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Brief Communications

Very Slow EEG Fluctuations Predict the Dynamics of
Stimulus Detection and Oscillation Amplitudes in Humans

Simo Monto,"? Satu Palva,' Juha Voipio,? and J. Matias Palva!
'Neuroscience Center and 2Department of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland, and *BioMag
Laboratory-HUSLAB, Helsinki University Central Hospital, 00029 Helsinki, Finland

Our ability to perceive weak signals is correlated among consecutive trials and fluctuates slowly over time. Although this “streaking
effect” has been known for decades, the underlying neural network phenomena have remained largely unidentified. We examined the
dynamics of human behavioral performance and its correlation with infraslow (0.01-0.1 Hz) fluctuations in ongoing brain activity.
Full-band electroencephalography revealed prominent infraslow fluctuations during the execution of a somatosensory detection task.
Similar fluctuations were predominant also in the dynamics of behavioral performance. The subjects’ ability to detect the sensory stimuli
was strongly correlated with the phase, but not with the amplitude of the infraslow EEG fluctuations. These data thus reveal a direct
electrophysiological correlate for the slow fluctuations in human psychophysical performance. We then examined the correlation be-
tween the phase of infraslow EEG fluctuations and the amplitude of 1-40 Hz neuronal oscillations in six frequency bands. Like the
behavioral performance, the amplitudes in these frequency bands were robustly correlated with the phase of the infraslow fluctuations.
These data hence suggest that the infraslow fluctuations reflect the excitability dynamics of cortical networks. We conclude that ongoing

0.01-0.1 Hz EEG fluctuations are prominent and functionally significant during execution of cognitive tasks.
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Introduction

The psychophysical performance of human subjects often fluctu-
ates in time scales exceeding 10 s (Verplanck et al., 1952; Gilden et
al., 1995). These slow fluctuations are seen as trial-to-trial corre-
lations and clustering in behavioral performance. The variance of
several behavioral measures also increases in larger time scales,
which is typical of 1/f-type or scale-free dynamics (Gilden et al.,
1995). So far, the neuronal network phenomena underlying slow
behavioral fluctuations have remained unidentified.

Many cognitive functions are often correlated with >1 Hz
neuronal oscillatory activity (Tallon-Baudry and Bertrand, 1999;
Palva and Palva, 2007). The amplitudes of 5-20 Hz oscillations
are autocorrelated over tens to hundreds of seconds (Linkenkaer-
Hansen et al., 2001; Linkenkaer-Hansen et al., 2005), and their
amplitude dynamics show 1/f-type power distributions both in
human (Linkenkaer-Hansen et al., 2001) and monkey (Leopold
etal., 2003) cortex. These oscillations thus have slow fluctuations
and autocorrelations similar to those found for human psycho-
physical performance.

Whereas the slow modulation of EEG activities is readily de-
tected using conventional EEG technology, oscillatory activities
in the time scales of psychophysical performance fluctuations,
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i.e., at frequencies <0.1 Hz, can be measured with direct-current-
coupled full-band electroencephalography (FbEEG) (Vanhatalo
et al., 2005). So far, infraslow (0.01-0.1 Hz) EEG fluctuations
(ISFs) have been described in adult subjects during sleep (Mar-
shall et al., 1998; Vanhatalo et al., 2004). These fluctuations were
suggested to reflect gross cortical excitability akin to the alternat-
ing active and silent states described in in vivo recordings of ex-
perimental animals (Steriade et al., 1993). Infraslow EEG shifts
can be induced in awake humans with voluntary hyperventilation
(Voipio et al., 2003) or using maneuvers affecting brain hemody-
namics (Vanhatalo et al., 2003). Infraslow EEG shifts are also
associated with epileptic activity (Ikeda et al., 1999). However,
the functional significance of ISFs in task-engaged subjects has
remained unexplored.

We asked whether the endogenous 0.01-0.1 Hz ISFs could
underlie the slow fluctuations in human psychophysical perfor-
mance. In this study, we quantify behavioral dynamics in an un-
cued somatosensory detection task, and use concurrent FbEEG
recordings to address the presence of ISFs and explore their tem-
poral correlation with behavioral performance. Finally, we assess
the physiological significance of ISFs by characterizing their cor-
relation with the amplitude dynamics of 1-40 Hz neuronal
oscillations.

Materials and Methods

Data acquisition and task. Eleven subjects (seven female; 22-34 years)
participated in the study with written informed consent. The study was
approved by the Ethical Committee of the Helsinki University Central
Hospital.

We recorded EEG with a direct-current-coupled amplifier (Elekta
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Figure 1. Dynamics of behavioral performance in the detection task is clustered, autocorrelated, and scale-free. 4, A repre-

sentative series of responses with “runs” of consecutive detected (hits; blue) and undetected (misses; red) stimuli. B, Run prob-
ability as a function of run length (top) shows that runs of ~15—100 s are more abundant in real data (black line) than in random
data (grayline). The run-length probability follows power-law scaling for runs longer than three trials. The p value (bottom; paired
Wilcoxon signed-rank test) is for the difference between real and random data. Gray lines indicate the uncorrected (p = 0.05) and
Bonferroni-corrected (n = 6) significance levels. , Subjects’ responses (grand average, black line, top) have stronger autocorre-
lations than randomized data (gray line). The difference between measured and random data is significant up to the time lag of
~170 s (bottom; gray line, p = 0.05, paired Wilcoxon signed-rank test). D, DFA reveals that behavioral data display robust
scale-free dynamics. The scaling exponent averaged across all sessions is « = 0.71 = 0.11 (mean == SD; thin gray lines). For the
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H(Regr)]. We computed for each subject 10-
bin histograms separately for the ISF ampli-
tude, phase, and real part values obtained at the
onsets of the stimuli. The numbers of hits and
misses were equalized, and the bins were se-
lected to make their common histograms uni-
form. The grand average detection probability
was obtained by normalizing and averaging in-
dividual histograms of hits. We derived limits of
0.5, 5,95, and 99.5% for the detection probabil-
ity by chance in any single bin from the cumu-
lative binomial distribution and assessed the
statistical significance in each bin with the
paired Wilcoxon signed-rank test.

We addressed the presence of a nested rela-
tionship between ISF and 1-40 Hz oscillations
in six frequency bands. The center frequencies
f. were 1.25, 2.5, 5, 10, 20, and 40 Hz, and the
stop frequencies (40 dB attenuation) were 0.5f,
and 2f.. The amplitude envelope A(t, f.) of a
filtered signal x(t, f.) was estimated using the
Hilbert transform H, as above. The phase of A(t,
1), 04(t, f.), was obtained by using bandpass
filtering with the ISF filter and by the Hilbert
transform as above for ;5. Nested oscillations
were quantified as 1:1 phase synchrony between
Osr and 6, and estimated with the phase-
locking factor PLE = |[N 'S¢’ |, where i is the
imaginary unit, ¢ is the phase difference ¢ =
Oisg — 04 and N is the number of samples
(Vanhatalo et al., 2004; Palva et al., 2005). The

grand-average data, v, = 0.65 (black line). For uncorrelated noise, cv,¢ =

Neuromag) at Fpz and Cz locations of the 10-20 system and at the right
mastoid, referenced to the left mastoid. We used custom-made Ag/AgCl
electrodes placed on short-circuited skin; for details of the recording
procedure, see Voipio et al. (2003) and Vanhatalo et al. (2004). Each
subject participated in two 30 min sessions. In addition to EEG, we
recorded electromyography (EMG) above abductor/flexor pollicis
brevis. The data were low-pass filtered at 200 Hz and sampled at 600 Hz.

We delivered somatosensory stimuli with a constant-current stimula-
tor (Lucius and Baer) and plate electrodes at random 1.5-4.5 s intervals
to the distal part of the right index finger. Subjects were instructed to
respond to detected stimuli by twitching the right thumb, and keep eyes
closed during the measurement. We adjusted the stimulus current itera-
tively before each session so that the detection rate was ~50% (stimulus
current, 4.3 * 0.6 mA, mean * SD; stimulus duration, 0.2 ms).

Data analysis. We extracted the subjects’ responses and reaction times
by bandpass filtering the EMG data to 50—150 Hz, transforming the
amplitude of the signal to a z-score, and finding the first poststimulus
crossing of z = 2 threshold. We classified the trials with a response in
0.1-1.5 s poststimulus interval as hits and the rest as misses. Clustering of
performance was evaluated with analysis of “runs,” i.e., time periods with
responses of one type. The length and number of runs was contrasted to
random data. We also computed the probability of a run as a function of
its length. Furthermore, we evaluated behavioral autocorrelations with
the autocorrelation function, and with detrended fluctuation analysis
(DFA), which is a method to quantify long-range temporal correlations
and power-law scaling in complex nonstationary time series (Peng et al.,
1995). For these analyses, the hit—miss time series was coded to a signal of
ones and zeros. Statistical significance between measured and random
data were assessed with the nonparametric paired Wilcoxon signed-rank
test, and was Bonferroni corrected. Random behavioral data were pre-
pared by both a parameter-matched Bernoulli process and data shuffling.

The real part, Rejgp, of ISF was extracted from the FbEEG recordings
by using bandpass filtering at 0.01-0.1 Hz (see Fig. 2A). Its amplitude,
Ajsp and phase, 0, (see Fig. 2 B) were obtained with the Hilbert trans-
form H so that A;gp = [Reygp® + H(Reygp) 2] /2 and 6,5, = atan2[Reygp,

0.5 (thick gray line).

statistical significance of PLF was determined
by normalizing it with the PLF computed from
time-shifted surrogate data, PLF, : nPLF =
PLF/PLE, ... Values of nPLF > 1.95 equal to
p < 0.05, and nPLF > 2.42 equal to p < 0.01 (Palva et al., 2005). The
group-level significance was estimated with the paired Wilcoxon signed-

rank test.

Results

We electrically stimulated the subjects’ index finger at the thresh-
old of detection and recorded scalp potentials with FbEEG at Fpz,
Cz, and the right mastoid. The subjects responded to each de-
tected stimulus with a thumb twitch. The hit rate (HR) across all
sessions was 40 * 14%. Figure 1 A displays a representative sam-
ple of behavioral data with intermittent clusters of detected (hits)
and undetected (misses) stimuli.

Dynamics of psychophysical performance
To quantify the fluctuations in task performance, we first esti-
mated the degree of clustering in the behavioral data (12,600
stimuli). We denote an uninterrupted series of hits or misses a
“run” (Fig. 1A) and compare the number and length of runs in
measured against random data. The number of runs was lower in
real than in random data (real, 11.9 * 3.8 runs per 100 s; random,
14.5 £ 2.9/100 s; p < 0.0002). In addition, the mean run lengths
were longer in real than in random data (real, 17.6 = 6.1 s; ran-
dom, 14.4 = 3.5 s; p < 0.0005). The run probability decayed
log-log linearly as a function of run length for lengths >15 s,
whereas for random data it decreased more steeply (Fig. 1 B).
We then estimated the autocorrelation function of the hit—
miss time series. The autocorrelations were stronger in real than
in random data for time lags up to ~170 s (Fig. 1C). Additionally,
DFA revealed robust autocorrelations and scale-free dynamics in
behavioral responses (scaling exponent & = 0.71 = 0.11, mean =
SD; different at p < 0.001 from the & = 0.5 of white noise, paired



8270 - J. Neurosci., August 13,2008 - 28(33):8268 — 8272

Wilcoxon signed-rank test) (Fig. 1D).
These data indicate that human perfor-
mance in a somatosensory detection task
exhibits clustering, scale-free dynamics,
and autocorrelations in time periods up to
at least 100 s.

Infraslow EEG fluctuations are
correlated with behavior

We used FbEEG to investigate brain activ-
ity fluctuations during task execution. In
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all recordings, slow large-amplitude fluc-
tuations were conspicuous in full-band
data (Fig. 2A). To isolate the ISFs, we
bandpass filtered the FbEEG data from
0.01 to 0.1 Hz (Fig. 2A,B) and evaluated
the continuous ISF amplitude and phase
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423 min (7654 trials) for Cz (10 subjects, Figure2. Infraslow EEGis correlated with task performance. 4, Hits (blue) and misses (red) overlaid on FhEEG data (0—200 Hz;

18 sessions). We first computed the power
spectra of all FbEEG data. In every subject,
the EEG power decreased as a function of
frequency in an approximately log-log lin-

coordinates.

gray) and bandpass-filtered ISF (0.01- 0.1 Hz; black) from Cz. B, The ISF real part, amplitude (top), and phase (bottom) are shown
for part of the data in A. €, Individual power spectra (gray) and the mean power spectrum (black) from Cz in double-logarithmic
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www.jneurosci.org as supplemental mate- i ) " ) )
) & pp Figure 3.  Modulation of the detection probability as a function of phase (4), amplitude (B), and real part (C) of ISFs from Fpz.

rial). Group statistics, confidence limits
from random data, and the data distribu-
tion measures (Fig. 3A) indicate that be-
havioral performance was strongly corre-
lated with the phase of the ISF (Fig. 2). The

Top, The change in hit probability relative to mean (black line) with =SEM (gray lines) across subjects. We estimated the
statistical significance of hit probability changes for each bin with cumulative binomial distribution values (right, thin horizontal
lines). Statistical significance across subjects was estimated with the paired Wilcoxon signed-rank test (bottom). Horizontal lines
indicate uncorrected (p = 0.05) and Bonferroni-corrected (n = 10) significance levels. The bins are consecutive 10 percentiles of
phase (4), amplitude (B), and real part (C) of ISFs. The axes range from — rto 7 (4), from zero to the maximum amplitude (B),
and from the minimum to the maximum of 0.01-0.1 Hz EEG (C).

probability of a hit was greatest during ISF
phases of approximately — /2 (the rising
phase) and smallest at ~r/2 (the falling
phase). For the rising and falling phase quartiles, respectively, the
grand average HR was 48 = 5% and 33 = 4% (mean = SEM) at
Fpz, and 46 * 7% and 37 * 7% at Cz. The opposing ISF phases
were thus associated with a HR modulation as large as 55 * 12%
(mean * SEM, at Fpz). The reaction times were not significantly
(p > 0.17) different between these ISF phases (rising, 513 = 120
ms; falling, 549 = 152 ms).

Contrary to the ISF phase and HR, the correlation between the
ISF amplitude and hit probability was very limited at Fpz (Fig.
3B) and absent at Cz (supplemental Fig. S1, available at www.j-
neurosci.org as supplemental material). Similarly, the real part of
ISF was not significantly correlated with hit probability (Fig. 3C;
supplemental Fig. S1, available at www.jneurosci.org as supple-
mental material). Thus, in these data, the phase was the only
prominent EEG correlate in the 0.01-0.1 Hz frequency band for
the dynamics of psychophysical performance. However, the be-
havioral variance unexplained by the ISF phase may be accounted

for by >1 Hz oscillations that are well known to be correlated
with psychophysical performance.

ISFs are correlated with the amplitude of 1-40 Hz oscillations
Nested oscillations are characterized by a correlation between the
phase of a slower and the amplitude of a faster oscillation. We
addressed the presence of nested oscillations in our data by esti-
mating phase locking between ISF and the amplitude of neuronal
oscillations in six frequencies between 1 and 40 Hz.

The correlations between the ISF phase and the 1-40 Hz am-
plitudes were highly significant at Fpz (Fig. 4A). Moreover, the
phase differences between the ISF and 1-40 Hz amplitude enve-
lopes were consistently approximately — /2 (Fig. 4 B), indicating
that the amplitudes were largest in the rising phase of ISF. These
data indicate that 1-40 Hz oscillations are nested with the ISF.

To compare the nested oscillations with the HR modulation
characterized above, we computed the mean amplitude in each
frequency as a function of the ISF phase. The correlation between
1-40 Hz amplitudes and ISF phase was similar to the correlation
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Figure 4.  EEG oscillations (1—40 Hz) are nested in ISF. A, The amplitude envelopes of six
frequency bands from 1.25 to 40 Hz are synchronized with the ISF (top). The normalized phase-
locking factors (nPLF == SEM; black) are well above the distribution of surrogate data (mean =
1; gray lines indicate the 95th and 99th percentiles of surrogates). The statistical significance of
nPLFs was estimated with the paired Wilcoxon signed-rank test (bottom). The horizontal line
indicates Bonferroni-corrected p = 0.05 (n = 6). B, The phase difference (mean = SEM)
between the amplitude envelope of the faster oscillations and the ISF is consistently at approx-
imately — 77/2. €, The correlation of 1— 40 Hz oscillation amplitudes (colored lines) with the ISF
phase is similar to that of the behavioral data (black line) (compare with Fig. 3A). The ISF phase
ranges from — 77 to 77 in bins of 10 percentiles. The thick gray line denotes a descriptive ISF
cycle.

between HR and ISF phase (Fig. 4C). ISF cycles thus represent
both behaviorally and physiologically significant time windows
in ongoing brain activity.

Discussion

Our study advances four principal findings. First, the FbEEG
recordings revealed ongoing large-amplitude 0.01-0.1 Hz elec-
trical fluctuations, ISFs, in task-engaged humans. Second, the
correlation of task performance with the phase of ISF indicates
that the ISFs are functionally significant; the stimulus detection
probability was 55% larger in the rising phase than in the falling
phase of the ISF cycle. Third, the amplitudes of 1-40 Hz EEG
oscillations were strongly correlated with the phase of the ISF.
Notably, these correlations were highly similar to that between
ISF and task performance, which corroborates the physiological
relevance of ISFs and suggests that they reflect fluctuations in
cortical excitability and/or brain state transitions. Fourth, we
show that the behavioral performance in the detection task is
clustered, follows scale-free dynamics, and is autocorrelated for
time lags >100 s. Together, our data reveal a tight link among
behavioral performance, the phase of ISF, and fast (1-40 Hz)
cortical activities. The ISFs and the 1-40 Hz oscillations nested
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therein thus might underlie the slow fluctuations and clustering
in human behavioral performance.

Similar dynamics in psychophysical performance and ISFs
Our interest was aroused by the common time scales observed in
behavioral variability during cognitive tasks and in ongoing brain
activity. The run length statistics show that the observed hit—miss
cycle lengths coincide well with the ISF cycle lengths that range
from 10 to 100 s. The clustering in behavioral data together with
the phase locking of performance and ISF (Fig. 3A) imply that the
hit-miss cycles are 1:1 synchronized with the ISF cycles.

The power spectra of EEG data were log-log linear over three
orders of magnitude (Fig. 2C), demonstrating that the FbEEG
displays scale-free power distribution even at very low frequen-
cies. The scale-free nature of ISF cycle lengths is well in line with
the observed scale-free behavioral dynamics (Fig. 1B, D) and has
two interesting implications. First, although the ISFs are not os-
cillations in the classical sense of having a peak in the power
spectrum, the locking of behavior and fast oscillations to the ISF
phase indicates that the ISF reflects an oscillatory process, in
which the phase indexes the state transitions. Indeed, our behav-
ioral data provide a simple binary view to brain states, one asso-
ciated with hits and the other with misses. Second, all observa-
tions above are in line with the notion that the human brain
dynamics resemble those observed in systems that have self orga-
nized to a critical state and are characterized by nonlinear inter-
actions, power-law scaling behavior, and long-range temporal
correlations (Linkenkaer-Hansen et al., 2001).

Relationship between ISFs and ongoing intrinsic activity
fluctuations revealed by functional magnetic resonance
imaging

Spontaneous slow modulations of activity levels of cerebral net-
works appear as blood oxygenation level-dependent (BOLD) sig-
nal fluctuations in functional magnetic resonance imaging
(fMRI) in the frequency range from 0.01 to 0.1 Hz (Fox and
Raichle, 2007). Various task-related networks can be identified
on the basis of tightly locked cofluctuations during task execution
(Lowe et al., 2000). Specific task-related networks have also been
found to be active during rest, in which they are anticorrelated
with activity in the brain areas that typically decrease their activity
during task execution and form the “default-mode network”
(Greicius et al., 2003; Fox et al., 2005).

Ongoing intrinsic activity fluctuations in the somatomotor
cortex are tightly correlated with behavioral fluctuations in a mo-
tor task (Fox et al., 2007) as well as with trial-to-trial variability in
evoked responses (Fox et al., 2006). In our study, the ISF and the
clustering of hits and misses therein could reflect these intrinsic
activity fluctuations (Boly et al., 2007). On the other hand, task
performance fluctuations in our study could be attributable to
activations of the default-mode network that is associated with
mind wandering (Mason et al., 2007) and involuntary attentional
lapses (Weissman et al., 2006). In this light, the ISF phase could
reflect transitions in task-related or default-mode activity (Fox et
al., 2005; Fransson, 2006). Joint FAEEG-fMRI recordings would
be necessary to address this question in detail.

Hierarchies of nested oscillations

Locking of the 1-40 Hz amplitude to the ISF phase parallels
recent EEG data showing that neuronal oscillations from 0.5 to 18
Hz are nested within 0.02—-0.2 Hz activity during sleep (Van-
hatalo et al., 2004). Simultaneous recordings of fMRI and EEG
have shown that 1-80 Hz oscillation amplitudes are correlated
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with <0.1 Hz BOLD signal fluctuations (Mantini et al., 2007).
The slow covariation of neuronal oscillations supports the notion
that the ISF phase and nested relationships reflect dynamics of
large-scale cortical excitability (Vanhatalo et al., 2004; Lakatos et
al., 2005).

Nested oscillations have been observed between 4—7 Hz and
20-30 Hz in the human EEG (Schack et al., 2002) and between
4-8 Hz and 80-150 Hz in the human electrocorticogram
(Canolty et al., 2006), as well as among 1-4 Hz, 4-10 Hz, and
30-50 Hz frequency bands in the macaque auditory cortex
(Lakatos et al., 2005). These and our data suggest that a hierarchy
of cross-frequency relations among neuronal activities from 0.01
to 150 Hz and across distributed brain regions could underlie
complex hierarchies of integrated brain states and coherent be-
havior in all temporal scales (Varela et al., 2001; Lakatos et al.,
2005; Palva et al., 2005). Correlated excitability fluctuations facil-
itating and protecting neuronal communication (Fries, 2005)
could also provide the mechanistic basis for hierarchies of cross-
frequency interactions.
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