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The Neuronal Basis of Attention: Rate versus
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Extensive theoretical and experimental work on the neuronal correlates of visual attention raises two hypotheses about the underlying
mechanisms. The first hypothesis, named biased competition, originates from experimental single-cell recordings that have shown that
attention upmodulates the firing rates of the neurons encoding the attended features and downregulates the firing rates of the neurons
encoding the unattended features. Furthermore, attentional modulation of firing rates increases along the visual pathway. The other,
newer hypothesis assigns synchronization a crucial role in the attentional process. It stems from experiments that have shown that
attention modulates gamma-frequency synchronization. In this paper, we study the coexistence of the two phenomena using a theoretical
framework. We find that the two effects can vary independently of each other and across layers. Therefore, the two phenomena are not
concomitant. However, we show that there is an advantage in the processing of information if rate modulation is accompanied by gamma
modulation, namely that reaction times are shorter, implying behavioral relevance for gamma synchronization.
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Introduction

Our environment constantly provides us with large amounts of
information. The brain has to select the relevant part of this in-
formation. This selection is called attention. Experimental work
on the visual system has suggested a mechanism based on com-
petition for the limited visual processing capacity at the different
stages of the visual system to account for attention. This mecha-
nism is referred to as biased competition (Moran and Desimone,
1985; Chelazzi et al., 1993; Desimone and Duncan, 1995;
Chelazzi, 1999). The basic idea of biased competition is that,
when multiple stimuli appear in the visual field, the firing rate of
the neurons encoding the attended stimulus is biased over the
neurons encoding unattended stimuli. The cells representing the
attended stimulus will therefore win the competition and sup-
press the firing rate of the cells representing the unattended
stimulus.

In recent years, oscillations in the gamma-frequency band
(30-100 Hz) have been found in most species and brain areas
investigated, including the visual cortex (Gray and Singer, 1989).
Synchronization of neuronal activity in the gamma-frequency
band has been shown to be involved in several fundamental func-
tions in the brain. Notably, neurons selected by attentional mech-
anisms show enhanced gamma-frequency synchronization
(Gruber et al., 1999; Steinmetz et al., 2000; Fries et al., 2001). In
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particular, Fries et al. (2001) measured from area V4 while ma-
caque monkeys were attending behaviorally relevant stimuli.
They found that neurons activated by the attended stimulus
showed increased gamma-frequency synchronization compared
with neurons activated by the distractor. Conversely, Roelfsema
et al. (2004), who measured from V1, could not confirm this
finding.

A computational model for biased competition has been pro-
posed by Deco and Rolls (2005). They have shown that competi-
tion between pools of neurons combined with top-down biasing
of this competition gives rise to a process that can be identified as
attentional processing. However, they limit their analysis to
studying rate effects. The effects on gamma synchronization are
not addressed. This leaves some open questions: Is attention
modulated by both rates and gamma synchronization? Are they
both mutually exclusive or are they concomitant effects?

In this study, we address these questions by modeling one
layer of the visual cortex with a network of integrate-and-fire (IF)
neurons. Attention is modeled as an additional Poissonian input
to the neurons encoding the attended stimulus. We find that the
effect of the attentional bias can be both an increase in the rates or
an increase in the gamma synchronization. Depending on the
dynamical working regimen, one of the two effects is dominant.
Rate modulation occurs over the whole range of parameters stud-
ied and can occur without accompanying gamma modulation.
Conversely, gamma modulation never occurs without rate mod-
ulation. However, gamma modulation can be altered without
affecting the present rate modulation. We further show that the
mean rate in the pools encoding the stimulus is reached fastest in
the working regimen in which gamma modulation is strongest.
Altogether we show that gamma modulation and rate modula-
tion are not concomitant effects. However, if both are present, the
information is processed advantageously, i.e., reaction times
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Figure 1.  STA power spectra. Dashed curve, Attention outside the RF; solid curve, attention
into the RF. Adapted from Fries et al. (2001). a, Power spectrum of the delay period STAs. The
delay period was the 1 s interval before stimulus onset. b, Power spectrum of the stimulus-
period STAs. The stimulus period lasted from 300 ms after stimulus onset until one of the stimuli
changed its color.

(RTs) are shorter. This suggests that gamma modulation is be-
haviorally relevant.

The model was then extended to two layers, representing V1
and V4. We show that the attentional effects are stronger in the
upper layer. This is in accordance with an increase of gamma-
frequency modulation along the visual pathway and might be an
explanation of why this effect has been found in V4 but notin V1.

Materials and Methods

Experimental paradigm

We propose a model to account for the results from the attentional visual
task used by Fries et al. (2001). In this task, the monkey had to fixate a
central spot. After 1500—2000 ms, two stimuli, consisting of black and
white luminance grating, appeared. We will call the attended stimulus
target and the one that is unattended the distractor. A cue indicated
where to locate attention. The cue was either the color of the fixation spot
or a line next to the fixation spot, pointing to the location of the target.
After 500-5000 ms, one of the two stimuli changed its color to yellow.
This change was close to the monkey’s detection threshold. If the color
change occurred in the target, the monkey had to respond by releasing a
bar. If it occurred in the distractor, the monkey had to ignore it. The
monkey was only rewarded if it released a bar after change in the target.
The monkeys performed ~85% correctly.

All recordings were done in the extrastriate cortical area V4 of the
visual cortex. From the two presented stimuli, one was inside the re-
corded receptive field (RF), and one was outside. The condition in which
the monkey was attending to the stimulus inside the RF is referred to as
“with attention,” and the condition with attention outside the RF as
“withoutattention.” To measure the synchronization between spikes and
the local field potential (LFP), the spike-triggered average (STA) and its
power spectrum are used (see below).

Fries et al. (2001) found that there are two dominating frequency
bands in the STA during the stimulus period: one below 10 Hz and
another between 35 and 50 Hz. During the delay period, in the with-
attention condition, there was a reduction in the low-frequency synchro-
nization (Fig. la). During the stimulus period, in the with-attention
condition, there was a reduction in the low-frequency synchronization
and an increase in the gamma-frequency synchronization (Fig. 1b). Si-
multaneously, the median of the firing rates was enhanced by 16% during
the state of attention.

Theoretical framework

As a description at the neural level, we use models of neurons with leaky
IF dynamics. We follow the model of Brunel and Wang (2001). A leaky IF
unit consists of a single membrane capacitance C,, for integrating the
charge delivered by synaptic input, a membrane resistance R,,,, account-
ing for leakage currents through the membrane, and a fixed voltage
threshold V. for spike initiation. The membrane charges up to its sta-
tionary value as long as the membrane potential stays below V. If it
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Figure2.  Schematic representation of the network. The network consists of inhibitory and
excitatory neurons. The excitatory neurons are organized in three pools per layer: the nonspe-
cificneurons and the two selective pools (51,52 or$1', S2') that receive the input encoding the
stimulus v,,,. One of the two selective pools gets an additional bias v,;,.. All neurons in the
network get an input v, that simulates the spontaneous activity in the cerebral cortex. The
selective pools of the two layers are connected. There are strong (/) and weak (K,) feedforward
connections and strong (J,) and weak () feedback connections. Recurrent connections are
denoted asw, , and between-pool connections are denoted asw_. w;, w;" are the connection
weights from the inhibitory to the excitatory pools, and w,,, w," are the connection weights

from the nonspecific to the selective pools.

reaches the threshold potential, an action potential is fired. All connected
neurons receive an input, the circuit is shunted for a refractory time
period 7., and the membrane potential is reset to V...

Synaptic currents are mediated by the excitatory receptors AMPA and
NMDA (activated by glutamate) and the inhibitory receptor GABA
(activated by GABA). There are two types of excitatory synapses. AMPA
and NMDA receptors have different time constants: AMPA decays very
fast (2 ms), whereas NMDA decays slowly (100 ms). The decay constant
of GABA (10 ms) lies between the two. These decay constants determine
the oscillation frequency of the network (see below).

The network is organized in pools. Pools are created because different
parts of the network get different exposure to stimuli. Neurons in one
pool are defined by increased mutual connection strength and by the
input they receive. The synaptic efficacies are kept fixed through the
simulation. They are set consistent with a Hebbian rule: the synapse
between two cells is strong if they were active in a correlated manner in
the past. Therefore, cells within one pool have strong recurrent connec-
tions (w, ), whereas the connections between pools are weak (w_). De-
tails for all the weights in the network (w_, w_, w,, w,,) are given below.

Our model, shown in Figure 2, consists of two layers (corresponding to
V1 and V4). Each layer consists of 800 pyramidal neurons and 200 inter-
neurons. These proportions are the ones observed in the cerebral cortex.
The network is fully connected. Sparse connectivity has been shown to
increase mainly the noise in the network as a result of finite size effects
(Mattia and Del Giudice, 2002, 2004). Because noise was not an explicit
point of this study, we used the simplification of all-to-all connectivity.
Each layer is subdivided into four pools. There are three pools of excita-
tory neurons (the two selective pools and the nonspecific neurons) that
are all connected to one pool of inhibitory neurons. The selective pools
are the ones that receive the input, either externally (asin V1) or from the
lower layer (as in V4). They have strong recurrent connections (w., ). The
nonspecific pool emulates the spontaneous activity in surrounding brain
areas. Neurons in the nonspecific pool are connected to the selective
excitatory pools by a feedforward connection of w,, = (—fJ,, — fK,)/(1 —
2f) +w_inlayer V4and w,” = (—f], — fK)/(1 — 2f) + w_ inlayer V1.
(fis the fraction of excitatory neurons in each selective pool, i.e., each
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selective pool contains f X Ng neurons, N being the total number of
excitatory neurons in the network.) These connections normalize each
layer so that the overall recurrent excitatory synaptic drive in the spon-
taneous state remains constant as the external connections Ip T K and
K, are varied. The selective pools (S1, S2, S1', S2") of the two layers are
connected to each other. Within one layer, this connection is given by w_
=1—flw, — 1)/(1 = f), so that the overall recurrent excitatory drive in
the spontaneous state remains constant as w_ is varied. Between the
layers, we take into account that a stimulus that is a preferred one for S1
(S2) also provokes a strong stimulation of S1" (S2"). Therefore, the J
connections are stronger than the K connections (K, = ¢J,, with ¢ = 0.1).

The two selective pools in layer V1 (S1, S2) encode two nonoverlap-
ping RFs. The RFs in layer V4 are larger, each covering the two selective
poolsin V1. By having overlapping RFs, the competition in V4 is stronger
than in V1. This is taken into account by setting the inhibitions to w; = 1
inV1and w,) = 1.35in V4.

By having only one inhibitory pool per layer, each layer has global
inhibition. Deco and Rolls (2004) showed that, in a model with biased
competition, inhibition has gradually increasing global character along
the visual pathway. Because we implement only a minimal model in this
study, we use global inhibition directly. The more active the excitatory
pools are, the more active the inhibitory pool will be and, consequently,
excitatory pools will compete. By introducing an external top-down bias,
i.e., an increase of excitatory input to the pool representing the attended
stimulus, the competition can be shifted in favor of a specific pool. This
computational model implements therefore the biased competition hy-
pothesis. Deco and colleagues have shown that local competition of neu-
rons between pools combined with top-down biasing of this competition
gives rise to a process that can be identified with attentional filtering
(Deco et al., 2002; Szabo et al., 2004). This is in line with the biased-
competition model of attention by Chelazzi et al. (1993).

In our model of attention, we assume that the stimulus (v;,) is passed
on to the modeled brain area V1 as a Poisson spike train of typically 250
Hz. The attentional bias (v,;,,) was modeled as a Poisson spike train of
typically 4—8 Hz, received only by the attended pool S1. In addition to
the recurrent connection, the network is exposed to an external current
(Vext)> modeled as a Poisson spike train of 800 neurons, firing at 3 Hz.
This is consistent with the spontaneous activity observed in the cerebral
cortex.

In a network consisting of excitatory and inhibitory neurons with
recurrent connections, oscillations are generated by a pyramidal-to-
interneuron loop (Brunel and Wang, 2003). This oscillation frequency
depends on the relative timescales of the decay constants. Faster excita-
tion than inhibition, or a higher excitation/inhibition ratio, favors the
feedback loop and gives rise to oscillations in the gamma range (Brunel
and Wang, 2003). In our network, oscillations are therefore generated by
adjusting the conductances g,y pa and gumpa- An increase of gx\pa and
a decrease of g vpa IS equivalent to an increase in the excitation/inhibi-
tion ratio and would increase oscillations. The conductances in our net-
work are varied according to the following rule: g vpa = Sumpa (1 — 8)
and guvpa = ampa (1 1+ 108). Throughout the paper, we will refer to the
parameter 0 as the g, pa/Sumpa Iatio. The factor 10 stems from the fact
that, near the firing threshold, the ratio of NMDA/AMPA components
becomes 10 in terms of charge entry, as stated by Brunel and Wang
(2001). Therefore, to not change the spontaneous state, a decrease in
Eumpa 18 compensated by a 10-fold increase in gaympa. All recurrent
conductances (both inhibitory and excitatory) are changed according to
these rules. The excitation/inhibition ratio is adjusted so that the network
only shows oscillations during the stimulus presentation.

All simulations were initiated with a period of 1000 ms in which no
stimulus was presented, followed by a period of 1000 ms composed of the
presentation of the stimuli and the attentional bias, followed by another
200 ms in which no stimulus was presented. The evolution of spiking
activity was averaged over all the neurons in the pool and over 200 trials
initialized with different random seeds.

The mathematical details of the network and a table with the default
values for all the parameters can be found in the supplemental data
(available at www.jneurosci.org as supplemental material).
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Analysis

Local field potential. In their experiment, Fries et al. (2001) use separate
extracellular electrodes to record spikes and LFP activity. The spikes
measured from one electrode belong to 2—10 neurons. They state that the
LFP reflects the average transmembrane currents of neurons in a volume
of a few hundred micrometers radius around the electrode tip.

In our simulations, we have access to all the spikes of all the neurons in
one pool, and therefore we calculate the LFP as an average over all neu-
rons in one pool. The LFP is thought to be a weighted average of the input
signals of a neural population (for a revision, see Logothetis, 2003). Be-
cause it is not exactly clear what measure in a simulation corresponds to
this, we used three different ways of calculating the LFP. The first method
was to average the spike rates of all neurons in one pool. The second one
was to average the membrane potentials of all neurons in one pool. The
third one was to average the incoming synaptic currents to a neuron over
all neurons. We found that, in our case, these three measurements were
highly correlated and that the qualitative results did not depend on the
way we computed the LFP. The results reported here are obtained using
method one. From the similarity of the three measurements, one could
deduce that looking at spike-spike correlations instead of spike—LFP
correlations might suffice. However, to be able to compare our results
with the experimental results, we still need to calculate the LFP.

Spike-triggered average. To measure the synchronization between
spikes and the LFP, we used the STA. We used the same method as Fries
et al. (2001) to be able to compare our modeling results with the exper-
imental ones. An explanatory figure of the way the STA is calculated is
plotted in supplemental Figure 1 (available at www.jneurosci.org as sup-
plemental material). Around each spike time, a window of predefined
size (typically =100 ms) is cut out of the LFP. These time windows are
plotted as shaded areas. The average over all these windows is called the
STA. To characterize the STA, we calculate its power spectrum, using a
fast Fourier transformation. The resulting power spectrum is then nor-
malized by dividing it by the total power in the spectrum. The idea
behind the STA is that, if spike times have a reliable temporal relation to
the local neuronal activity as measured by the LFP, these fluctuations add
up during the averaging process. Otherwise, if there is no temporal rela-
tion between spike times and the activity of surrounding neurons, fluc-
tuations in the LFP average out during averaging. We define the low-
frequency range as 0-20 Hz and the gamma-frequency range as 35-65
Hz.

Attentional modulation. We denote the stationary values of the aver-
aged firing rate in the attended state with v*** and in the unattended state
with v"°*. The firing rate is averaged over the period from 200 ms after
the stimulus onset until the end of the stimulus presentation. Similarly,
we calculate the STA with all the spikes occurring in the period from 200
ms after the stimulus onset until the end of the stimulus presentation,
once for the pool of neurons encoding the attended stimulus (STA®"),
and once for the pool encoding the unattended stimulus (STA"**""). The
power spectrum of these two STAs we denote as pSTA*" and pSTA ™",
respectively. The attentional modulation in the selective pools is then
given by

gatt _ gm)att
Mf = gnoat[ + gam

with & being one of v or pSTA.

Results

The aim of this study is to show the relationship between atten-
tional rate modulation and attentional gamma modulation. First,
we show how oscillations are generated in the network and that
there are only oscillations in the gamma band if a stimulus is
present. Then, we study the parameters that influence attentional
modulation, in particular the attentional bias, inhibition, and the
synchronization in the network. We show that rate modulation
and gamma modulation are not concomitant but that it is advan-
tageous if both are present. This suggests behavioral relevance for
gamma modulation. Finally, we study attentional modulation in
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Figure3. Raster plot of 40 neurons from the selective poolsin V1. Stimulus onset s at 1000 ms and stimulus offset at 2000 ms.

there is a lot of power in the gamma-
frequency band.

The effects on the low-frequency and ),
the gamma-frequency band are shown
separately in Figure 5. We plot the percent-
age of power in the STA for the low-frequency (dashed curve) and
the gamma-frequency band (solid curve) against different values
of the gx vipa/Sumpa Fatio. The more g, ip4 is increased, the stron-
ger the oscillations in the gamma-frequency band and the weaker
the oscillations in the low-frequency band. In the experiment by
Fries et al. (2001), the peak values in the power spectrum of the
STA were approximately equal for the low-frequency and the
gamma-frequency band. Therefore, in the range of gs\ipa/Snnpa
from 0.11 to 0.13, the network exhibits the same power distribu-
tion as found in the experiment by Fries et al. (2001).

Stimulus presentation

In the experimental findings by Fries et al. (2001), the peak in the
gamma band of the power spectrum of the STA is only observed
during the stimulus presentation. Our model has the same prop-
erty (illustrated in Fig. 6). We plot the power spectrum of the STA
on the y-axis against the frequencies on the x-axis. It demon-
strates clearly the desired behavior, namely that almost all the
power is in the low-frequency band during the delay (spontane-
ous) period before stimulus onset (dashed curve). During the
stimulus presentation (solid curve), the percentages of power in
the low-frequency band and in the gamma-frequency band are
equilibrated.

Parameters that modify attentional modulation
What parameters does the attentional modulation of the rates
and gamma-frequency synchronization depend on?

Bias

The most obvious parameter that influences attentional modula-
tion is the applied bias (1,;,,). The modulation of the rates and the
gamma-frequency synchronization both correlate positively with
the bias (Fig. 7a). Additionally, we observe also that the total
gamma power in the STA spectrum increases with the bias. The

a—d, Neurons in the oscillatory regimen ( gypa/Gxuoa 1atio of 0.12). a, Average rate with attention. b, Spikes with attention. ¢,
Average rate without attention. d, Spikes without attention. e~ h, Neurons outside the oscillatory regimen ( gaypa/Gmpa ratio of
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0.07} ----Qawea/Onupa  ratio=0.10
""" gAMPA/gNMDA ratio=0.115
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©
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<
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Figure 4.  Changes in the STA power spectrum depending on the g,yea /Gamoa ratio. For a

selection of gp4 /Gywpa ratios (indicated in the figure legend), we plot the power spectrum of
the corresponding STAs. Averaged over 20 trials.

gamma power shown is the average of the gamma power in the
two selective pools (S1, S2).

Inhibition
Another parameter modifying attentional modulation is the in-
hibition in the network (w ;). To study its influence, we modify the
connection weights of the inhibitory pool to the selective pools.
Again we observe that both the rate and the gamma-frequency
modulation correlate positively with the inhibitory weights (Fig.
7b). However, contrary to the bias, the total power in the gamma-
frequency band decreases with more inhibition and therefore
shows a negative correlation with the attentional modulation.
Altogether, we observe that, with increasing competition (ei-
ther higher bias or stronger inhibition), the attentional modula-
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over 20 trials.

0.07
— Stimulus Period

0.06}F ----Spontaneous Period

0.05¢}
£0.04}
o
o
£0.03}
(%))

0.02

0.01

O " \.
0 20 40 60 80 100
Frequency in Hz

Figure6.  Example power spectrum of an STA comparing stimulus and delay (spontaneous)

period. The power spectrum of an STA is plotted for the stimulus period (solid curve) and the
delay period (dashed curve). Averaged over five trials.

tion in the network also increases. However, synchronization in-
creases as a function of bias and decreases as a function of
inhibition.

Level of synchronization in the network

Next we studied how the attentional modulations were affected
by directly modifying the level of gamma-frequency oscillation in
the network. To do so, we adjusted the gx\pa/gumpa ratio. The
power in the gamma-frequency band increases monotonically
with this ratio until reaching a level of >0.9, meaning that >90%
of the power is concentrated in the gamma-frequency band (Fig.
8). The rate modulation as a function of the gxypa/gampa ratio
shows a constant decrease. The gamma-frequency modulation
increases until a g, ypa/gampa ratio of ~0.12 is reached and then
decreases. In summary, rate and gamma-frequency modulation
do not covary. The fact that rate modulation and gamma modu-
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Figure 7. Dependences of attentional modulation on inhibition and bias. Gamma power

(dotted curve) shows how much of the power of the spectrum is in the gamma band. Rate
modulation (solid curve) and gamma modulation (dashed curve) show the difference between
attended and unattended pools in percentage. Averaged over 200 trials. , Gamma power, rate
modulation, and gamma modulation as a function of bias. For increasing bias, synchronization,
rate modulation, and gamma modulation increase. b, Gamma power, rate modulation, and
gamma modulation as a function of inhibition. For increasing inhibition, synchronization de-
creases, whereas both rate modulation and gamma modulation increase.

lation can vary independently of each other should be considered
as one of our main results. A comparison with the experimental
findings by Fries et al. (2001) shows that, for a g, pa/gampa Fatio
between 0.10 and 0.13, our model reveals similar attentional
modulations.

If a stimulus is presented to the network, the rates in the
selective pools (S1, S2) rise. The time it takes a pool to reach its
mean frequency from stimulus onset is here referred to as the RT.
RTs are shortest for a g,\ipa/gumpa ratio of 0.12 (Fig. 9a). Fur-
thermore, we observe that these RTs are different for the attended
and the unattended pool, the ones of the attended pool being
shorter. The difference in RT is shown in Figure 9b. The biggest
difference in RT we find for a g, \ipa/gumpa ratio of ~0.12, which
is also the range at which attentional gamma modulations are
strongest. A crucial observation is the fact that the RT's inversely
correlate with the attentional modulation in the gamma band,
i.e., the higher the attentional modulation, the shorter the RTs.
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Gampa /G ratio. The main effect of increasing the gpypa /Gumpa ratio is an increase in the
network synchronization in the gamma band (dotted). The rate modulation decreases mono-
tonically with the g,ypa /gnuoa ratio. The gamma modulation increases until a gyypa /Gumon
ratio of ~0.12 and then decreases to almost 0. The figure shows that either of the two types of
attentional modulation can be predominant. Averaged over 200 trials.

Thus, our results show that gamma modulations make the system
more efficient in terms of RTs, which suggests that gamma mod-
ulation has behavioral relevance.

Comparison of two different layers

One of the goals of this work was to study the variation of atten-
tional modulation along the visual pathway. To address this ques-
tion, we compare the attentional modulation in two connected
layers (V1, V4). The comparison shows that the modulatory ef-
fects in both layers are quite similar, although more pronounced
in the upper layer (V4). The gamma modulation in the upper
layer (V4) is up to 50% stronger than in the lower layer (V1). The
rate modulation in V4 is ~28% stronger than in V1 (Fig. 10a). In
summary, we find that the attentional modulation is stronger in
the upper layer than in the lower one. These modeling results are
thus consistent with an increase of the gamma-frequency modu-
lation along the visual pathway.

In summary, we show that there is an increase in the gamma
modulation from the lower layer to the upper layer even if the
Zampa/Sumpa ratio is the same in both layers. If we now modify
this ratio independently in the different layers, we observe that
whichever layer has its g, \ipa/€aumpa ratio closer to 0.12 (which is
the optimal ratio to evoke gamma oscillations) has the higher
gamma synchronization and the higher gamma modulation. This
means that the upper layer can oscillate at gamma frequency,
although the lower layer shows no or very little synchronization
in the gamma band (Fig. 10b).

In our model, we make the assumption that the gxnpa/Saumba
ratio increases in the posterior ventral cortex. Conversely, it is
often claimed that the g, \pa/gumpa ratio decreases toward pre-
frontal cortex, to stabilize memory. We assume here that the
Zampa/Sumpa atio increases only along the posterior ventral cor-
tex (in which memory is of less importance) and then decreases
again toward prefrontal cortex.

Discussion
We study the two hypotheses of the neural correlates of attention
with our computational framework. We implement a minimal
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Figure 9. Reaction times. a, Average time to reach the mean activity level after stimulus

presentation in the selective pools. A higher g,ypa/guoa ratio makes the rates rise faster. The
mean activity level is reached fastest for a gaypa/Gymipa Fatio between 0.10 and 0.13. In this
range, also the attentional gamma modulation is maximal. b, Time difference in reaching the
mean activity level after stimulus presentation between the pools encoding the attended and
the unattended stimulus. This difference s biggest fora gaypa/Gnmpa Fatio ~0.12, which is also
the range in which attentional gamma modulation is maximal.

model of leaky IF neurons that has global inhibition and is fully
connected. Our network shows oscillations in the gamma-
frequency range. Whether there are oscillations or not depends
on the relative contributions of AMPA- and NMDA-mediated
currents ( gampa/€aumba ratio). As Brunel and Wang (2003) state,
the properties of the firing rhythm are determined essentially by
the ratio of timescales of excitatory and inhibitory currents and
by the balance between the mean recurrent excitation and inhi-
bition. Faster excitation than inhibition, or a higher excitation/
inhibition ratio, favors the feedback loop and oscillations in the
gamma range.

These oscillations appear only when the stimulus is present. If
one of the two inputs to the network is enhanced by an atten-
tional bias, the synchronization between spikes and the local field
potential in the gamma-frequency band is enhanced. The in-
crease in gamma-frequency oscillations is stable over a wide
range of input. We find that, depending on the g\y\ipa/Zumba
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Figure10.  Comparison of attentional modulation in two layers. a, Differencesin attentional
modulation between the two layers V1and V4. The gamma modulation in the upper layer s up
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V1.In general, modulations in V4 are stronger than modulationsin V1. b, Different g ypa/Gumon
ratio in the two layers. The gypa/Gnmioa ratio in layer V1is 0.0 and in layer V4 is 0.15. Layer V4
clearly synchronizes in the gamma-frequency band, whereas V1 does not.

ratio, there is a range in which the attentional bias leads to either
an increase in the firing rate or an increase in the gamma-
frequency band synchronization. About a possible origin of this
ratio in the real brain we can only speculate. The gxyipa/Sanpa
ratio could be changed through slow synaptic plasticity or short-
term synaptic plasticity induced by the attentional input.

Rate modulation can occur without gamma modulation, but
gamma modulation never appears without rate modulation.
However, the strength of gamma modulation can vary indepen-
dently of rate modulation, which leads us to the main finding of
this study, namely that the two proposed neural correlates of
selective attention (increase in firing rate and increase in gamma-
frequency synchronization) are not concomitant. Each seems to
have a role of its own in the attentional process. Generally, our
model network allows us to reproduce the main experimental
finding from Fries et al. (2001).

We also show that, after stimulus presentation, rates rise
quickest when the gamma modulations are strongest. This rise
time can be interpreted as a reaction time of the system to a
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stimulus. The reaction times get shorter in the presence of
gamma synchronization. The main reason is the fact that the
probability to generate a postsynaptic spike is higher if the pre-
synaptic spikes arrive synchronously and therefore in a more
concentrated way in time (Salinas and Sejnowski, 2001). A more
theoretical explanation for this behavior can be found in the work
of Deco and Schiirmann (1999). They study a dynamical neural
system that has to discriminate different stimuli. They show that,
if the discrimination is tuned to maximal reliability in minimal
time, the network responds for different stimuli with different
clusters of synchronized neurons. These synchronizations can be
tuned to 40 Hz. In other words, if the information in spikes has to
be maximal in minimal time, synchronization appears, which is
consistent with the energy-based arguments of Abeles (1982).
Synchronous firing generates spatiotemporal patterns in mini-
mal time, because its energy is concentrated in time.

Furthermore, the difference in the RT between the attended
and the unattended pool correlates with gamma modulation.
Consequently, this suggests that the presence of gamma modula-
tion is advantageous for the processing of the attended stimulus.
Altogether, we show that rate and gamma modulation can vary
independently, but to obtain an optimal information flow,
gamma synchronization is necessary and the g,ypa/gamvpa ratio
has to stay within a certain range. This sensibility has its origin in
the nature of the network, and only experiments can show how
sensitive the real brain is to this ratio. Gamma modulation there-
fore seems to have an essential behavioral relevance. This corre-
sponds well with experimental findings. Pesaran et al. (2002)
have shown that prestimulus fluctuations in visual gamma band
synchronization predict the efficiency of detecting a subsequent
change in a visual stimulus. Womelsdorfet al. (2006) analyze how
RTs are related to gamma-band synchronization in visual areas.
They show that the behavioral response time to a stimulus change
can be predicted specifically by the degree of gamma-band syn-
chronization among those neurons in monkeys’ V4 visual area
that are activated by the behaviorally relevant stimulus. In other
words, trials leading to fast RTs contain more gamma-band
power. They also show that this increase in gamma-band power is
indeed an effect of selective attention and not just a general in-
crease in arousal. Our findings about the RTs confirm this exper-
imental result.

Extending our model to two layers, our results show that
gamma-frequency synchronization is higher in the upper layer
(V4) than in the lower layer (V1). We think that this is attribut-
able to the fact that input to V1 is Poissonian, but input to V4
comes from V1. Because a one-layer network already shows os-
cillations in the gamma range, the input to V4 is not Poissonian
anymore but oscillating in the gamma range. This facilitates the
synchronization in V4. Moreover, we show that attentional mod-
ulations are stronger in V4 than in V1. Our findings are thus
consistent with an increase of the gamma-frequency modulation
along the visual pathway. Furthermore, if the gxypa/@umpa ratio
is different in the different layers and is high enough in the upper
layer, the neurons in the upper layer start to synchronize even
when there is no or very little synchronization in the lower layer.
Together, this might explain why in experimental work these
modulations have been found in V4 (Fries et al., 2001) but not in
V1 (Roelfsema et al., 2004).
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