, (18)

where nA and nB are the number of spikes produced by neurons A and B,
respectively, and nb is the number of time bins in the recording. The SD
of this distribution is given as follows:

SD � ���nb � nA� � �nb � nB� � nA � nB�

nb2 � �nb � 1�
. (19)

For large numbers of spikes and bins, as was the case in these experi-
ments, the hypergeometric distribution approaches a Gaussian, and we
used this to estimate the 1% cutoffs in the expected number of synchro-
nous spikes:

N�1% � M � 2.326 � SD,

N�1% � M � 2.326 � SD. (20)

Here N�1% and N�1% denote the number of synchronous spikes ex-
pected in the top 1% and bottom 1%, respectively, of the distribution.
With these values, we were then able to calculate the correlation values
expected by chance at these 1% extremes:

Cov� A, A� �
��nA�1 � A� �2� � ��nb � nA�A� 2��

nb � 1
(21)

Cov�B,B� �
��nB � �1 � B� �2� � ��nb � nB�B� 2��

nb � 1
(22)

Cov� A,B� � 	�N�1 � A� ��1 � B� �� �

��nA � N��1 � A� �B�� � ��nB � N�A� �1 � B��� �

��nb � nA � nB � N)A� B�)]/nb � 1. (23)

Corr� A,B� �
Cov� A,B�

�Cov� A, A� � Cov�B,B�
, (24)

where A� �
nA

nb
, and B� �

nB

nb
, and N represents either N�1% or N�1%,

depending on which extreme was being calculated. Actual correlation
values that exceeded these thresholds for extreme correlations were de-
clared significant at the p 
 0.01 level.

We calculated time-lagged correlations, ��i
t�j

t�1�, as a parameter that
could be used to extend the present model of spatial correlations into a
model of spatiotemporal correlations. Here, �j

t�1 represents the activity
of neuron j at time t�1.

Computing. We wrote programs implementing the maximum entropy
model in Matlab 6.5 and ran them on clusters of Power4, 1.3 GHz nodes.

Results
The results comprise six main sections. First, we describe general
features of activity in these in vitro cortical preparations. Second,
we evaluate the performance of the second-order maximum en-
tropy model, demonstrating that it can account for almost 90% of
spatial correlations. Third, we examine the interactions (Jij) and
local fields (hi) generated by the model, showing that these pa-
rameters are similar across diverse preparations, but vary with
ensemble size. Fourth, we show that increases in group interac-
tions with ensemble size tend to prevent the growth of entropy in
cliques larger than �40 neurons. Fifth, we show that in vitro
cortical networks commonly produce temporal correlations, but
that these are not accounted for by concatenated model states.
Sixth, we investigate how future models might account for tem-
poral correlations.

General description of activity
We recorded spontaneous extracellular activity from all prepara-
tions with multielectrode arrays for about 1 h (58.10 � 6.86 min,
mean � SD). This included spike data from dissociated cortical
cultures (n � 3) and organotypic cortex cultures (n � 3), as well
as LFP data from organotypic cortex cultures (n � 3), rat acute
cortical slices (n � 3) and a slice of epileptogenic human cortex
(n � 1). Each preparation had 20 or more identified neurons or

Figure 1. Data collection and representation. A, Left, Dissociated rat cortical neurons cul-
tured on 60-channel microelectrode array. Several neurons can be seen around an electrode tip,
which appears as a black circle. Overall array is similar to the grid shown in C below and has an
interelectrode distance of 200 �m. Right, Spike waveform recorded from dissociated culture.
Signals that crossed a threshold were cut out and later sorted. B, Left, Organotypic slice culture
of rat cortex on high-density array with 60 �m interelectrode distance. Electrodes are visible as
small black dots in a hexagonal lattice. Right, Spike waveform from organotypic culture. Full
waveform was stored and later sorted. C, Left, Acute slice of human cortex removed from
peritumoral region, placed on 60-channel microelectrode array. Right, LFP waveform from
acute slice. All signals that crossed a threshold were recorded as events. D, Raster plot of data
show gray boxes for the three time bins used: 20, 4, and 1.2 ms. All data were binned at 20 ms,
and then also at one finer resolution (4 ms for 200 �m array; 1.2 ms for 60 �m array). Dots
represent spikes from individual neurons or LFP negative peaks from individual electrodes. A
correlated pattern occurs when events from several neurons/electrodes appear in one time bin.
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active electrodes. Spiking activity from
dissociated cultures and organotypic cul-
tures consisted of periods of relative quies-
cence, punctuated by bursts that involved
many neurons, consistent with results re-
ported previously (Segev at al, 2002;
Tateno et al., 2004; Van Pelt et al., 2004;
Wagenaar et al., 2005; Baker et al., 2006;
Etyan and Marom, 2006; Bettencourt et
al., 2007). Spikes were biphasic waveforms
�1 ms wide (Fig. 1A,B). Local field poten-
tial activity from organotypic cultures and
acute slices was similar to that reported
previously and consisted of quiescent pe-
riods also punctuated by network bursts
(Beggs and Plenz, 2003; Beggs and Plenz,
2004). Local field potentials that crossed
threshold appeared as negative voltage
peaks �20 ms wide, indicative of a popu-
lation spike (Fig. 1C). All data were binned
at 20 ms to facilitate comparison with pre-
vious studies (Schneidman et al., 2006;
Shlens et al., 2006). In addition, data col-
lected on the 60 electrode array were also
binned at 4 ms, as this was the average time
between successive activation of two elec-
trodes within a network burst when the interelectrode spacing
was 200 �m, as reported previously (Beggs and Plenz, 2003). Data
from the 512 electrode array were also binned at the proportion-
ately smaller 1.2 ms, to match the shorter interelectrode spacing
of 60 �m in that array.

When activity from all neurons or electrodes in an array was
plotted in raster form, we commonly observed multiple spikes or
LFPs in the same time bin (Fig. 1D). To explore the abundance of
these correlated states, we randomly selected small ensembles
(N 
 10) of neurons or electrodes from each preparation and
examined the probability distributions of their states. These cor-
related states, or multineuron firing patterns, occurred with
probabilities that were often orders of magnitude different from
what was predicted by a model that assumed independent firing. A
second-order maximum entropy model, analogous to the Ising
model from physics (Fig. 2), was able to account for most of these
correlated states. This is shown in Figure 3, where the probabilities
predicted by the independent Poisson model are plotted in red dots.
These red dots are often far from the black diagonal line that marks
the region occupied by the actual data. The maximum entropy
model, however, predicted the probability of network states far more
accurately, as can be seen by the blue dots in Figure 3, which lie much
closer to the diagonal line.

Performance of the model
To quantify model performance, we calculated the fraction of
ensemble correlations that was captured by the second-order
maximum entropy model: f � I(2)/IN. Here, I(2) was the informa-
tion explained by the model and IN was the total multi-
information available in the ensemble (Fig. 4A). The figure shows
that the fraction was �0.55 for all 20 ms data, and generally
increased toward 0.95 as the available multi-information in-
creased. This result suggested that the model performed best
when ensembles were information-rich, and was in agreement
with results reported previously (Schneidman et al., 2006). The
average fraction for each preparation type was also plotted for 20
ms data (Fig. 4B), and demonstrated that the model accounted

for a sizable proportion of ensemble correlations in widely differ-
ent preparations including dissociated cultures, organotypic cul-
tures and acute slices (supplemental Table 1, available at www.
jneurosci.org as supplemental material). The average fraction for
all preparations was 0.88 � 0.07, in agreement with the 0.90
fraction reported by Schneidman et al. (2006), but below the 0.98
value reported by Shlens et al. (2006). Figure 4, C and D, presents
the same results for data binned at shorter times (1.2 or 4 ms).
The model performed better on data binned at 20 ms (f � 0.88 �
0.07) than on data binned at finer temporal resolutions (f �
0.76 � 0.12). This difference was significant (Mann–Whitney
two-tailed test, n1 � 13; n2 � 13; U � 138; p � 0.006). Interestingly,
the model also performed significantly better on LFP data ( f �
0.93 � 0.04; n � 7 preparations; 1750 ensembles; 20 ms data) than
on spike data ( f � 0.85 � 0.06; n � 6 preparations; 1500 ensembles;
20 ms data) (Mann–Whitney two-tailed test, n1�6; n2�7; U�41;
p � 0.004), suggesting that the maximum entropy approach is
applicable to neural data that is not just in the form of spikes.

Interactions J and local fields h
To further compare the cortical network data with previously
published results from mostly retinal tissue (Schneidman et al.,
2006), we examined the values of the interactions Jij and local
fields hi produced by the model. Figure 5 shows representative
results from one set of spike data and one set of LFP data. In
general, the results for the cortical organotypic spike data were
similar to those published for retinal spike data (Schneidman et
al., 2006). The interaction values Jij were both positive and nega-
tive, but became increasingly positive for larger pairwise correla-
tion coefficients Cij (Fig. 5A, left). This suggested that weak in-
teractions (low Cij) could be either excitatory (positive Jij) or
inhibitory (negative Jij), but that strong interactions were domi-
nated by excitatory connections. The distribution of local fields hi

had a negative mean (Fig. 5B, left), suggesting that most neurons
were biased to not fire spikes. The distribution of interactions Jij

had a slightly positive mean but was near zero (Fig. 5C, left),
suggesting that the average interaction between neurons was pos-

Figure 2. The Ising model of neural interactions. A, Harmony between three neurons (�a, �b, �c), their local fields (�h,�h),
and their interactions (�Jab, �Jbc, �Jac). Each neuron is represented by a circle, and the direction of the arrow inside depicts
whether the neuron is firing a spike (up) or not (down). The gray region surrounding neuron �b has many arrows pointing up,
indicating the positive local field �h. The white region surrounding neurons �b and �c has many downward pointing arrows,
indicating the negative local field �h. When the arrow of a neuron is pointing in the same direction as its local field, it is in
harmony with that field. Neurons in A are also in harmony with their interactions, represented by the solid black lines joining the
neurons. A positive interaction like �Jac tends to make neurons share the same state (both up, or both down), whereas a negative
interaction like �Jab tends to make neurons have different states (one up, one down). B, When neuron �a changes its state and
fires a spike, it introduces frustration. Now �a has an arrow pointing against its local field and against its interactions with neurons
�b and �c. To denote this frustration, the parameters �h, �Jab, and �Jac are displayed in a different font. C, Harmonious states
in the Ising model are lower in energy and more probable than frustrated states. The exponential probability distribution maxi-
mizes entropy, given the constraints of the local fields and the interactions. The Z in the equation just ensures that the probability
distribution sums to one.
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itive but weak. A comparison of the average interactions Jij for
LFP and spike data binned at 20 ms revealed that they were not
significantly different (JLFP � 0.73 � 0.08; JSpike � 0.66 � 0.04;
Mann–Whitney two-tailed test, n1 � 6, n2 � 7, U � 33, p �
0.05), although individual distributions sometimes appeared to
be dissimilar. In addition, the pairwise correlation coefficients for
LFP data were not significantly larger than those for spike data
binned at 20 ms (CLFP � 0.38 � 0.26; CSpike � 0.13 � 0.12;
Mann–Whitney two-tailed test, n1 � 6, n2 � 7, U � 33, p �
0.05), indicating that the data sets were similar in this respect.

The fact that both positive and negative interactions Jij coex-
isted in the same cortical networks meant that many ensembles
were “frustrated” and could not attain harmony in any state (Fig.
2B). We measured the number of frustrated triplets (triads of
neurons or LFPs that had an odd number of negative interac-
tions) and found that frustration was indeed common. For LFP
data, the fraction of frustrated triplets was (0.46 � 0.05), and for
spike data the fraction was (0.43 � 0.05) (Table 1). Frustration
was prevalent in data binned at 20 ms and at 1.2 or 4 ms. Net-
works with no frustration possess one harmonious state and are
predicted to have little diversity, whereas networks with frustra-
tion possess many equally likely states and are predicted to have a
wider range of activity patterns.

We also examined interactions Jij and local fields hi produced
by the model as a function of ensemble size. Figure 6A shows that
interactions for four-cell ensembles tended to be larger than in-
teractions for 10-cell ensembles. This is seen by noting that more
dots were below the diagonal line than above it. Although this was
particularly noticeable for the spike data (left panel), it was also
true for the LFP data (right panel). In fact, as ensemble size was
increased from four to 10, there was a significant decrease in
interaction strength for data binned at 20 ms (ANOVA, df � 3,
39; p � 0.05) (Table 2). This was also true for data at short (1.2 or
4 ms) bin widths (ANOVA, df � 3, 39; p � 0.05) (Table 3). Our
results are in contrast to those reported by Schneidman et al.
(2006), suggesting that cortical networks behave differently from
retinal networks in this respect. In addition, the local field hi

generated by intrinsic neuronal activity became significantly less
negative with increasing ensemble size for data binned at long
and short bin widths (ANOVA, df � 3, 39; p � 0.05) (Tables 2, 3),
consistent with previously reported results (Schneidman et al.,
2006). Although this seemed to imply that neurons in larger en-
sembles would be less constrained by their neighbors, this was not
the case. Following Schneidman et al. (2006), we examined the
local field produced by interactions with other cells, hint, where

hi
int �

1

2�
j
i

Jij�j.

Whereas hi tended toward zero with larger ensemble sizes, hint

became significantly more negative for data at short, but not at

4

Figure 3. The maximum entropy model successfully predicts correlated states for many in
vitro preparations. Figures compare the abundance of correlated states from data and models.
The predicted rate is plotted against the observed rate. Correlated states from actual data would
lie along the diagonal line. Red dots represent rates for 250 ensembles of 10 cells, each predicted
by an independent Poisson model. Blue dots represent rates predicted by the second-order
maximum entropy model. Note how blue dots in general lie much closer to the diagonal line,
indicating superior prediction over the Poisson model. Horizontal bands of red dots represent
multievent states predicted by the Poisson model, and often lie over 10 orders of magnitude
below diagonal line. A–E show results on a single representative preparation of each type. For
each preparation, 250 ensembles each containing 10 randomly chosen cells were run. Results
are shown for data binned at 20 ms. Data binned at finer resolutions fit less well.
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long, bin widths (ANOVA, df � 3, 39; p �
0.05) (Tables 2, 3), in partial agreement
with previous work (Schneidman et al.,
2006). The increased negative strength of
hint can be seen in Figure 6B, where the
grayscale density cloud for 4 cells (top)
tended to move further across the diagonal
line for 10 cells (bottom). This movement
reflected the trend for hint to increase with
ensemble size, indicating that in large en-
sembles single-neuron activity was quite
strongly influenced by the activity of
neighboring neurons. This can also be seen
in Figure 6C, where both hi and Jij tended
to zero with increasing ensemble size,
whereas hint became increasingly negative.
Opposing trends in hint and hi are to be
expected, although, because the sum hint �
hi should roughly equal the constant value
��i�. The increasingly strong influence of
neuronal neighbors suggested that larger
ensembles would become constrained in
the number of states that they visited.

Neuronal clique sizes
To estimate how neuronal interactions
would constrain larger ensembles, we
plotted the multi-information, IN, and the
entropy produced by the first-order
model, S1, together in log–log coordinates
as ensemble size was increased (Schnei-
dman et al., 2006). Because SN � S1 � IN,
we were able to estimate the actual entropy
in the ensemble, SN, as the difference be-
tween these two lines. This estimate as-
sumed that both S1 and IN could be extrap-
olated by a linear function in log–log
space. As seen in Figure 7, these lines converged in all data sets,
meaning that SN would be expected to stop growing for ensem-
bles beyond a particular size. For example, the bold white circle in
Figure 7A occurs between 20 and 30 cells, indicating that the
entropy produced by ensembles from dissociated cultures con-
taining �25 neurons would be nearly maximal. Ensembles larger
than �25 cells would not be expected to have larger entropy,
although they would have more states that could be visited. Here,
we use the term “clique” to describe the ensemble size at which
entropy would stop growing. The average clique size for data
binned at 20 ms was 23.0 � 27.3, and was 38.7 � 36.9 for data
binned at shorter intervals (supplemental Table 2, available at
www.jneurosci.org as supplemental material). These numbers
are smaller than those reported by Schneidman et al. (2006), who
reported clique sizes of �180 neurons in retinal tissue. Interest-
ingly, in our data the clique sizes for spike data were significantly
larger than for LFP data at both bin widths of data (Fig. 7F) (20
ms spikes, 39.6 � 33.8; 20 ms LFPs, 8.8 � 4.5; Mann–Whitney
two-tailed test, n1 � 6, n2 � 7, U � 40, p � 0.005; 1.2/4 ms spikes,
65.4 � 38.9; 4 ms LFPs, 15.7 � 11.8; Mann–Whitney two-tailed
test, n1 � 6, n2 � 7, U � 39, p � 0.005). Spike cliques were larger
by a factor of 4.5 for data binned at 20 ms, and by a factor of 4.2
for data binned at 1.2 or 4 ms. This nearly constant ratio is con-
sistent with the idea that LFP population spikes are produced by
groups of several neurons firing action potentials synchronously
near the electrode.

Temporal correlations not captured by concatenating states
The above results indicated that the second-order maximum en-
tropy model was effective in predicting correlated states for cor-
tical tissue. These correlated states could be thought of as snap-
shots of the spatial correlation structure. We also sought to
predict sequences of snapshots, like frames in a short movie seg-
ment, by concatenating states from the model. Although the
model was not originally intended to address temporal correla-
tions, we chose to examine whether temporal correlations were
abundant in the data. If so, we reasoned, then they should be
accounted for in future models.

As a simple measure of temporal structure, we plotted the
distributions of sequence lengths and sizes for actual data (Fig. 8)
and compared them to the distributions produced by concate-
nating states drawn from the model. Here, we defined a sequence
as a series of consecutively active states, bracketed at the begin-
ning and end by inactive states (see Materials and Methods). In
the actual data, there was a strong tendency for one active state to
be followed by another active state, often producing sequences
longer than one frame. However, the sequences produced by
concatenating states from the model were often very short be-
cause the most common state in the model distribution was the
inactive state. This difference can be seen in the log–log plots in
the left column of Figure 8, where the average length distributions
produced by actual data (black dots) had tails that were often far
longer than the average length distributions produced by concat-

Figure 4. Quantifying performance in the maximum entropy model. A, The fraction of network correlations captured by the
model, I(2)/IN, is plotted against the full multi-information IN, for data binned at 20 ms. Each dot represents one ensemble of 10
cells, randomly chosen from one preparation. Each of the 13 preparations had 250 ensembles, giving 3250 dots. The general trend
is for fractions to approach 0.95 as multi-information increases. B, Average fraction of network correlations for each preparation
type, for data binned at 20 ms. Each symbol is an average from three preparations of that type, except for the human slice, where
there was only one preparation. C, The fraction of network correlations captured by the model for data binned at 1.2 and 4 ms. D,
Average fraction of network correlations for each preparation type, for data binned at 1.2 and 4 ms. Error bars show SDs. Note that
model performance was better for LFP data and better for 20 ms data.
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enation (gray dots). We also compared sequence sizes produced
by the data and concatenation (Fig. 8, right column). To quantify
differences between the data and concatenation, we used resam-
pling to generate many data and concatenation distributions, and
then compared them using the nonparametric Kolmogorov–
Smirnov test (see Materials and Methods) (Fig. 9). In 8 of 13 data
sets binned at 20 ms, the sequence lengths produced by the data
were significantly longer than those produced by concatenations
of model states (supplemental Table 3, available at www.
jneurosci.org as supplemental material). This trend was even
stronger for data binned at 1.2 or 4 ms, where 11 of 13 data sets
had significantly longer sequence length distributions (supple-

Figure 5. Interactions and local fields for representative preparations with spikes and with
LFPs. A, Left, Interaction strengths Jij plotted against correlation coefficients Cij for spike data
from an organotypic culture. Each dot represents one neuron pair from one ensemble; 2500
pairs are shown. Right, Interaction strengths plotted against correlation coefficients for LFPs
from an organotypic culture. Note much larger correlation coefficients and wider range of in-
teraction strengths in LFP data. B, Left, Distribution of local field strength hi for organotypic
spikes. The distribution mean is negative, indicating that most cells are influenced to not spike
by other cells outside the ensemble. Right, Distribution of field strength for organotypic LFPs
shows similar negative mean. C, Distribution of interaction strengths for organotypic spikes,
left, and for organotypic LFPs, right. Positive and negative interactions exist in both prepara-
tions, suggesting that frustration is common (Table 1). Results are shown for data binned at 20
ms.

Table 1. Fraction of frustrated triplets

File type 20 ms bin width 1.2/4 ms bin width

Dissociated spikes 0.481 0.464
0.461 0.252
0.476 0.472

Organotypic spikes 0.377 0.025
0.396 0.014
0.377 0.001

Organotypic LFPs 0.467 0.452
0.488 0.496
0.490 0.477

Acute LFPs 0.350 0.390
0.502 0.468
0.493 0.475

Human LFPs 0.430 0.452

The fraction of frustrated triplets for all networks at two different bin widths. A frustrated triplet consists of three
neurons or electrodes with conflicting interaction strengths Jij. These conflicts prevent any state of the triplet from
achieving harmony. Note that frustration is common in most preparations, suggesting that it is difficult for networks
to settle into states with long-term stability.

Figure 6. Interactions, Jij, and local fields, hi, change with ensemble size. A, Left, Interaction
strengths for cell pairs chosen from a 10-cell ensemble, Jij

(10), plotted against interaction
strengths for the same cell pairs chosen from a 4-cell ensemble, Jij

(4), for representative orga-
notypic spike data. Right, Same plot now with representative organotypic LFP data. Note that
asymmetry in spike plot is not present in LFP plot, indicating that in this case interaction
strength decreases with ensemble size more for spikes than for LFPs. B, Plots of local field
strength caused by interactions, hi

int, against local field strength caused by intrinsic activity, hi.
Density cloud moves across the diagonal line as ensemble size is increased from four to 10,
indicating that hi

int dominates over hi in larger ensembles. Higher density is coded by darker
pixels. C, Left, Average of Jij

(10), hi, and hi
int for all preparations as ensemble size is increased.

Significant changes with ensemble size occurred for Jij (F � 5.91, Fcrit � 2.85, 	� 0.05, df �
3, 39) and hi (F � 7.65), but not for hi

int (F � 2.54). Right, Individual plots of Jij
(10), hi, and hi

int for each preparation as ensemble size is increased, showing that average trends were fol-
lowed in each individual case. Error bars give SDs. Results shown are for data binned at 20 ms.
Full results are given in Tables 2 and 3.
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mental Table 3, available at www.jneurosci.org as supplemental
material). In contrast, the sequence size distributions (size as the
total number of spikes or LFPs in a sequence) were significantly
larger in only 3 of 13 data sets binned at 20 ms, and in 4 of 13 data
sets binned at 1.2 or 4 ms (supplemental Table 3, available at
www.jneurosci.org as supplemental material). Overall, these re-
sults indicate that sequences of active states do not occur inde-
pendently in cortical networks in vitro.

Possible temporal extensions of the model
Parameters that could account for delayed relationships between
neurons might allow the present model to be extended into the
temporal domain (Fig. 10A). We considered the time-lagged cor-
relation, ��i

t�j
t�1�, as a candidate for this task. We hypothesized

that large time-lagged correlations would reflect strong synaptic
connections between neurons over time. Therefore we expected
that strong time-lagged correlations would be significantly re-
lated to long sequence lengths. To measure how much the se-
quence lengths in the actual data exceeded the sequence lengths
produced by concatenation, we used the Kolmogorov–Smirnov
statistic D. The fraction of statistically significant time-lagged
correlations in data binned at 20 ms indeed had a significant
relationship with D, as shown in Figure 10B (r � 0.627; p �
0.022). This relationship was even stronger for data binned at
finer temporal resolutions (Fig. 10C) (r � 0.735; p � 0.004).
These findings suggest that the time-lagged correlation would be
a plausible parameter to include in a future model that would
address temporal relationships between correlated network
states.

Discussion
There are two main findings of this work. First, it demonstrates
that a second-order maximum entropy model predicts correlated

states for cortical networks in vitro with reasonable accuracy, for
both spike and LFP data. Second, it demonstrates that correlated
states have significant temporal dependencies, and that these
cannot be captured by concatenating states from the model. In
what follows, we will discuss the validity of this work, how it
compares to previous studies, and the implications it has for
dynamic models of neural networks.

Validity
Because most of the previous work with the maximum entropy
approach (Schneidman et al., 2006; Shlens et al., 2006) was done
in retinal tissue, it is not easy to directly assess the validity of the
present results. However, Schneidman et al. (2006) also applied
the model to one dissociated culture of cortical neurons. They
reported that the model was able to account for �90% of the
available multi-information in one dissociated culture, whereas
we obtained a fraction of 79 – 85% in three of the same prepara-
tion type. Although this appears to be a discrepancy, other gen-
eral features reported by Schneidman et al. (2006) were mirrored
by our findings: the model performed better on information-rich
ensembles; hint increased with ensemble size; h tended toward
zero with increased ensemble size; larger ensembles were pre-
dicted to form cliques where entropy would cease to increase; the

Table 2. Trends in Javg, havg, and havg
int (20 ms bin)

Data type Variable Factual Fcrit df

All data, pooled Javg 5.91* 2.85 3,39
havg 7.65*
havg

int 2.54
Spike data only Javg 2.46 3.16 3,18

havg 2.94
havg

int 1.54
LFP data only Javg 7.31* 3.07 3,21

havg 8.92*
havg

int 2.23

The interactions Javg and local fields havg, havg
int change in strength as ensemble size is increased from 4 to 10.

Interactions (Javg) and local fields caused by cells outside the ensemble and intrinsic firing tendencies (havg) moved
toward zero with increasing ensemble size (Fig. 6). However, local fields caused by cells within the ensemble (havg

int)
became more negative. Significant changes at the p � 0.05 level are indicated by an asterisk. Table shows only data
binned at 20 ms.

Table 3. Trends in Javg, havg, and havg
int (1.2 and 4 ms bins)

Data type Variable Factual Fcrit df

All data, pooled Javg 47.31* 2.85 3,39
havg 47.68*
havg

int 18.72*
Spike data only Javg 15.07* 3.16 3,18

havg 12.46*
havg

int 9.16*
LFP data only Javg 58.07* 3.07 3,21

havg 70.21*
havg

int 10.53*

The interactions Javg and local fields havg and havg
int change in strength as ensemble size is increased from 4 to 10. All

changes were significant at the p � 0.05 level and are indicated by an asterisk. Table shows only data binned at 1.2
or 4 ms.

Figure 7. Estimation of neuronal clique sizes. Information rate for independent model (S1 ,
gray dots) and for actual data (IN , black dots) are plotted in log–log space as a function of
number of cells in ensemble. The point at which the S1 and the IN extrapolated lines would
intersect gives an estimate of the ensemble size at which entropy would cease to increase. A–E,
Representative plots for dissociated culture data, organotypic spike data, organotypic LFP data,
acute slice LFP data, and human slice LFP data binned at 20 ms. F, Histogram showing average
clique sizes for each data type, for both short (1.2 or 4 ms, gray) and long (20 ms, black) bin
widths. Error bars give SDs. Results suggest that entropy will no longer increase with ensemble
size in relatively small cliques.
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fraction of frustrated triplets was �40%. All of these findings
suggest that our implementation of the maximum entropy model
was quite similar to that of Schneidman et al. (2006).

A major conclusion from maximum entropy approaches is

Figure 8. Sequence lengths and sizes predicted by concatenation are often significantly
smaller than those found in actual data. Concatenated sequences were constructed by ran-
domly drawing states from the model probability distribution. The left column shows sequence
length distributions for concatenated sequences (gray) and data (black); the right column
shows sequence size distributions. A–E show representative plots for data from dissociated
spikes, organotypic spikes, organotypic LFPs, acute slice LFPs, and human slice LFPs. Error bars
show SDs. Results shown are for data binned at 20 ms.

Figure 9. Comparing sequence length distributions. A, Two sample sequence length distri-
butions from the data and from concatenations, plotted together in log–log coordinates. Sam-
ple distributions from the data are plotted in black; those from concatenations are in gray.
Sample distributions from the data were taken from a half-length segment of the recording
with a randomly chosen start time. To construct distributions from concatenation, correlated
states were chosen in proportion to their probability of occurrence in the model and then
concatenated. Note the long tail in the data distributions. B, Sum of squares differences be-
tween length distributions are sorted in ascending order and plotted. The light gray dashed
curve is for differences between pairs of concatenated length distributions; the dark gray
dashed curve is for differences between pairs of data length distributions; the solid black curve
is for differences between pairs of data and concatenated length distributions. For each curve,
125 pairs of sample distributions like those shown in A were used. Note that differences be-
tween concatenations and data are larger than differences within each group. C, Cumulative
distributions of differences. The curves in B were converted to cumulative probability distribu-
tions, and the maximum difference between the (data– concatenated) curve and the (data–
data) curve was found. This difference was called D and was used to test for significance in the
Kolmogorov–Smirnov test. Thus, D was a measure of the temporal mismatch between concat-
enations and data.
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that higher-order correlations play a relatively minor role in liv-
ing neural networks. It is therefore reasonable to question
whether such approaches can detect higher-order correlations if
they were present. This issue has been addressed previously, so we
did not undertake a sensitivity analysis ourselves. However,
Shlens et al. (2006) showed that when higher-order correlations
were injected into actual data, the performance of the maximum
entropy model declined. Because our approach is mathematically
similar, we conclude that we would be able to detect higher-order

correlations in our data as a reduction in the fraction of multi-
information captured by the second-order model.

Although the in vitro preparations used here are not driven by
sensory inputs and are disconnected from other brain regions,
they have several features that make them popular for investiga-
tion. Simplified model systems are typically easier to understand
than complex systems in their entirety, yet often retain important
emergent properties. For example, many network phenomena
observed in the intact organism can also be seen in vitro [e.g.,
gamma and theta oscillations (Traub et al., 1996; Fischer et al.,
2002), slow wave oscillations (Sanches-Vives and McCormick,
2000), up-states (Cossart et al., 2003), reproducible activity pat-
terns (Ikegaya et al., 2004; Beggs and Plenz, 2004), and neuronal
avalanches (Beggs and Plenz, 2003; Petermann et al., 2006)]. In
addition, in vitro preparations allow favorable recording condi-
tions like short interelectrode distances (200 – 60 �m), large
numbers of electrodes (60 –512) and long-term stability (1–10 h).
Such features improve the chances of recording from synaptically
connected neurons and enhance the statistical power of the data
set. For these and other reasons, in vitro approaches will probably
continue to provide important information about network func-
tion, and play an essential role in neuroscience research that is
complementary to in vivo work. Nevertheless, caution should be
used in extrapolating in vitro results to in vivo systems.

The three acute cortical slices used in this study were bathed in
fluid containing elevated potassium (5 mM) and reduced magne-
sium (0 mM). These ionic concentrations are different from what
would typically be found in vivo. Therefore we also chose to ex-
amine activity in many other cortical network preparations
bathed in culture medium or in normal CSF. In addition, the one
slice of human tissue that we studied was removed from a patient
with epilepsy. Caution should therefore be exercised when ex-
trapolating these results to in vivo experiments. In general, the
results from all of these preparations were in agreement, suggest-
ing that the second-order maximum entropy model can consis-
tently describe the origin of correlated states in a broad class of
neural networks.

Comparison with previous work
Using the maximum entropy approach, Shlens et al. (2006) ob-
tained substantially higher fractions of multi-information in ret-
inal tissue (�98%) than we report here for cortical tissue
(�88%). One reason for this difference could be that Shlens et al.
(2006) only considered ensembles of parasol cells, whereas we did
not restrict our ensembles to be composed of only one cell type.
Circuit differences could also account for this disparity; the retina
is primarily a sensory structure with only moderate feedback con-
nections (Dowling, 1970), whereas the cortex is primarily an as-
sociation structure with dense feedback connections (Braiten-
berg and Schuz, 1998). Our results are more similar to those of
Schneidman et al. (2006) in terms of the fraction of multi-
information and the general trends in local fields. Nevertheless,
these findings demonstrate that pairwise interactions determine
the preponderance of spatial correlation structure at the network
level in cortical tissue.

Despite these general similarities, there were some notable
differences between the present findings and those reported pre-
viously. The interaction strengths, J, tended toward zero with
increasing ensemble size in cortical data. In retinal data, J showed
no significant decline (Schneidman et al., 2006). Although de-
creases in J would be expected to lead to less constrained ensem-
bles, the average clique size was smaller for cortical data than for
retinal data. If taken at face value, this result would suggest that

Figure 10. Candidate factor for a temporal model. A, Schematic showing temporal relation-
ship of activity in neurons/electrodes i and j across time. The appropriate relationship might
allow the maximum entropy model to be extended to account for transitions between corre-
lated states. B, The fraction of significant temporal correlations is significantly correlated with
maximum D value for 20 ms data (r � 0.627; p � 0.022). C, The fraction of significant temporal
correlations is also significantly correlated with maximum D value in 1.2 or 4 ms data (r �
0.735; p � 0.004). To calculate the fraction of significant correlations, all correlations between
neuron/electrode pairs across one time step were compared with correlations expected by
chance.
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cortical ensembles are less flexible than retinal ensembles. How-
ever, these disparities could reflect the effects of being driven by
an external stimulus or differences in circuitry. Activity from
cortical networks presented here was exclusively generated by
spontaneous activity, whereas the retinal networks in the study by
Schneidman et al. (2006) were shown natural movies. Moreover,
the organotypic cultures used here contained portions of cortex,
striatum and thalamus, allowing for the formation of long-range
synaptic loops between brain structures. Future work should
provide more information about the effects of spontaneous ac-
tivity and circuit structure on the performance of the maximum
entropy model.

Another interesting finding is that the model accounted for
higher fractions of multi-information in LFP data than in spike
data. Although both Schneidman et al. (2006) as well as Shlens et
al. (2006) originally developed their models to describe corre-
lated states among spikes, there is no reason why their approach
would not be more generally applicable. The LFP signals that
were used in the present work showed sharp negative peaks and
therefore could be considered population spikes, indicative of
groups of neurons firing action potentials synchronously near an
electrode. This would be consistent with the finding that the
clique sizes obtained for LFPs were significantly smaller than
those obtained for spikes, and this was true for data at both bin
widths. On average, spike cliques were approximately four times
larger than LFP cliques, suggesting that multiple spikes contrib-
uted to each LFP. If this is the case, then the LFPs here could be
thought of as a type of coarse-grained measurement of spiking
activity.

Implications for dynamic neural network models
The main novelty of this work is the finding that transitions be-
tween correlated states cannot be captured by merely concatenat-
ing states from the second-order maximum entropy model. Why
might this be the case? Temporal correlations between states
could be caused by delayed synaptic interactions between neu-
rons. Because the present model did not incorporate information
about delays, it may not have been equipped to predict transi-
tions between correlated states.

This is an important issue that could be addressed by an im-
proved version of the model. There have been numerous reports
of temporal patterns of activity at the network level (Lindsey et
al., 1997; Prut et al., 1998; Villa et al., 1999; Chang et al., 2000;
Martignon et al., 2000; Beggs and Plenz, 2004; Ikegaya et al., 2004;
Segev et al., 2004). Because our results also indicate that temporal
correlations are a common feature of cortical networks, future
models should be adapted to account for this. Our findings sug-
gest that the present model captures spatial correlation structure
and even sequence size distributions quite well (Fig. 8, right col-
umn). It could therefore serve as a foundation for a more com-
plete model that would consider spatiotemporal relationships.

We examined the time-lagged correlation as a first step toward
temporally extending the model. This variable indicated when
the length distributions from the concatenation procedure dif-
fered significantly from the length distributions from the actual
data. In other words, strong time-lagged correlations tended to
indicate long temporal sequences. Because of this, the time-
lagged correlation might help to define a transition energy be-
tween states in an extended model:

E�Vt3 Wt�1� � � �
i�1

N �
j�1

N

Kij�i
t� j

t�1 (25)

where Vt is a state at time t, Wt �1 is a state at time t � 1, and Kij

would be a temporal coupling term between neuron i at time t
and neuron j at time t � 1. Such an equation would have to be
appropriately constrained, but approaches like this could be a
fruitful topic for future work (Dewar, 2003).

References
Amari S (2001) Information geometry on hierarchy of probability distribu-

tions. IEEE Trans Inform Theory 47:1701–1711.
Baker RE, Corner MA, van Pelt J (2006) Spontaneous neuronal discharge

patterns in developing organotypic mega-co-cultures of neonatal rat ce-
rebral cortex. Brain Res 1101:29 –35.

Banker G, Goslin K (2002) Culturing nerve cells. Cambridge, MA: MIT.
Bartho P, Hirase H, Monoconduit L, Zugaro M, Harris KD, Buzsaki G (2004)

Characterization of neocortical principal cells and interneurons by net-
work interactions and extracellular features. J Neurophys 92:600 – 608.

Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits.
J Neurosci 23:11167–11177.

Beggs JM, Plenz D (2004) Neuronal avalanches are diverse and precise ac-
tivity patterns that are stable for many hours in cortical slice cultures.
J Neurosci 24:5216 –5229.

Bettencourt LM, Stephens GJ, Ham MI, Gross GW (2007) Functional struc-
ture of neuronal networks grown in vitro. Phys Rev E Stat Nonlin Soft
Matter Phys 75:021915.
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