
Neurobiology of Disease

Site-Specific Blockade of RAGE-Vd Prevents Amyloid-�
Oligomer Neurotoxicity

Emmanuel Sturchler,1 Arnaud Galichet,1 Mirjam Weibel,1 Estelle Leclerc,2 and Claus W. Heizmann1

1Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zurich, 8032 Zurich, Switzerland, and 2Department of Chemistry
and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431

In the genesis of Alzheimer’s disease (AD), converging lines of evidence suggest that amyloid-� peptide (A�) triggers a pathogenic
cascade leading to neuronal loss. It was long assumed that A� had to be assembled into extracellular amyloid fibrils or aggregates to exert
its cytotoxic effects. Over the past decade, characterization of soluble oligomeric A� species in the brains of AD patients and in transgenic
models has raised the possibility that different conformations of A� may contribute to AD pathology via different mechanisms. The
receptor for advanced glycation end products (RAGE), a member of the Ig superfamily, is a cellular binding site for A�. Here, we
investigate the role of RAGE in apoptosis induced by distinct well characterized A� conformations: A� oligomers (A�Os), A� fibrils
(A�Fs), and A� aggregates (A�As). In our in vitro system, treatment with polyclonal anti-RAGE antibodies significantly improves
SHSY-5Y cell and neuronal survival exposed to either A�Os or A�As but does not affect A�F toxicity. Interestingly, using site-specific
antibodies, we demonstrate that targeting of the Vd domain of RAGE attenuates A�O-induced toxicity in both SHSY-5Y cells and rat
cortical neurons, whereas inhibition of A�A-induced apoptosis requires the neutralization of the C1d domain of the receptor. Thus, our
data indicate that distinct regions of RAGE are involved in A�-induced cellular and neuronal toxicity with respect to the A� aggregation
state, and they suggest the blockage of particular sites of the receptor as a potential therapeutic strategy to attenuate neuronal death.
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Introduction
The concept that cerebral accumulation of amyloid-� peptide
(A�) induces Alzheimer’s disease (AD) remains controversial, in
large part because of the difficulty in providing direct mechanistic
evidence that a particular A� species induces neuronal death.
Early evidence suggested that A�-induced neurotoxicity in cell
culture and in vivo was associated with insoluble fibrillar (A�F)
and aggregated (A�A) forms of A� present in amyloid plaques of
the AD brain (Pike et al., 1991; Lorenzo and Yankner, 1994; Estus
et al., 1997; McLean et al., 1999; Naslund et al., 2000). In these
studies, the A� neurotoxic effect persisted while aggregation was
ongoing but diminished as the process of aggregation neared
completion. Studies in human and transgenic mice revealed a
weak correlation between amyloid plaque load, neuronal loss,
and memory impairment (Terry et al., 1991; Dickson et al., 1995;
Moechars et al., 1996; Irizarry et al., 1997a,b; Westerman et al.,
2002). These observations are inconsistent with a mechanism for
progressive dementia dependent on insoluble A�-induced neu-
ronal death and indicate that other species may underlie neuro-

degeneration, particularly in the very early stages of AD. Recently,
the amyloid cascade hypothesis was modified to include soluble
oligomers (A�Os). Although they differ in structure, A�Os in-
clude dimers, trimers, dodecamers, and higher-molecular-
weight complexes and possess a variety of biological activities,
including the ability to disrupt cognitive function in vivo (Walsh
et al., 2002; Cleary et al., 2005; Lesne et al., 2006; Lacor et al.,
2007) and to induce neuronal apoptosis in vitro (Chong et al.,
2006; Malaplate-Armand et al., 2006).

Several mechanisms could potentially target and concentrate
A� on cellular elements. In this regard, the receptor for advanced
glycation end products (RAGE) was identified as one of the cell-
surface binding sites for A� (Yan et al., 1996). RAGE is a multi-
ligand receptor composed of three extracellular Ig-like domains
(Vd, C1d, C2d), a single transmembrane domain, and a short cy-
toplasmic tail. RAGE is overexpressed in the AD brain and acts as
a binding site for A� at the plasma membrane of neurons, micro-
glial cells, and endothelial cells of the vessel wall (Yan et al., 1996;
Sasaki et al., 2001; Deane et al., 2003). Previous experiments in-
dicate that RAGE mediates A�-induced oxidative stress and nu-
clear factor-�B activation (Yan et al., 1996) as well as neuronal
expression of macrophage colony-stimulating factor (Du Yan et
al., 1997), mitogen-activated protein (MAP) kinases signaling
defects (Arancio et al., 2004), or cell death (Hadding et al., 2004).

The current study dissects the role of the distinct Ig-like do-
mains of RAGE in A�-induced apoptosis. Therefore, we exposed
RAGE-expressing SHSY-5Y cells and rat cortical neurons
(RCNs) to A�O, A�F, or A�A conditioned media. In our in vitro
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system, simultaneous application of polyclonal anti-RAGE anti-
bodies effectively prevented apoptosis induced by A�Os and
A�As. In contrast, this treatment did not affect A�F-induced
SHSY-5Y cell death. Furthermore, using site-specific antibodies,
we showed that attenuation of RAGE-mediated A�O- and A�A-
induced toxicity required the blockage of specific and distinct
Ig-like domains of the receptor, the Vd and C1d domains, respec-
tively. Our data provide the first evidence that RAGE mediates
A�-induced cellular and neuronal apoptotic events by mecha-
nisms involving distinct sites of the receptor depending on the A�
aggregation state. In addition, our data support the view that
site-specific blockage of the Vd of RAGE may have cytoprotective
effects especially with respect to preventing neuronal apoptosis
early in the disease process.

Materials and Methods
Preparation and analysis of A�(1– 40) conditioned media. Synthetic A�(1–

40) peptide (Bachem, Bubendorf, Switzerland) was dissolved in bidistilled
water at 1 mM and adjusted to 10 �M with either RPMI-1640 (supple-
mented with 2 mM L-glutamine, 100 IU/ml penicillin, and 100 �g/ml
streptomycin) or Neurobasal (supplemented with B27, 2 mM

L-glutamine, 100 IU/ml penicillin, and 100 �g/ml streptomycin) me-
dium. The conditioned media were incubated at 37°C and snap frozen in
liquid N2. The relative proportions of soluble and fibrillar A� present in
both media were determined by Congo red assay and transmission elec-
tron microscopy (TEM) at 0, 1, 3, 4, 6.5, 8, 10.5, 12, 15, and 24 h after
peptide addition. According to Klunk et al. (1999), the absorbance of
Congo red, known to specifically bind to amyloid fibers containing cross
�-sheet structures, was recorded at 540 nm with an Anthos Labtec In-
struments (Eugendorf, Austria) plate reader. A� structures were imaged
using TEM. Briefly, samples were added (1 min) to 400-mesh copper
grids, washed once with H2O, and negatively stained for 1 min with 2%
uranyle acetate. Grids were air dried and examined on a Philips (Eind-
hoven, The Netherlands) CM12 electron microscope. Data analysis
showed that both media predominantly contained spherical vesicles of
A� with diameters of �5 nm, similar to previously described oligomers
(Mastrangelo et al., 2006; Moore et al., 2007) at 0 – 8 h of incubation. Up
to 12 h after peptide addition, Congo red assay revealed the presence of
�-sheet-containing assemblies exhibiting typical fibril structures as im-
aged by TEM. Therefore, aliquots of A�-containing media were snap
frozen in liquid N2 1 h after incubation at 37°C to generate A�Os. To
generate A�F preparations, A�-containing medium was centrifuged
(14,000 � g; 10 min) 12 h after incubation at 37°C, and the pellet con-
taining the fibrils was resuspended in equal amounts of medium and
snap frozen in liquid N2. The aliquots were kept at �80°C until use. A�As
were produced by dissolving the lyophilized peptide at 1 mM in PBS. After
2 h incubation at room temperature (RT), aggregates were collected by
centrifugation at 6000 � g, resuspended in PBS, and adjusted to 10 �M in
RPMI or Neurobasal medium. The presence and stability of the aggre-
gated forms was confirmed as described above (Congo red binding assay
and TEM), after 0, 12, and 24 h of incubation at 37°C. Because the formation
of glycation end products during the experimental time course could influ-
ence A� aggregation and RAGE–A� interaction, we confirmed the absence
of glycated A� in the conditioned media using MALDI (matrix-assisted laser
desorption/ionization-time of flight). The spectra always showed a peak with
a molecular mass of 4329 Da for A�, corresponding to the relative molecular
mass of the peptide (data not shown).

Dot blot assay with A11 and 6E10. Dot blot assay was performed as
described previously (Kayed et al., 2003). Briefly, 25 �l of 10 �M A�
samples were dripped onto 0.2 �M nitrocellulose membrane (Bio-Rad,
Hercules, CA) and allowed to dry for 5 min. The membrane was blocked
in 10% milk in TBST (Tris-buffered saline with 0.01% Tween 20) for at
least 1 h. The blots were washed three times in TBST before and after
incubation with a 1:10,000 dilution of rabbit anti-oligomer antibody
(A11; BioSource, Camarillo, CA) and goat anti-rabbit horseradish per-
oxidase (Sigma, St. Louis, MO) in 5% milk in TBST. The blots were
developed using the SuperSignal West Dura System (Pierce, Rockford,

IL). Blots were stripped and reprobed with mouse monoclonal anti-
human A� 6E10 (1:5000; Signet, Dedham, MA).

SHSY-5Y cells and rat primary neuronal cultures. Human neuroblas-
toma SHSY-5Y cells (American Type Culture Collection, Manassas, VA)
were grown in RPMI supplemented with 10% fetal calf serum (FCS), 2
mM L-glutamine, 100 IU/ml penicillin, and 100 �g/ml streptomycin. The
cells were maintained at 37°C in a humidified incubator containing 95%
air and 5% CO2.

For the RCN cultures, the frontal cortices of three rat embryos (em-
bryonic day 18) were dissected and washed with PBS containing 5.5 mM

glucose. The cells were sedimented and dissociated in PBS supplemented
with 0.5 mg/ml papain (Sigma), 10 mM glucose, 1 mg/ml BSA, and 10
�g/ml DNAaseI (Roche Diagnostics, Mannheim, Germany) for 15 min
at 37°C. Cells were washed with DMEM and mechanically dissociated in
DMEM supplemented with 10% FCS, 2 mM L-glutamine, 100 IU/ml
penicillin, and 100 �g/ml streptomycin. Two hours after cells were plated
(in 5% CO2) onto poly-L-lysine (100 �g/ml)-coated multiwells or cov-
erslips, medium was removed and replaced with Neurobasal medium
supplemented with B27, 2 mM L-glutamine, 100 IU/ml penicillin, and 100
�g/ml streptomycin. The cortical neuron cultures contained a small per-
centage of glial cells (�10%) as assessed by immunofluorescence using
anti-PGP 9.5 and anti-glial fibrillary acidic protein (data not shown).

Cell culture treatments. SHSY-5Y cells were serum deprived for 24 h
before treatment. Rat cortical neurons were plated at a density of 30,000
cells/cm 2 and kept in serum-free medium for �8 d. Respective condi-
tioned media were added for 24 h to SHSY-5Y cells or to rat neuronal
cultures 8 d after plating [8 d in vitro (8 DIV)]. A�O conditioned media
were exchanged every 8 h to avoid fibril formation and toxicity, and A�F
conditioned media were exchanged every 12 h to avoid generation of
contaminating aggregates. Control cultures underwent similar medium
changes. To investigate the role of RAGE in A�-induced cell death, the
soluble RAGE (sRAGE; 50 �g/ml), containing the three extracellular
Ig-like domains of RAGE, the recombinant Vd domain of RAGE (recVd;
18.5 �g/ml), and the different polyclonal antibodies (25 �g/ml) were
added to the different conditioned media, and apoptosis was assessed
after 24 h. The human recombinant sRAGE and the human recombinant
Vd (recVd) were expressed and purified as described previously (Osten-
dorp et al., 2006; Dattilo et al., 2007). The polyclonal goat anti-human
sRAGE antibody (anti-RAGE) was obtained from R & D Systems (Min-
neapolis, MN). The RAGE-Vd-specific antibodies (anti-Vd), RAGE-C1d-
specific antibodies (anti-C1), and RAGE-C2d-specific antibodies (anti-
C2) were produced in rabbit as described previously (Ostendorp et al.,
2006). Residues 54 –70, 158 –179, and 272–293 of human RAGE were
selected for the generation of the anti-Vd, anti-C1, and anti-C2 antibod-
ies, respectively. Antisera were affinity purified by using a HiTrap protein
A column (GE Healthcare, Little Chalfont, Buckinghamshire, UK) ac-
cording to the manufacturer’s protocol. The IgG concentrations of the
antisera were determined by the BCA method (Pierce). The RAGE-
C1dC2d-specific antibodies (anti-C1C2) and RAGE-VdC1dC2d-specific
antibodies (anti-VdC1C2) were generated by mixing equal amounts of
anti-Vd, anti-C1, and anti-C2. In control experiments, we used nonspe-
cific IgG (R & D Systems) with respect to the species used in the treat-
ment. The nonspecific antibodies had no effect on cell survival either in
the presence or absence of A� (data not shown).

Cell viability assays. Cell death was determined by fluorescence-
activated cell sorting (FACS) using the cycleTEST Plus DNA kit (Becton
Dickinson, Mountain View, CA) and a FACSCalibur flow cytometer. A
total of 10 4 cells was analyzed for each condition, and data from three
separate experiments were pooled. Apoptosis was scored by terminal
deoxynucleotidyltransferase-mediated dUTP biotin nick end labeling
(TUNEL) assay according to the manufacturer’s protocol (Roche Diag-
nostics). Cells were counterstained with 4�,6-diamidino-2-phenylindole.
SHSY-5Y cells and RCNs were counted on coverslips, and at least 10
fields per culture in triplicate cultures were analyzed per individual ex-
periment. In addition to the TUNEL assay, caspase 3 and 7 activities were
quantified using the Caspase-Glo 3/7 kit (Promega, Madison, WI). Each
experiment was repeated four times.

Immunofluorescence. Cortical rat neurons were fixed in 4% parafor-
maldehyde for 1 h at RT, permeabilized with 0.2% Triton X-100 in PBS,
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and blocked for 1 h in 5% horse serum/PBS. Cultures were incubated
with rabbit anti-Vd (1:1000), mouse anti-PGP 9.5 (1:500; Abcam, Cam-
bridge, MA), mouse anti-synaptophysin (1:500; Calbiochem, La Jolla,
CA), and mouse anti-A� 6E10 (1:1000; Signet) for 1 h at RT, followed by
incubation with fluorescent-conjugated secondary antibodies (Alexa; In-
vitrogen, Eugene, OR). Omission of the primary antibody resulted in
complete loss of specific labeling. The fluorescence signals were visual-
ized using a Leica (Nussloch, Germany) SP2 confocal laser microscope.

Immunoblotting. SHSY-5Y cells, rat neuronal cultures, mouse neuro-
nal cultures, and RAGE �/� mouse brains were lysed in 50 mM Tris-HCl,
pH 7.5, 300 mM NaCl, 1% Triton X-100, 10 nM NaF, and 1 mM Na3VO4

supplemented with complete proteinase inhibitor cocktail (Roche Diag-
nostics) at the indicated time points. Protein concentration of the sam-

ples was measured using the BCA method
(Pierce). Equal amounts of protein (50 �g)
were separated by 10% PAGE, blotted onto ni-
trocellulose membrane, and probed with anti-
VdC1C2 (1:1000), anti-PGP 9.5 (1:500; Abcam),
anti-phosphorylated extracellular signal-
regulated kinase 1/2 (ERK1/2), anti-ERK1/2,
anti-phosphorylated c-Jun N-terminal kinase
(JNK), and anti-JNK (1:1000; Cell Signaling
Technology, Beverly, MA). The blots were in-
cubated with a secondary antibody conjugated
with peroxidase (1:10,000; GE Healthcare). The
bands were visualized using ECL solution (GE
Healthcare). Densitometric values from gels
were obtained using a Bio-Rad densitometer GS
800 and analyzed with Bio-Rad Quantity One
software. The amounts of phosphorylated ERK
and JNK were normalized to the total amount
of ERK and JNK, respectively.

Statistics. Unless specified, data are presented
as mean � SEM and were analyzed using one-
way ANOVA followed by Bonferroni’s post hoc
test with the level of significance set at p � 0.01.

Results
A�O, A�F, and A�A conditioned media
generation and toxicity
The mechanism by which A� aggregates is
not fully understood, although it has been
shown that peptide concentration, ions, pH,
and temperature influence the A� oligomer-
ization process and fibril conversion (Isaacs
et al., 2006; Ha et al., 2007). In the present
study, we generated two conditioned media
(RPMI and Neurobasal) containing 10 �M

analogs of soluble A�Os, A�Fs, or amor-
phous A�As. Under our experimental con-
ditions, the formation of fibrils containing
�-sheet structures started 9 h after the addi-
tion of soluble A�(1–40) peptide in both me-
dia, as revealed by enhanced absorbance in
Congo red binding assay (Fig. 1A). Maximal
absorbance was obtained after 12 h and
thereafter slowly decreased during an addi-
tional 12 h (Fig. 1A). Electron microscopy
confirmed the presence of typical 100–200
nm A�F structures in preparations at 12–24
h (Fig. 1B, A�Fs). Electron microscopy anal-
ysis performed at 0–8 h of incubation
showed small spherical A� assemblies that
resembled previously described oligomers
(Fig. 1B, A�Os) (Losic et al., 2006; Mas-
trangelo et al., 2006; Moore et al., 2007).
These observations conform to previous

studies indicating that mature amyloid fibrils occur through a num-
ber of intermediate structural forms referred to as oligomers (Ari-
mon et al., 2005; Shahi et al., 2007). Although the precise oligomer
stoichiometry remains unclear, the preparations were predomi-
nantly free of protofibrils and entirely free of fibrils as indicated by
the absence of significant variation in Congo red binding during this
period of time (Fig. 1A). A�As were prepared as described previ-
ously (Lorenzo and Yankner, 1994) by dissolving A�(1–40) (1 mM)
directly into PBS before adjusting the concentration to 10 �M in
RPMI or Neurobasal medium. The prevalence and stability of the
aggregates were confirmed by TEM (Fig. 1B, A�As). The absence of

Figure 1. Analysis of A� aggregation and toxicity. A, Congo red binding analysis of soluble A�(1– 40), adjusted to 10 �M in
RPMI (Œ) or Neurobasal (f) medium, or preaggregated A� (1 mM in PBS), brought to 10 �M in RPMI or Neurobasal medium
(�). Error bars indicate �SD (n � 9). B, Electron microscopy analysis of aliquots of media. Typical soluble oligomers (A�Os) are
present at 0 – 8 h of incubation. Up to 12 h, the vast majority of A� is fibrillar (A�Fs). Preaggregated A� (A�As) forms stable
structures exhibiting typical aggregate morphology in RPMI. Scale bar, 100 nm. C, Oligomer-specific immunoreactivity of A�O,
A�F, and A�A conditioned RPMI and Neurobasal (NB) media. A�Os were incubated at 37°C for the indicated time periods. A�Os,
A�Fs (Fs), and A�As (Ag) were applied to a nitrocellulose membrane and first probed with the A11 antibody and reprobed after
stripping with 6E10. A11 antibody is specific for A�Os, whereas 6E10 recognizes all A� species. D, FACS analysis of SHSY-5Y cell
death exposed to the distinct A�-containing media. A�O-, A�F- and A�A-containing media (filled bars) induced a significant
increase in cell death compared with their respective control (open bars). Error bars indicate �SD. Statistical significance was
determined by mean values (n � 3) of the ANOVA variance, followed by Student’s t test. Significance was accepted for *p � 0.01.
E, Phase-contrast microscopy of SH-SY5Y cells exposed to A�Os, A�Fs, or A�As for 24 h. A�Os (arrowheads) induced apoptotic
features such as disintegration of processes, swelling of cell bodies, and nuclear condensation. A�Fs (arrows) produced dystrophic
effects on processes. Scale bar, 10 �m.
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variation in Congo red binding confirmed
that A�As did not coexist with �-sheet-
containing structures (Fig. 1A). Based on
these observations, we produced cell culture
media enriched in A�Os, A�Fs, or A�As
(see Materials and Methods). The A11 anti-
body, which reacts well with the soluble oli-
gomers but not with soluble monomers or
mature amyloid fibers (Kayed et al., 2003),
was used to further characterize the distinct
A� preparations. In accord with our previ-
ous observations, the oligomer-specific anti-
body detected A� in A�O conditioned me-
dia but did not react with A� in A�F and
A�A preparations (Fig. 1C). The mouse
monoclonal antibody 6E10, which recog-
nizes A� independently of its conforma-
tional state, confirmed the presence of A�
peptide in the different preparations (Fig.
1C).

We subsequently investigated the tox-
icity of the distinct A� preparations on
RAGE-expressing SHSY-5Y cells (Sajithlal
et al., 2002). For this purpose, neuroblas-
toma cells were exposed to RPMI contain-
ing 10 �M A�Os, A�Fs, or A�As for 24 h,
and the cell death was measured by FACS.
To avoid A�O conversion into fibrils dur-
ing the time course of the experiment,
A�O conditioned medium was exchanged
twice (every 8 h). Similarly, A�F condi-
tioned medium was changed after 12 h
(the same protocols were used in the following cell death exper-
iments). FACS analysis revealed that the distinct A� conforma-
tions significantly increased cell death in our in vitro system (Fig.
1D). Chronic exposure to A�Os caused massive cell death, and
after 24 h, �60% of the cells were dead (Fig. 1D, A�Os). In
contrast, addition of A�F and A�A conditioned media resulted
in moderate effects with �30 and 15% cell death, respectively
(Fig. 1D, A�Fs and A�As). When A�F and A�A preparations
were centrifuged (5 min at 16,000 � g), only the pellet containing
the insoluble A� fraction was toxic, whereas the supernatant did
not elicit any toxicity, indicating that small amounts of contam-
inating soluble A�Os were not responsible for A�F and A�A
toxicity (data not shown). Moreover, A�Os induced apoptotic
features including disintegration of processes, swelling of cell
bodies, and nuclear condensation (Fig. 1E, A�Os), whereas A�Fs
produced dystrophic effects on neuroblastoma cell processes
(Fig. 1E, A�Fs). These results corroborate work done previously
(Grace and Busciglio, 2003; Deshpande et al., 2006). In contrast,
A�As (Fig. 1E, A�As) did not induce degenerative morphology
when compared with control cells (Fig. 1E, control). These data
indicate that A�O, A�F, and A�A conditioned media consis-
tently trigger SHSY-5Y cell death with a difference in toxicity
correlating with the A� aggregation state.

RAGE is implicated in A�O- and A�A-induced apoptosis in
SHSY-5Y cells
Extracellular A� may induce neurotoxicity by interacting with
putative candidate receptors, resulting in the activation of a num-
ber of cell-death signaling pathways leading to apoptosis (Estus et
al., 1997; Yaar et al., 1997; Yao et al., 2005; St. John, 2007). Pre-
vious work provided strong evidence that RAGE interacts with

A� at the membrane of various cell types promoting its adhesion
and toxic effects (Yan et al., 1996; Deane et al., 2003). However, a
direct link between RAGE and A�-induced cell death has not yet
been demonstrated. We therefore investigated whether RAGE
directly contributes to A�-induced cell death in our cellular sys-
tem. For this purpose, SHSY-5Y cells were exposed for 24 h to
A�O, A�F, or A�A conditioned media in the presence or absence
of polyclonal anti-RAGE antibodies (anti-RAGE), which neutral-
ize the three extracellular Ig-like domains (Vd, C1d, C2d) of the
receptor. Treated cultures and control cells were processed for
two parameters associated with apoptosis: DNA fragmentation
and the activation of caspase 3/7 pathways. In accordance with
our FACS studies, A�Os induced massive cell death with a five-
fold increase in the mean percentage of TUNEL-positive cells
(Fig. 2A) and a 380% increase in caspase activity (Fig. 2B). Anti-
RAGE treatment resulted in a significant attenuation of cell death
in SH-SY5Y cells exposed to either A�O or A�A preparations as
indicated by a decrease in cells undergoing DNA fragmentation
(Fig. 2A) and a significant reduction in A�O- or A�A-induced
caspase activation (Fig. 2B). These effects were specific because
treatment of cells with a control isotype IgG did not affect A�-
induced cell death (data not shown). In contrast, treatment with
anti-RAGE neither affected DNA fragmentation (Fig. 2A) nor
the activation of the caspase pathways (Fig. 2B) induced by A�Fs.
Thus, our data indicate that RAGE is implicated, at least in part,
in A�O- and A�A-induced apoptosis.

Attenuation of A�O- and A�A-induced apoptosis requires
blockage of distinct RAGE Ig-like domains
RAGE is a multivalent receptor that binds several other ligands
besides A�. These include advanced glycation end products

Figure 2. Effect of anti-RAGE antibody on A�-induced apoptosis. A, Simultaneous application of anti-RAGE (25 �g/ml)
significantly reduces the toxic effect of A�Os and A�As as measured by TUNEL, but it did not influence A�F-induced DNA
fragmentation (*p � 0.01). B, Similarly, anti-RAGE treatment significantly attenuates A�O- and A�A-dependent activation of
the executioner caspase 3/7 but did not affect A�F-induced caspase activation (*p � 0.01). Error bars indicate mean � SEM.
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(Schmidt et al., 1992), the chromatin-binding protein HMGB1
(Huttunen et al., 2000; Tian et al., 2007), as well as several mem-
bers of the S100 family (Hofmann et al., 1999; Leclerc et al., 2007)
leading to either a trophic or a toxic cellular effect. We recently
showed that S100B and S100A6, two structurally closely related
RAGE ligands, interact with distinct domains of the receptor and
activate distinct signaling pathways suggesting that the cellular
effects triggered by RAGE might be specific for each ligand
(Leclerc et al., 2007). We therefore hypothesized that RAGE-
mediated A�O- and A�A-induced apoptosis could involve dis-
tinct domains of the receptor. To investigate this hypothesis, we
exposed SHSY-5Y cells to A�O or A�A conditioned media for
24 h in the presence or absence of site-specific antibodies target-
ing particular epitopes within the Vd (anti-Vd), the C1d (anti-
C1), or the C1d and the C2d (anti-C1C2) domain of the receptor.
Here again, A�O conditioned medium was exchanged every 8 h

to avoid the formation of fibrils. In the
presence of A�Os, we observed a signifi-
cant decrease in cells undergoing DNA
fragmentation and a reduction in caspase
activity when the cultures were treated
with anti-Vd (Fig. 3A), whereas anti-C1 or
anti-C1C2 treatment did not affect A�O-
induced apoptotic events (Fig. 3B,C). In
contrast, A�A-induced cell death was un-
affected by the anti-Vd treatment as scored
by TUNEL (Fig. 3A), whereas anti-C1 or
anti-C1C2 treatment significantly blocked
DNA fragmentation as well as caspase ac-
tivation induced by A�As (Fig. 3B,C).
Thus, our data indicate that blockage of
the Vd of RAGE effectively protects
SHSY-5Y cells from A�O-induced cell
death, whereas attenuation of A�A toxic-
ity requires antagonism at the C1d domain,
suggesting that A�Os and A�As interact
with distinct sites of RAGE.

The truncated isoform of RAGE
(sRAGE), corresponding to the extracellu-
lar domains only of the receptor, has been
suggested to function as a decoy, abrogat-
ing RAGE-mediated cellular activation by
interacting with circulating RAGE ligands.
To confirm the involvement of RAGE in
A�-induced apoptosis, we exposed
SHSY-5Y cells to either A�Os or A�As in
the presence or absence of recombinant
sRAGE or the recombinant form of the Vd

(recVd). As expected, the treatment of cells
with sRAGE significantly decreased A�O-
and A�A-induced caspase activation (Fig.
3D). In addition, recVd treatment also at-
tenuated A�O-induced caspase activation.
In contrast, the addition of recVd did not
affect the increase in caspase activity in
cells exposed to A�As (Fig. 3D). These re-
sults are in accordance with our previous
observations suggesting that RAGE medi-
ates A�O- and A�A-induced apoptosis via
mechanisms involving distinct sites of the
receptor.

Anti-Vd antibodies attenuate A�O-
induced apoptosis in RCNs
We next asked whether the effects observed with A�Os and A�As
in human neuroblastoma cells could be reproduced in a more
relevant model such as primary cultures of neurons. We therefore
investigated the effect of the anti-Vd and anti-C1 antibodies on
A�O- and A�A-induced apoptosis in RCNs. Initial tests were
performed to validate the experimental model and the effective-
ness of RAGE–A� interactions to induce cellular responses.
Western blot analysis using anti-VdC1C2 revealed a band of �50
kDa in the homogenates of RCNs at 0, 8, and 14 DIV (Fig. 4A). In
addition, closely migrating bands were detected that are attribut-
able to differentially glycosylated RAGE. These observation had
previously been described in AD brains (Sasaki et al., 2001). We
also confirmed the specificity of the anti-Vd, anti-C1, and anti-C2

antibodies as indicated by the absence of immunoreactive bands
in brain extracts of RAGE�/� mice (Fig. 4A). Interestingly,

Figure 3. Involvement of RAGE Ig-like domains in A�O- and A�A-induced cell death. Ten micromolar A�Os or A�As were
added to SHSY-5Y cell cultures for 24 h. A–C, Treatment with anti-Vd (A) significantly attenuates RAGE-mediated A�O-induced
cell death as determined by the TUNEL method and caspase activity assays (*p � 0.01), whereas anti-C1 (B) and anti-C1C2 (C)
treatment did not affect cell survival. In contrast, A�A-induced apoptosis was inhibited in the presence of anti-C1 (B), anti-C1C2

(C), or antibodies (*p � 0.01). D, Simultaneous application of sRAGE (50 �g/ml) significantly decreased A�O- and A�A-induced
caspase activation, whereas recVd (rVd) treatment inhibited only A�O toxicity (*p � 0.01). Attenuation of RAGE-mediated A�O-
and A�A-induced toxicity requires the blockage of distinct and specific domains of the receptor, Vd, and C1d, respectively. Error
bars indicate mean � SEM.
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RAGE expression was more prominent at
8 DIV in RCNs (Fig. 4A), whereas mouse
cortical neurons did not express the recep-
tor at this stage (Fig. 4A). Thus, we de-
cided to perform subsequent experiments
using 8 DIV RCNs.

The ability of RAGE to colocalize with
A�Os in our model was evaluated by im-
munofluorescence. RAGE immunoreac-
tivity (Fig. 4B, red) was detected in cell
bodies and processes of RCNs as indicated
by PGP 9.5 colabeling (Fig. 4B, merge).
Higher-magnification images showed a
prominent RAGE immunoreactivity at
“en passant” synapses (Fig. 4B, arrow) and
a clear punctuated staining defining
submicrometer-sized subdomains along
neuronal processes (Fig. 4B, arrowheads).
Double immunolabeling of RCN cultures
exposed to A�Os for 2 h revealed that a
fraction of A�Os colocalizes with RAGE
along neuronal processes (Fig. 4C, arrow-
heads) suggesting that RAGE might inter-
act with A�Os. Previous work has shown a
synaptic targeting of soluble A� species in
rat hippocampal and human cortical neu-
rons (Lacor et al., 2004; Deshpande et al.,
2006). To determine whether RAGE is lo-
calized at synaptic sites, we performed
multiple fluorescence labeling, and syn-
apses were defined by using the presynap-
tic marker synaptophysin. We found a
clear but restricted colocalization of RAGE
with the synaptic marker along sections of
neuronal processes (Fig. 4D, arrowheads).
Interestingly, RAGE was also present along
processes exhibiting poor synaptophysin
immunoreactivity, whereas some other
sections, rich in synaptic sites, did not con-
tain the receptor (Fig. 4D).

Finally, RCN cultures were treated with
A�O conditioned medium for 24 h in the
presence or absence of either anti-Vd or
recVd. Control and treated cells were pro-
cessed for TUNEL and caspase activity.
A�Os induced a significant increase in
neuronal cell death as indicated by an in-
crease in both TUNEL-positive cells and
caspase activity (Fig. 4E). As observed with
the human neuroblastoma cells, neuronal
apoptosis induced by A�Os could be at-
tenuated significantly by anti-Vd treat-
ment as indicated by a reduction in DNA
fragmentation and caspase activation (Fig.
4E). In contrast, recVd treatment did not
affect DNA fragmentation nor caspase ac-
tivity in RCNs exposed to A�Os (Fig. 4E).
RCN cultures were also exposed to A�As
in the presence or absence of anti-C1.
However, under our experimental condi-
tions, the A� aggregates failed to signifi-
cantly induce neuronal death (Fig. 4F).
Thus, these data support the hypothesis

Figure 4. RAGE-Vd mediates A�O-induced neuronal death. A, Western blot analysis using anti-VdC1C2 antibodies (1:1000) of RAGE
expression in rat cortical neuronal cultures at 0, 8, and 14 DIV. RAGE expression was more prominent at 8 DIV in RCNs. The bottom panels
show representative loading control using anti-PGP 9.5 (1:1000). KO, Knock-out. B, Double labeling of 8 DIV RCNs with anti-Vd (red;
1:1000)andanti-PGP9.5(green;1:500).ThemergedimageshowsexpressionofRAGEinneurons.Scalebar,10�m.Highermagnification
of the boxed area in the merged image shows that RAGE is present at en passant synapses (bottom right, arrow) and at
particular sites along neuronal processes (bottom right, arrowheads). C, Double immunofluorescence of 8 DIV RCNs with
anti-Vd (red; 1:1000) and A�Os (6E10; green; 1:1000). Cultures were incubated with 10 �M A�Os for 2 h before fixation.
The merged image shows the colocalization of RAGE and A�Os along neuronal processes (arrows). Scale bar, 2 �m. D,
RCNs at 8 DIV were fixed and costained with anti-Vd (red; 1:1000) and anti-synaptophysin (green; 1:500). Partial colocal-
ization is observed as light yellow spots (merge, arrowheads). Scale bar, 5 �m. E, F, RCNs were exposed to 10 �M A�Os or
A�As for 24 h. TUNEL and caspase assays were performed in the presence or absence of anti-Vd or anti-C1 treatment. A�Os
(E), but not A�As (F ), induced a significant increase in caspase activity and DNA fragmentation events. In contrast to recVd

(rVd) treatment, simultaneous application of anti-Vd improves neuronal survival exposed to A�Os (E) as measured by the
same methods (*p � 0.01). Error bars indicate mean � SEM.
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that RAGE might participate in A�O-induced neuronal apopto-
sis and confirm that specific neutralization of the Vd is sufficient
to significantly promote RCN survival.

RAGE mediates A�O-induced perturbation of ERK
signaling pathway
We also explored the possible molecular mechanisms underlying
RAGE-mediated A�O-induced cell death. Previous studies have
indicated that RAGE–ligand interactions modulate MAP kinase
pathways (Arancio et al., 2004; Monteiro et al., 2006). Further-
more, it has been suggested that defects in both ERK and JNK
signaling underlie neuronal dysfunction such as caspase activa-
tion evoked by A� oligomers in various AD paradigms (Bell et al.,
2004; Chong et al., 2006; Ma et al., 2007; Townsend et al., 2007;
Yan and Wang, 2007). Therefore, using our models, we investi-
gated whether RAGE could be involved in A�O-induced ERK
and/or JNK signaling defects. In our experimental conditions,
Western blot analysis of neuroblastoma cell extracts exposed to
A�Os for 8 h revealed an increase in ERK activation (Fig. 5A).
Densitometric analysis of gels from separate experiments dem-
onstrated the reproducibility of these observations and revealed a
130% increase in phosphorylated ERK in SHSY-5Y cells exposed
to A�Os as compared with control cells (Fig. 5A). Interestingly,
simultaneous application of either anti-Vd or recVd consistently
suppressed A�O-induced activation of ERK as indicated by the
absence of significant variation in control and treated SHSY-5Y
cells (Fig. 5A). In contrast, Western blot analysis of RCN extracts
exposed to A�Os for 8 h revealed a downregulation of the phos-
phorylated form of ERK (Fig. 5C). Densitometric analysis of gels
confirmed this observation and revealed that the phosphorylated
form of ERK, normalized to the total amount of ERK, decreased
to 70% of the control value in the presence of A�Os (Fig. 5C). A
comparable reduction in ERK phosphorylation was observed at
24 h, whereas the addition of A�Os for 1, 2, and 4 h had no
significant effect on the basal activity of ERK (data not shown).
However, anti-Vd treatment consistently suppressed A�O-
induced hypophosphorylation of ERK in RCNs as indicated by
the absence of significant variation in control and treated cultures
(Fig. 5C). In contrast, similar experiments revealed no change in
phosphorylated JNK immunoreactivity in control and treated
samples from SHSY-5Y cells and RCNs (Fig. 5B,D). These results
suggest a role for RAGE in A�O-induced ERK signaling pathway
defects in human SHSY-5Y cells and RCNs.

Discussion
A� is thought to be the instigator of the neuronal death driving
AD. Different conformations of A� peptide including oligomers,
fibrils, and amorphous aggregates have been found in AD brains
(Lorenzo and Yankner, 1994; McLean et al., 1999; Naslund et al.,
2000). The aim of the present study was to rigorously investigate
the contribution of RAGE in apoptosis induced by distinct well
characterized A� conformations. First of all, we developed exper-
imental conditions allowing the reproducible generation of par-
ticular A� peptide assemblies. For this purpose, we used synthetic
A�(1– 40) because A�(1– 42) is much more prone to aggregation
(Yan and Wang, 2006). In accordance with previous publications
that routinely required micromolar concentration of A� to in-
duce toxicity, we produced cell culture media containing distinct
A�(1– 40) conformations at a concentration of 10 �M based on the
initial peptide mass. The presence of A�Os, A�Fs, and A�As was
controlled by both Congo red binding assays and TEM. Under
our conditions using multiple lots of synthetic peptides, we ob-

tained consistent and reproducible results for the distinctly gen-
erated A�(1– 40) conformations.

To investigate A�O, A�F, and A�A toxicity, we used an estab-
lished human neuroblastoma cell line (SHSY-5Y) expressing
RAGE endogenously (Sajithlal et al., 2002) and a primary culture
of neurons (RCNs) as experimental paradigms. In our in vitro
system, oligomeric and fibrillar preparations of A� produced dis-
tinct and reproducible patterns of toxicity that differed from ag-
gregated preparations of the peptide as determined by FACS
analysis (Fig. 1). Consistently, the different preparations pro-
moted distinct morphological alterations in SHSY-5Y cells as re-
vealed by light microscopy analysis (Fig. 1). A�Os were found to
be the most toxic conformation promoting SHSY-5Y cell death
approximately twofold more than A�Fs and approximately four-
fold more than A�As. Similarly, we showed that A�O prepara-
tion promoted RCN apoptosis, whereas the presence of A�As did
not significantly affect neuronal survival (Fig. 4). Consistent with

Figure 5. RAGE modulates the phosphorylation of ERK in response to A�Os in SHSY-5Y cells
and RCNs. Cell cultures were incubated with A�Os for 8 h in the presence or absence of the
indicated treatment. A, B, Equal amounts (50 �g) of total SHSY-5Y cell lysates were immuno-
blotted for phosphorylation of ERK (A) and JNK (B) using antibodies specific for the phosphor-
ylated forms (1:1000). C, D, Equal amounts (50 �g) of total RCN lysates were immunoblotted
for phosphorylation of ERK (C) and JNK (D). The top panels correspond to the quantification of
phosphorylated ERK (p-ERK) and JNK (p-JNK) normalized to the total amount of ERK and JNK
(*p � 0.01), and the bottom panels show representative immunoblots. Error bars indicate
mean � SEM.
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previous studies (Estus et al., 1997; Yao et al., 2005; Florent et al.,
2006; Malaplate-Armand et al., 2006), we found that A�O-,
A�F-, and A�A-induced SHSY-5Y cell death involved the activa-
tion of apoptotic pathways as revealed by TUNEL and caspase
activity assays (Figs. 2– 4). With respect to our FACS data, A�Os
consistently induced the more dramatic alterations in both events
in SHSY-5Y cells and RCNs compared with A�F or A�A effects.
In accordance with recent studies using natural and synthetic
A�(1– 42) oligomers (Chong et al., 2006; Townsend et al., 2006,
2007), our distinct A�O(1– 40) preparations were found to affect
the pattern of ERK activation, indicating that cellular homeosta-
sis is challenged (Fig. 5). In our experimental paradigm, A�Os
induced a sustained activation of ERK in SHSY-5Y cells (Fig. 5A).
In contrast, ERK phosphorylation was suppressed by A�O treat-
ment in RCNs (Fig. 5C). Conflicting results with the stimulatory
or inhibitory effects of A� on ERK in culture systems as well as in
vivo have previously been reported (Chong et al., 2006; Ma et al.,
2007; Townsend et al., 2007). Furthermore, soluble oligomers
have been shown to initially stimulate, but later downregulate,
ERK in hippocampal slice cultures (Bell et al., 2004), and studies
in AD brain and AD mouse models suggest stage-dependent ERK
activation followed by loss of active ERK (Dineley et al., 2001;
Webster et al., 2006). However, studies investigating the effects of
soluble oligomers on either SHSY-5Y neuroblastoma cells
(Frasca et al., 2004, 2008) or RCNs (Tong et al., 2004; Florent et
al., 2006) observed the same alterations of the ERK signaling
pathway as reported in our work. Importantly, both the sustained
activation and downregulation of the ERK survival-promoting
pathway are associated with susceptibility to cell death (Dineley
et al., 2001; Bell et al., 2004; Chong et al., 2006; Florent et al., 2006;
Webster et al., 2006; Ma et al., 2007; Townsend et al., 2007). In
contrast, A�As did not affect the ERK phosphorylation state in
SHSY-5Y cells at 8 and 24 h (data not shown). Consistently, MAP
kinase pathway recruitment has been shown to be dependent on
the A� conformational state (Bell et al., 2004; Echeverria et al.,
2005). Our data are thus in good agreement with these and other
reports (Deshpande et al., 2006; St. John, 2007) suggesting that
A� exhibits specific and distinct toxic effects depending on a
particular A� aggregation.

We next rigorously characterized the role of RAGE in medi-
ating apoptosis induced by the different conformations of A�.
Our study revealed that RAGE is involved in A�O- and A�A-
induced apoptosis because simultaneous application of a poly-
clonal anti-RAGE antibody prevented both caspase activation
and DNA fragmentation in SHSY-5Y cells (Fig. 2). Similar results
were obtained with RAGE site-specific antibodies or sRAGE (Fig.
3). However, anti-RAGE antibody treatments still resulted in sig-
nificant (�50 – 60%) but not absolute prevention of A�O-
induced neuronal and cell death. These findings are consistent
with previous reports showing that other receptors/mechanisms
may also participate in A� toxicity (Wogulis et al., 2005; Wright
et al., 2007). In addition, anti-Vd-specific antibodies prevented
A�O toxicity in RCNs (Fig. 4), supporting the specificity of
RAGE contribution in A� signaling. Interestingly, in contrast to
A�Os and A�As, we showed that apoptosis induced by mature
A�Fs was not RAGE dependent. In this regard, previous reports
indicated that A� toxicity occurs through distinct pathways de-
pending on the peptide conformation (Sponne et al., 2004; Desh-
pande et al., 2006). Thus, our results suggest that A�O and A�A
but not A�F signal, at least in part, through RAGE to induce
apoptosis.

In an additional step, we aimed to map more precisely the
domain(s) of RAGE involved in A�-induced apoptosis. For this

purpose, we used site-specific antibodies directed against distinct
epitopes within the Vd, the C1d, or the C2d domain of the receptor
as well as the recombinant form of the Vd domain (recVd). We
found that attenuation of RAGE-mediated A�A-induced apo-
ptosis required the specific antagonism of the C1d of the receptor
(Fig. 3). In contrast, the targeting of the Vd with specific antibod-
ies (anti-Vd) or the recVd itself was necessary and sufficient to
prevent A�O-induced SHSY-5Y cell death (Fig. 3A,D). Impor-
tantly, anti-Vd antibodies also prevented the toxic effects of A�Os
in RCNs, providing evidence of the specificity and the relevance
of the treatment (Fig. 4E). In accordance with these data, previ-
ous reports (Chaney et al., 2005; Mruthinti et al., 2007) demon-
strated that soluble A� interacts with residues of RAGE, included
in the Vd domain. Unexpectedly, recVd treatment did not affect
A�O-induced neuronal apoptosis (Fig. 4E). Consistently,
Mruthinti et al. (2007) reported that soluble A�(1– 42) and
RAGE(23–54) form a toxic complex for neuronal cells. In accor-
dance with our previous observations, anti-Vd and recVd treat-
ments, which inhibited caspase activation and DNA fragmenta-
tion (Fig. 3), were also found to block A�O-induced ERK
signaling perturbations in neuroblastoma cells and RCNs (Fig.
5), highlighting the involvement of RAGE as a signal transduc-
tion receptor mediating the effects of A�Os. Chronic ERK per-
turbation might be an early and sustained signaling amplifier of
A�O-induced cytotoxicity ultimately leading to the activation of
caspase (Chong et al., 2006; Florent et al., 2006). Previous studies
have revealed that RAGE-dependent activation of MAP kinases
proceeds via an oxidant-sensitive mechanism involving p21 ras

(Lander et al., 1997), and more recently, the RAGE intracellular
domain has been shown to interact directly with ERK (Ishihara et
al., 2003). However, detailed mechanisms linking occupancy of
RAGE to ERK modulation remain to be elucidated.

Our results suggest for the first time a model in which distinct
sites of RAGE are involved in A� toxicity with respect to a par-
ticular A� conformational state. In this regard, previous work
indicated that the calcium-binding proteins S100B (Dattilo et al.,
2007; Xie et al., 2007), S100A12 (Dattilo et al., 2007; Xie et al.,
2007), and S100A6 (Leclerc et al., 2007), which possess high
structural homology, also interact with different Ig-like domains
of RAGE, the Vd, C1d, and C2d, respectively. Although the in vitro
system used in this study does not allow a distinction between the
effects of A� monomers, dimers, trimers, and higher-order oli-
gomers, it allows us to determine the involvement of RAGE in
apoptosis induced by distinct well defined A� species. At the
current stage of research, we cannot conclude that large insoluble
aggregates, fibrils, or soluble oligomers represent the sole molec-
ular pathogen in AD; indeed, various A� species may play rele-
vant roles in neurotoxicity (Haass and Selkoe, 2007). Our find-
ings provide a new insight into how multiple A� species may
contribute to neurodegeneration. Furthermore, in AD patho-
physiology, A�Os are present at very early stages and may coexist
with A�As at later stages of the disease. In addition, Yan et al.
(1996) provided evidence that levels of RAGE are increased in the
AD brain, particularly in neurons associated with aggregated de-
posits. Because RAGE expression increases and remains elevated
as long as ligands are present, RAGE may be important in initi-
ating and perpetuating A� neuronal toxicity “amplification
loops.” These observations provide an interesting parallel with
the A�-induced changes in RAGE expression observed recently
in rat hippocampus (Minogue et al., 2007).

In summary, the current experiments demonstrate that RAGE
can act as a receptor exacerbating critical effects of A� on several
signaling molecules involved in the apoptotic pathway. Further-
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more, these studies establish that RAGE mediates A�O- and
A�A-induced apoptosis and suggest a novel mechanism in which
the engagement of distinct nonoverlapping regions of the recep-
tor by multiple A� species might contribute to neurodegenera-
tion. Although RAGE–ligand interactions support normal cellu-
lar functions and homeostasis, our results suggest that the
blockage of specific sites of the receptor using antibodies provide
strategy to attenuate chronic activation of RAGE.
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