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Although single-cell coding of reward-related information in the orbitofrontal cortex (OFC) has been characterized to some extent, much
less is known about the coding properties of orbitofrontal ensembles. We examined population coding of reward magnitude by perform-
ing ensemble recordings in rat OFC while animals learned an olfactory discrimination task in which various reinforcers were associated
with predictive odor stimuli. Ensemble activity was found to represent information about reward magnitude during several trial phases,
namely when animals moved to the reward site, anticipated reward during an immobile period, and received it. During the anticipation
phase, Bayesian and template-matching reconstruction algorithms decoded reward size correctly from the population activity signifi-
cantly above chance level (highest value of 43 and 48%, respectively; chance level, 33.3%), whereas decoding performance for the reward
delivery phase was 76 and 79%, respectively. In the anticipation phase, the decoding score was only weakly dependent on the size of the
neuronal group participating in reconstruction, consistent with a redundant, distributed representation of reward information. In
contrast, decoding was specific for temporal segments within the structure of a trial. Decoding performance steeply increased across the
first few trials for every rewarded odor, an effect that could not be explained by a nonspecific drift in response strength across trials.
Finally, when population responses to a negative reinforcer (quinine) were compared with sucrose reinforcement, coding in the delivery
phase appeared to be related to reward quality, and thus was not based on ingested liquid volume.
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Introduction
The orbitofrontal cortex (OFC) is thought to contribute to the
guidance of goal-directed behavior through the formation of
neural representations of predicted outcomes. Studies examining
single-unit activity in OFC during operant behavior demon-
strated that firing rates are modulated by the motivational value
of stimuli and represent reward-predictive information during
anticipation of various types or amounts of reward (Thorpe et al.,
1983; Lipton et al., 1999; Schoenbaum et al., 1999, 2003; Trem-
blay and Schultz, 1999; Hikosaka and Watanabe, 2000; Yonemori
et al., 2000; Wallis and Miller, 2003; Roesch and Olson, 2004;
Ichihara-Takeda and Funahashi, 2006; Padoa-Schioppa and
Assad, 2006; Roesch et al., 2006; Ramus et al., 2007; Simmons and
Richmond, 2008). These single-cell studies have not shown how
predicted or actual rewards are dynamically represented by pop-
ulations in OFC. This question is especially relevant for under-
standing how other, connected brain areas may read out popula-
tion activity from this structure (Pouget et al., 2000; Wu and
Amari, 2005). Until now, population coding analyses have been

mainly used for reconstruction of arm movement direction dur-
ing a reaching task (e.g., Georgopoulos et al., 1986), reconstruc-
tion of an animal’s environmental location (Wilson and Mc-
Naughton, 1993), and prediction of behavioral responses
(Laubach et al., 2000; Baeg et al., 2003). Only a few studies have
thus far described ensemble activity within OFC. Gutierrez et al.
(2006) found that ensemble activity in rat OFC discriminated
between sucrose and water reward, but this distinction was made
in a free-licking situation, thus without predictive cues and a
contingent operant response. In a sensory discrimination task in
rats, Schoenbaum and Eichenbaum (1995) showed that, during
stimulus sampling, OFC population activity represented expec-
tation of a reward presented in the following trial. However, it
remains unknown how actual and predicted rewards are repre-
sented in the population within a specific trial phase during an
operant task, and whether such a population code would be spe-
cific for different trial phases. Here it is of special interest to
compare representations when the animal anticipates reinforce-
ment or when he receives it. For the reinforcer consumption
phase, we also asked whether the observed ensemble coding is
related to reward quality or can be explained by coding of the
ingested volume of liquid reinforcer. In addition, we examined
whether reward magnitude is represented in OFC in a sparse or
redundant manner, i.e., by a few highly specifically tuned cells or
in a broadly distributed way (cf. Narayanan et al., 2005). Finally,
we addressed the dynamics by which consistent coding develops
as the learning task progresses. It has been hardly feasible to ex-
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amine learning-related changes on a trial-by-trial basis in single-
unit recordings from OFC, because single-unit firing patterns
show great variability from trial to trial, making it difficult to
track systematic changes during learning. To address these vari-
ous aspects of population coding, ensemble recordings were
made from rat OFC during a five-odor discrimination “go/no-
go” task, in which odors were predictive for various amounts of
an appetitive sucrose solution, for no reward or an aversive qui-
nine solution.

Materials and Methods
Subjects
All experiments were approved by the Animal Experimentation Com-
mittee of the Royal Netherlands Academy of Arts and Sciences and were
performed in accordance with the National Guidelines for Animal Ex-
perimentation. Data were collected in 17 sessions recorded from six male
Wistar rats [Harlan CPB; sessions partially overlapped with those pre-
sented in a single-unit study (van Duuren et al., 2007)]. Animals were
weighed and handled daily and socially housed in standard type 4 mac-
rolon cages under a reversed 12 h light/dark cycle (dimmed red light at
7:00 A.M.). Weight at the time of surgery was 325– 425 g. After surgery,
animals were housed individually in a larger cage (1 � 1 � 1 m) under
similar conditions. Food was available ad libitum, but animals were water
restricted. They had access to water with a variable delay after the end of
the recording session in the home cage for a 2 h period.

Behavior
Apparatus
Recordings were made in a black Plexiglas operant chamber (40 � 37 �
41.5 cm), placed in a sound-attenuated and electrically shielded box. The
front panel contained on the right side a light signaling trial onset and an
odor sampling port, and on the left side a delivery well for fluid reinforce-
ment. Responses made by the animal in the sampling port and fluid well
were registered by an infrared beam transmitter and detector. Behavioral
events during task performance and data collection were controlled by a
computer. Odor delivery was controlled by a system of solenoid valves
and flow meters. To prevent mixing up of odors within the system, sep-
arate delivery lines for each odor were present. The different types of fluid
reinforcement were delivered with separate fluid lines. Fluid delivery was
gravity driven, with a tap and valves controlling the flow and amount of
fluid delivered. The odorants (Tokos BV) were separated into different
families, i.e., woody, fruity, herbal, citrus, and floral. Each set of odors
used in a discrimination session contained one odor from each family. In
addition, no single family of odors was preferentially associated with a
particular trial outcome.

Behavioral paradigm
When animals were habituated to the recording chamber, the training on
the behavioral procedure of the five-odor olfactory discrimination go-
no/go task started. In this task, odors signaled whether a go response
resulted in a particular amount of a positive reinforcement or in a nega-
tive one. We used five different odors in each session, each of which was
uniquely predictive throughout the session of either an amount of an
appetitive sucrose solution (10% sucrose in water, i.e., 0.05, 0.15, and
0.30 ml), no reward (nonreinforced condition), or an aversive quinine
solution (0.15 ml of 0.015 M quinine in water). A particular odor was
never used in more than one session. Criterion for behavioral perfor-
mance was set at 15 trials per positively rewarded trial type, because it was
difficult to reliably obtain more trials because of the larger reward vol-
umes. When animals reached this criterion during training, they were
implanted with a multitetrode array (“hyperdrive”), and recordings
started. For each recording session, a new set of five odors was used.
During the task, in which odors were presented pseudorandomly, the
onset of the trial light indicated that animals could initiate a trial by
making an odor poke. If no odor poke was made within 15 s after onset of
the light, the light switched off and the intertrial interval started (with a
variable duration of 10 –25 s). After initiation of an odor poke the trial
light switched off after 500 ms, followed 500 ms later by the odor presen-

tation. This interval was included to prevent the animal from moving
during cue sampling. Odor sampling itself was required to last at least 1 s.
After retraction from the odor sampling port or whenever a maximal
duration for odor sampling (10 s) was exceeded, odor presentation was
terminated. Premature retraction from the odor sampling port (odor
poke shorter than the minimal duration of 2 s) resulted in the onset of the
intertrial interval. The nose poke in the fluid well marked the onset of an
immobile waiting period of 1.5 s, after which reinforcement was deliv-
ered. Whenever reinforcement was delivered, animals had 10 s to con-
sume the reward, after which the intertrial interval started. Incorrect (go)
responses after sampling an odor predictive of quinine or the nonre-
warded contingency had no further programmed consequences. Fur-
thermore, no other, separate reinforcer was applied during these trials.
The behavioral sequence comprising the departure from the sampling
port to the fluid well, including nose entry and waiting period in the well,
will be referred to as the go response.

Surgery, electrophysiology, and histology
Animals were anesthetized with 0.08 ml/100 g of Hypnorm intramuscu-
larly and 0.04 ml/100 g of Dormicum subcutaneously (Roche) and
mounted in a Kopf stereotaxic frame. After exposure of the cranium, five
small holes were drilled into the cranium to accommodate surgical
screws, one of which served as ground. Another larger hole was drilled
over the OFC in the left hemisphere [center of the hole 3.2 mm anterior,
3.2 mm lateral to bregma according to Paxinos and Watson (1996)]. The
dura was opened, and the exit bundle of the hyperdrive was lowered onto
the exposed cortex. The hole was subsequently filled with a silicone elas-
tomer (Kwik-Sil; World Precision Instruments), after which the hyper-
drive was anchored to the screws with dental cement. The hyperdrive
consisted of an array of 12 individually drivable tetrodes and two refer-
ence electrodes (13 �m nichrome wire; Kanthal), spaced apart by at least
310 �m (Gray et al., 1995; Gothard et al., 1996). Immediately after sur-
gery, all tetrodes and reference electrodes were advanced 1 mm into the
brain; in the course of the next 3 d, the tetrodes were gradually lowered
until the OFC was reached. Animals were allowed to recover at least 7 d
before the start of the recordings. Before each session started, tetrodes
were lowered with increments of 40 �m to search for novel neurons to be
recorded, after which the animal was brought back to his home cage and
left to rest for at least 2 h for the brain tissue to stabilize. Electrophysio-
logical recordings were made using a Cheetah recording system (Neura-
lynx). Signals from the individual leads of the tetrodes were passed
through a low noise unity-gain field-effect transistor preamplifier, insu-
lated multiwire cables, and a 72 channel commutator (Dragonfly) to
digitally programmable amplifiers (gain 5000 times; bandpass filtering
0.6 – 6.0 kHz). Amplifier output was digitized at 32 kHz to record spike
waveforms and stored on a Windows NT station. The occurrence of task
events in the behavioral chamber was recorded simultaneously.

When all experiments with a given rat were finished, tetrode positions
were marked by passing a 10 s, 25 �A current through one of the leads of
each tetrode. After �24 h, animals were perfused transcardially with a
0.9% saline solution followed by 10% formalin. After removal from the
skull, brains were stored in a 10% formalin solution for several days
before sectioning. Brain sections of 40 �m were cut using a vibratome
and were Nissl stained to reconstruct the tracks and final positions of the
tetrodes. This showed that recording sites ranged from 2.7 to 4.7 mm
anterior to bregma, and were limited to the ventral and lateral orbital
regions of the OFC. Recording depth ranged from �3.0 to 5.5 mm (Paxi-
nos and Watson, 1996) (Fig. 1).

Data analysis

Behavior
Behavioral data were analyzed using SPSS for Windows (version 11.0).
Unless otherwise stated, results are expressed as mean � SEM values. We
distinguished two measures to analyze reaction times during the task:
movement time was defined as the duration between nose retraction
from the odor port and nose entry into the fluid well, and overall re-
sponse time was defined as the duration of the entire sequence of odor
sampling (starting at odor presentation) and nose entry into the fluid
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well. The mean response times per reward magnitude were obtained
from all corresponding trial types within all the sessions that were used
for analysis. These measures were compared across different trial types
with the nonparametric Kruskal–Wallis test ( p � 0.05), followed by a
post hoc Mann–Whitney U test ( p � 0.05).

Electrophysiology
Isolation of single units. Single units were isolated by off-line cluster cut-
ting procedures (BBClust/MClust 3.0). Before a cluster of spikes was
accepted as a single unit, several parameters and graphs were checked
visually: the averaged waveform across the four leads, the cluster plots
showing spike parameter distributions such as peak amplitudes across
the four dimensions, the autocorrelogram, and the spike interval histo-
gram. Because the absence of spike activity during the refractory period
(2 ms) is indicative for good isolation, units of which the autocorrelo-
gram and the spike interval histogram revealed activity during this period
were removed from the analysis. For the ensemble analysis, all remaining
units were taken into consideration.

Variability of the representation of reward magnitude. To examine vari-
ability in firing rates to reward magnitude, we calculated two variability
measures [these have also been used for indicating sparseness of neural
coding [cf. Rolls and Tovee (1995) and Perez-Orive et al. (2002)]. Briefly,
the population variability (Spop) is indicative of the variability in the
mean firing rate of single cells across the population, regardless of reward
size, and is computed by

S �
N

N � 1

r2 � �r�2

r2
with r �

1

N�
j�1

N

rj and r2 �
1

N�
j�1

N

rj
2 , (1)

where N indicates the number of units and rj the mean firing rate of
neuron j during a particular trial phase, averaged across all three reward
conditions. Thus, r� represents the mean firing rate in the population and
r 2 the mean squared firing rate. The parameter variability (Spar), which is
indicative of a single cell’s response variability attributable to differences
in reward size, was calculated in a similar manner, but index j now indi-
cates each reward size and N the total number of reward sizes (N � 3 in
the current study). Both measures were calculated for the waiting and

reward delivery phase within a time frame of 1.5 s; for the movement
period, the frame was 1.0 s. Values ranged between 0 and 1, with 1
representing the maximum variability attainable.

Ensemble analysis: general principles of population coding. Population
activity was examined using two different reconstruction methods, the
Bayesian method and template matching. Before explaining both meth-
ods in more detail, we will first point out the general concepts behind
them. A central postulate in systems neurophysiology is that macro-
scopic parameters (usually in the external world, such as the speed of a
moving object) are encoded in the patterns of action potentials generated
by neurons. Given these spike patterns, one may also ask how one could
make sense out of them, that is, how one could understand what type of
information about macroscopic objects or properties they represent. To
operationalize this general task, we may ask what a given spike train can
tell the experimenter about the stimulus or cognitive process that gave
rise to the spike train in the first place (Rieke et al., 1997). For example,
given a situation in which a particular spike train may have been evoked
by any of three sensory stimuli, the task for a neutral observer, not aware
of the actual stimulus, is to decide which of these stimuli was in fact
applied to elicit the spike train. This process of reconstructing the origi-
nal stimulus (or other macroscopic variables) from the spike train is
termed decoding. The current objective is to decode the variable reward
magnitude from multineuron spike trains. This can be attempted for
spike trains generated in anticipation of the reward (expected magnitude,
as a cognitive variable), or in relation to the actual reward, as it is deliv-
ered to the animal.

Decoding can be accomplished successfully on the basis of single-cell
firing activity (Bialek et al., 1991). If one would choose to use the average
firing rate of a single neuron to decode a macroscopic variable, the pro-
cedure would rely on one scalar value. In ensemble recordings studies,
however, the firing activity of many neurons offers a potentially much
richer source of information; firing-rate values of all simultaneously re-
corded neurons can be used for decoding, and the series of firing-rate
values from all neurons is conceptualized as a population vector. If one
records N neurons in a given session, a population vector v can be rep-
resented as a series of firing rate values: v � (s1, s2, . . ., sN), where si is the
firing-rate value (scalar) of the first neuron, etc. Geometrically, a vector is
an entity in Euclidean space that has both magnitude and direction; for
instance, a vector composed of the firing rates of two cells [v � (s1, s2)]
can be rendered as an arrow in a two-dimensional plane.

If a neutral observer is only provided with a sample of firing-rate values
of a given set of recorded neurons, but has no knowledge of how macro-
scopic parameters “map onto” their firing responses, he would not be
able to decode those parameters successfully. Thus, knowledge is needed
as to how neurons are “tuned” to the parameter under study; in other
words, we need to know what the “standard” parameter mapping or
encoding of these neurons is. Thus, in addition to needing a population
vector for actually decoding the sample set of firing-rate responses back
to the value of the macroscopic parameter (i.e., the population vector for
decoding), we also should have a “template,” or separate set of firing-rate
values that tells us what the standard mapping from the parameter onto
firing-rate responses is (i.e., the population vector for encoding). In the
current study, a total of 15 trials for each of the five odor– outcome pairs
was available, and our standard approach was to extract the template (or
encoding vector) from the last six trials of each pair (i.e., trials 10 –15),
whereas the sample set for decoding was obtained from trials 1–9 of each
pair (see below).

Given the population vectors for encoding and decoding, some kind of
mathematically explicit comparison between the vectors must next be
performed to complete the task of decoding. The sample (decoding) set
of firing rates must be compared with the template (encoding vector) to
reconstruct which macroscopic parameter value was the most likely one
giving rise to the observed sample responses. Although both the
template-matching and Bayesian reconstruction methods are described
below in more detail, the template-matching method works essentially as
follows. If we define a template (encoding vector) for two cells as [t � (t1,
t2)] with t1 being the firing-rate response of cell 1 to a given parameter,
and a to-be-decoded sample of the same cells as [d � (d1, d2)], then it is
straightforward to visualize these two vectors as two arrows in two-

Figure 1. Localization of tetrode recording sites. As indicated by rectangles, recordings in all
rats were localized in the ventral and lateral regions of the OFC, between 2.7 and 4.7 mm
anterior from bregma. Recording depth ranged from �3 to 5.5 mm (Paxinos and Watson,
1996). Indicated by black arrows in the histological section are several partially visible tetrode
tracks. Black asterisks mark the lesion sites that show the final position of three tetrodes.
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dimensional space, having the same origin. The similarity (or degree of
matching, hence the term “template matching”) between the vectors can
be expressed as the cosine of the angle between the two vectors, as further
explained below.

Although population-coding methods as described have the potency
to yield important insights bridging gaps between the single-neuron and
behavioral-cognitive levels, some limitations can be delineated. The ob-
jective of decoding is naturally limited to the parameter that was varied
(in this case, reward magnitude); thus the OFC is likely to encode other
macroscopic variables [cf. O’Doherty et al. (2001), Wallis and Miller
(2003), and Roesch et al. (2006)], which, however, should be addressed
separately. Second, because we only measure and consider neural corre-
lates of reward in OFC, no conclusions can be drawn as to how OFC
populations come to express the capacity for reward-size coding; afferent
pathways and intracortical mechanisms for achieving this capacity must
be studied separately. Third, whereas in the current study mean firing
rate (per trial phase) was used as a measure of neural response, other
aspects of firing patterns, such as related to spike timing, may make
additional contributions to population coding (cf. Narayanan and
Laubach, 2005). In addition to these aspects, there is no “code” in the
neural patterns that could be deciphered, or at least the current methods
do not provide a way to do this, if possible at all.

Population coding of reward magnitude: template matching. For the
main analysis, only the three positively rewarded trial types were taken
into consideration, because the quinine and nonreinforced conditions
did not yield enough trials for a meaningful analysis except for a control
procedure (see Results). As pointed out above, the sessions, all contain-
ing 15 correctly performed trials per reward size, were divided into two
blocks, of which the first block (trials 1–9) was used for decoding and the
second (trials 10 –15) for encoding. The first nine trials of the session
were chosen for decoding to be able to examine how the representation of
reward information builds up during the initial learning phase in the
task. We also examined whether a random selection of trials for decoding
would provide a similar result; this analysis showed that with randomly
selected trials, decoding scores were obtained that were generally higher
than with the trials 1–9.

For the analysis, two vectors were constructed for each reward size,
denominated as x � (x1, x2, . . ., xN) and y � ( y1, y2, . . ., yN), containing
the spike counts within a specified time window for the encoding (x) and
the decoding (y) block, with xi and yi indicating the spike count of cell i
averaged across trials. Thus, the population vector x is used for the en-
coding part of the procedure (i.e., for determining the template or “tun-
ing curves” of the cells toward reward magnitude, using the last part of
the session, trials 10 –15; see above). The population vector y is used for
the decoding part of the procedure, in which the spike counts, specific for
reward sizes, are taken from the same cells, but now from the first part of
the session, trials 1–9). The two vectors were then compared to calculate
the decoding score, which is the percentage of correctly identified reward
amounts in the decoding phase, based on the activity patterns found in
the encoding phase (Fig. 2). Hence, the ensemble code for reward mag-
nitude is made up of the different firing rates of all recorded cells com-
bined in the encoding and decoding phase in relation to reward
magnitude.

For each trial phase in which we examined population coding of re-
ward size, we used a standard time window, corresponding with the
duration of that particular phase within the trial. Reconstruction of re-
ward size for the period during which the animal moved from the sam-
pling port to the fluid well was done with a time frame of 1 s, whereas for
the period when the animal awaited reinforcement with its nose in the
fluid well, a time frame of 1.5 s was used. During the reward delivery
phase, the time frame in which reward size was reconstructed was 10 s,
unless otherwise mentioned.

With template matching, the similarity between the vectors containing
the spike count in the defined time window for the encoding and decod-
ing block was calculated by computing the cosine of the angle between
them (Lehky and Sejnowski, 1990; Zhang et al., 1998; Louie and Wilson,
2001). A value of 1 represents an exact similarity between the two vectors
and �1 the exact opposite, whereas 0 (i.e., orthogonal) indicates no

similarity between the two vectors. We first calculated the inner product
of x and y:

�
i�1

N

xiyi , (2)

where xi and yi indicate the average firing rate of neuron i from a total of
N cells within the specified time window for the encoding and decoding
block, respectively (Fig. 2). Then the cosine was calculated by

cos� �

�
i�1

N

xiyi

�x� � �y� , (3)

with the denominator representing the product of the absolute vector
lengths. If the decoding spike vector belonging to a particular reward
amount produced the highest cosine value with respect to the encoding
vector, then that particular reward size was selected as reconstructed
amount of reward (Fig. 2).

In several graphs, the decoding score (i.e., the percentage of trials in
which the amount of reward was correctly reconstructed) was expressed
as a function of time or as a function of the size of the “reconstruction
ensemble,” i.e., the group of neurons that was subsampled from the
entire population and used for the calculations. The maximum size of the
reconstruction ensemble was 37: this value represents the median value
of the number of cells recorded in all sessions, which ranged between 26
and 60. Unless otherwise mentioned, a reconstruction ensemble of 37
neurons was used for calculations. Calculations were made for each re-
cording session, after which data were averaged. For the assessment of
decoding as a function of size of the reconstruction ensemble, the decod-
ing score was calculated 100 times for each group size, each time with
neurons randomly picked from the population recorded in that particu-
lar session. Decoding as a function of time was calculated with a recon-
struction ensemble of 37 neurons as well: the decoding score was calcu-
lated 100 times per time window, each time with randomly picked
neurons. The decoding curves were further analyzed by applying linear
regression analysis ( p � 0.05) and a one-way ANOVA test with Bonfer-
roni correction ( p � 0.05).

Population coding of reward magnitude: Bayesian reconstruction. Bayes-
ian or probabilistic reconstruction was used as previously described by

Figure 2. Schematic representation of the template-matching procedure. This example
shows the decoding of 150 �l of sucrose solution. First three encoding vectors are generated,
one for each reward size, which contain the firing rates of all cells obtained from trials 10 –15.
These vectors serve as templates. The sample set (or decoding vector) contains the firing rates
obtained in trials 1–9. The decoding set is compared with the template to reconstruct which
parameter value most likely gave rise to the observed sample response. To this end, the simi-
larity between the encoding and decoding vectors is calculated for all three reward amounts by
computing the cosine of the angle (�) between the decoding vector and each of the three
encoding vectors (see also Eq. 3). The highest cosine value max (cos�), which indicates the
highest similarity between two vectors, is selected as reconstructed amount of reward. In this
example, the decoding vector shows the highest similarity with the encoding vector con-
structed for 150 �l. Hence, 150 �l is selected as the reconstructed amount of reward.
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Földiák (1993), Sanger (1996), Zhang et al. (1998), and Thiel et al.
(2007). Briefly, population vectors were calculated as pointed out above,
and decoding was based on the equation of conditional probability:

P�s|y�P�y� � P�y|s�P�s�, (4)

where P(s�y) indicates the probability of a reward size s given the
multineuron spike pattern vector y. P(s) indicates the prior probability of
reward size, which does not need to be calculated; it has a fixed value of
1/3 because of the three different amounts of rewards that were applied
with equal probability across trials. The probability P(y) for the spike-
containing decoding vector y to occur does not need to be calculated
either: because the reconstructed amount of reward was the most prob-
able reward size of the probability distribution (see below), this can be
considered as an unnecessary scaling factor.

Under the assumptions of a Poisson distribution of spike timing and
cells firing independently from each other, P(y�s) for every reward size s
was computed by

P�y|s� � P�y|x�s�� � 	
i�1

N

P�yi|x�s�� � 	
i�1

N �xi�s��
yi

yi!
exp� � xi�s��, (5)

where xi is the product of the length of the time window � and the average
firing rate fi(s) of cell i for a given reward size, and x(s) is the multineuron
spike pattern vector used for encoding (i.e., determining the tuning of
neurons to reward size). We calculated the logarithms of the probabilities
P(yi�x(s)) to avoid working with extremely small values. The most prob-
able reward size of the probability distribution was taken as the recon-
structed amount of reward, which is the maximum of P(y�x(s)). The
latter quantity is equivalent to P(s�y) (see Eq. 4). Further data analysis was
done as described for template matching.

Analyzing the data with these different decoding methods revealed
that in all cases decoding scores for reward amount were slightly higher
with template matching than with the Bayesian method. To elaborate on
the lower decoding scores for Bayesian method as observed in our results,
we recalculated decoding with various variants of the Bayesian method.
When the spike timing distributions are approximated by a Poisson dis-
tribution, the firing rates within the decoding vector are rounded to
integers (see Eq. 5). To examine whether the use of integer values con-
tributes to a lower performance, we tried a gamma distribution instead,
but did not observe an improvement. When a Gaussian was used as
distribution of spike timing, decoding scores were comparable with those
obtained under a Poisson distribution as well. This may be because of the
high proportion of cells with low firing rates, which causes the use of a
Gaussian distribution to be inappropriate. It should be noted, however,
that cells with low firing rates were found to be important for reconstruc-
tion, because their removal from the reconstruction ensemble led to
lower decoding scores than when these cells were taken into account.

Results
Behavior
Data from 17 recording sessions were used for the analysis, ob-
tained from six rats. For all three positively rewarded trial types,
animals needed on average �17 trials to reach the criterion of 15
successful trials per reward size (0.05 ml, 16.7 � 0.4, proportion
correct 88%; 0.15 ml, 16.8 � 0.6, proportion correct 88%; 0.30
ml, 17.9 � 0.7, proportion correct 83%). For the nonreinforced
and quinine trial types, animals made on average 5.4 � 0.7 and
5.1 � 0.8 go responses, respectively (sucrose vs quinine or vs
nonreinforced, p � 0.000; paired sampled t test). The reason why
rats initially perform responses during quinine trials might be
that they have to taste the reinforcing fluid to learn which out-
come to avoid or to approach based on the initially neutral olfac-
tory stimuli.

Examination of the movement time showed no significant
differences between the positively reinforced trial types (0.05 ml,
1.42 � 0.04 s; 0.15 ml, 1.40 � 0.04 s; 0.30 ml, 1.41 � 0.04 s;
number of trials per reward size, 255). When the positively rein-

forced trial types were combined (1.41 � 0.01 s), movement time
for sucrose trials was significantly shorter compared with quinine
trials, but not compared with the nonrewarded trial types (qui-
nine go responses, 1.82 � 0.16 s; n � 87; nonrewarded go re-
sponses, 1.51 � 0.07 s; n � 88). The overall response time re-
vealed that animals responded significantly faster to obtain the
highest amount of reward compared with the lowest amount;
comparison of these reward amounts with the middle-sized re-
ward showed no significant difference (0.05 ml, 3.76 � 0.07 s;
0.15 ml, 3.60 � 0.06 s; 0.30 ml, 3.48 � 0.06 s). Thus, learning
within this task was evident from the faster overall response time
for the largest reward and from the lower number of quinine
responses, which were performed with a slower movement time
as well compared with responses during sucrose trials.

Electrophysiology
Variability in the representation of reward magnitude
Over the course of 17 sessions recorded in six animals, a total
number of 683 single units was obtained. The number of single
units recorded per session ranged from 26 to 60 (mean � SEM,
40.2 � 2.4), with a mean firing rate of 1.85 � 0.15 spikes/s.
Neurons could be specifically activated during several task
phases, including odor sampling, the behavioral phase in which
animals moved from the odor sampling port to the fluid well
(“movement phase”), the period of waiting for reinforcement in
the fluid well, and the reward period (i.e., the period after reward
delivery lasting for 10 s) (Fig. 3). Examination of ensemble activ-
ity focused mainly on two task periods, namely the waiting and
reward delivery periods, because we expected reward predictive
information to be coded especially during the waiting period, and
information about the size of the actual reward after reward de-
livery. When of particular interest, population coding was also
examined for the movement phase. Because the task was not
designed to determine whether differential responses during cue
sampling were attributable to different sensory inputs (odor
identity) or expectancy of varying reward magnitude, results re-
garding the coding of expected reward magnitude during this
phase would be inconclusive. Hence, ensemble activity in this
task period was not examined.

Before studying population coding principles themselves, we
first aimed to assess (1) to what extent the firing-rate variability of
single cells is attributable to effects of reward size and (2) whether
whole OFC populations exhibit a high or low degree of overall
firing-rate variability, regardless of reward size. This was done by
calculating two variability measures, namely Spar and Spop. The
mean Spar, indicating the response variability of individual neu-
rons associated with variations in reward size (their tuning
curves), was 0.23 for the waiting period and 0.28 for the reward
delivery phase (Fig. 4A,B). The mean Spop, which represents the
variability in firing rate across the population regardless of re-
ward size effects, was 0.70 for the waiting period and 0.73 for the
reward period (Fig. 4C,D). Similar findings were obtained for the
movement period, namely a mean Spar value of 0.25 and a mean
Spop value of 0.76. These results show, first, that there is a high
variability of firing rates throughout the population, as illustrated
by the high Spop values throughout the three trial phases. Second,
this phenomenon is not matched by a similarly high reward-
related variability when individual cells are considered: OFC neu-
rons displayed less variability in their tuning curves to reward
size, because for all three task periods the large majority of the
cells had values �0.5 (movement period, 76%; n � 518; waiting
period, 79%; n � 541; reward period, 76%; n � 520). Apparently,
other factors must be present in addition to the reward-
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modulated response profiles of the individual cells to explain the
high variability in the overall population, e.g., differences in base-
line firing rate or differences in responsivity during various task
phases, although a small subgroup was present with a very high
parameter variability (range, 0.9 –1.0) in all three task phases.

In conclusion, whereas firing rates throughout OFC popula-
tions are highly variable, modulation of single-cell firing rate that
is attributable to reward size is relatively subtle, in line with a
previous analysis of single-unit activity in OFC (van Duuren et
al., 2007).

Population coding of expected and actual reward magnitude
We will describe first an application of the Bayesian method and
template matching in which the magnitude of reward was de-
coded from ensemble activity in the positively rewarded trial
types across the first nine trials of the session, whereas trials
10 –15 were used for encoding. During the movement, waiting,
and reward periods, the magnitude of reward was decoded from
the population activity with a percentage of correct performance
significantly above the 1/3 chance level for both methods (one-
way ANOVA; p � 0.000 in all three cases). When the decoding
score was plotted as a function of the number of cells participat-
ing in the reconstruction ensemble, regression analysis showed
that with template matching the slope of the decoding curve was
significantly positive for all three task phases ( p � 0.000 in all
cases), meaning that the decoding performance improved with
an increasing amount of cells (Fig. 5). The maximum decoding
scores were 57% (at n � 30 cells) for the movement period, and
48% (at n � 36 cells) and 76% (n � 36 cells) for the waiting and
reward periods, respectively. We also calculated the decoding
score for the subgroup of the sessions that did not show a signif-
icant difference in response latency between the lowest and high-
est amount of reward. Reward magnitude could be reconstructed
above chance level in this group as well. This finding indicates
that significant population coding is present in OFC even in the
absence of overt behavioral differences, which corroborates the
notion that OFC activity is not necessarily tied to motor behavior
and involves a cognitive process.

The Bayesian method produced similar although generally
somewhat lower decoding scores, with maximum scores of 44%
for the movement period and waiting period (at, respectively,
n � 26 and n � 24 cells), and 79% for the reward period (at n �
36 cells). Also for this method, regression analysis indicated a
significantly rising score with increasing ensemble size for the
reward period ( p � 0.000). For the waiting and movement pe-
riod, however, no significant effect was found.

Across all analyses presented here, Bayesian reconstruction
and template matching produced similar results for the reward
period, whereas for the waiting-anticipation phase the decoding
scores were similar or lower for the Bayesian compared with
template-matching method. Such differences may be attributable
to several factors (see Materials and Methods). Below, we will
concentrate on results obtained with template matching.

Temporal resolution of ensemble coding
Because the results indicated reward magnitude to be represented
in population activity during task performance in a manner that
was consistent across decoding and encoding blocks, the question
arose what the temporal resolution of population coding was.
This question is relevant for understanding OFC function, be-
cause when significant coding is present across short time inter-
vals, this may facilitate rapid decision making and fast behavioral
responding. We first asked how the decoding score depends on
the width of the time window used for encoding and decoding
applied to either the waiting or reward period. To this end, we
selected smaller time windows from the overall time windows of
the waiting and reward period (1.5 and 10 s, respectively), and
calculated the decoding score for time windows of increasing
duration. This provides a cumulative measure of the percentage
of decoded reward size over time within each trial phase. The
waiting period was divided into six time windows that started at
250 ms and went up to 1.5 s, with increments of 250 ms. Time
windows used for the reward period were, in addition to the six
windows of 250 ms, 2, 3, 4, 5, 6, 8, and 10 s. Regression analysis

Figure 3. Summary of task-related firing activity of 32 simultaneously recorded OFC neurons
during a single session. The horizontal axis denotes time (in seconds), and the vertical axis
denotes cell number. Color-coded firing rates were calculated by averaging activity over all
rewarded trial types during the session, with bin sizes of 100 ms. A–C, Neural activity is syn-
chronized on odor presentation (A), the end of the odor poke (B), and reward delivery (C). Onset
of the waiting period is 1.5 s before reward delivery. Colors indicate firing rates that are normal-
ized relative to the maximum firing rate of each neuron, according to a hotness scale shown on
the right. The reward-size variations in firing activity of these cells are used as the basis for
studying the ensemble code of reward magnitude.
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indicated that with template matching, the percentage of reward
amount correctly decoded during the waiting and reward period
rose with increasing length of the decoding window, with the
slope of the decoding curve being significantly positive (waiting
period, p � 0.039; reward period, p � 0.000) (Fig. 6A,B). The
maximum decoding scores obtained were 47 and 80% for the
waiting and reward periods, respectively. A one-way ANOVA
indicated that during the waiting period, only the decoding score

obtained with a decoding window of 1.5 s
was significantly above chance level ( p �
0.001), and furthermore revealed that
there was no significant variation between
the various window widths. In contrast,
during the reward period, all time win-
dows with the exception of the first one
differed significantly from chance level
( p � 0.000). Furthermore, the first two
time windows (i.e., 250 and 500 ms) had a
significantly lower decoding score than the
final six time windows (i.e., 3, 4, 5, 6, 8, and
10 s). Thus, for a significant success rate in
decoding actual reward size, only a short
time segment (�0.5 s) of the population
response is needed, whereas the time seg-
ment needed for a significant success rate
in decoding expected reward is somewhat
longer, namely 1.5 s.

We next asked how the decoding ca-
pacity of the population varies over time
across consecutive segments of the waiting
and reward periods. This question probes
the time resolution at which significant
reward-predictive information is repre-
sented across consecutive time segments
of a behavioral task phase. Therefore the
percentage of correctly decoded reward
amount was calculated for successive time
segments across the entire length of the

overall time windows of the waiting and reward period. Thus, a
sequential method was adopted instead of the cumulative
method used above. For the waiting period, we used three con-
secutive time segments of 500 ms; for the reward period, decod-
ing was calculated during the first 2 s in time segments of 500 ms,
followed by four time segments of 1 s, and the final two segments
of 2 s. During both the waiting and reward period, regression
analysis and one-way ANOVA did not show a significant varia-
tion in decoding success, indicating that the amount of decodable
information did not significantly differ across the various time
segments within this task period (Fig. 6C,D).

Development of population coding during task progression
Because the data on response times and the number of trials per
reinforcer indicated that in the course of a session animals gen-
erated predictions about response outcome and learned to dis-
criminate between different amounts of reward, we addressed the
question how the representation of reward magnitude by popu-
lation activity evolved in the course of learning during a session.
To this end, the decoding block was divided into four consecutive
two-trial blocks (block 1, trials 1 and 2; block 2, trials 3 and 4,
block 3, trials 5 and 6; block 4, trials 7 and 8), and decoding was
compared between these four blocks. Trial numbers 10 –15 were
used for encoding (as above). In all four trial blocks and for both
the waiting and reward period, reward magnitude was decoded
from the population activity above chance level (one-way
ANOVA; p � 0.000). Regression analysis indicated for the wait-
ing period a significant slope of the decoding score for blocks 2, 3,
and 4. Decoding with the first trial block differed significantly
from all three other blocks, with an improvement in decoding
score as the task progressed, except for the final (fourth) trial
block. The second block did not differ from the third block,
whereas the third block differed significantly from the fourth

Figure 4. Distribution of population variability and parameter variability across orbitofrontal cell populations. A, C, Waiting
period; B, D, reward period. Values of population variability across sessions were generally in a high range between 0.4 and 1.0,
with means of 0.71 and 0.73 for the waiting and reward periods, respectively. Parameter variability values varied more strongly,
spanning the whole range from 0.0 to 1.0 for both periods, with means of 0.23 and 0.28 for the waiting and reward periods,
respectively. Similar findings were obtained for the movement period, namely a mean Spar value of 0.25 and a mean Spop value of
0.76 (data not shown). Note the subgroup of cells with very high parameter variability (0.9 –1.0).

Figure 5. Decoding of reward magnitude with template matching: dependence on ensem-
ble size. The horizontal axis indicates the size of the reconstruction ensemble, and the vertical
axis indicates the percentage of trials in which reward size was correctly decoded. In the graphs
presented here and in Figures 6 –7 and 9 –10, the horizontal dashed line indicates chance level
(33.3%), and dotted lines flanking the curves represent the 95% confidence interval (two times
the SE of proportion).
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(Fig. 7A). During the reward period, all blocks showed a signifi-
cant slope of the decoding curves. Furthermore, the decoding
curves differed significantly between the first and the second
blocks and the third versus the fourth, with an improvement of
decoding success; the second block did not differ from the third
block (Fig. 7B). An additional two-way ANOVA indicated no
interaction between cell group size and trial block.

The trial-block sequence observed for the waiting period, in
which block 1 is flat, whereas the blocks 2, 3, and 4 show increas-
ing decoding with an augmenting number of cells as indicated by
the regression analysis, suggests that OFC ensembles have only a
weak predictive ability at the beginning of the session (the first
block), which is already consistently present in small subsets of
neurons. At this time in the session, the decoding score does not
rise with an increasing amount of cells; adding more cells to the
ensemble adds both “confirmatory” and “conflicting” evidence
about the predicted reward size. However, the ability to predict
reward size increases with experience over trial blocks (blocks 2,
3, and 4), and the decoding score now comes to depend on the
number of cells that participate in the ensemble, as indicated by
the regression analysis. This means that at this point, the code has
developed in a more consistent and redundant manner within
OFC, with less conflicting neural evidence.

Nonspecific drift across trials as a possible confounding factor
The increased decoding success found for later trial blocks rela-
tive to earlier ones may be explained either by a learning effect or
by a nonspecific “drift” in ensemble responses over trials, because
the final block of five trials (i.e., trials 10 –15) was used for the
encoding. To check whether the latter, confounding possibility
would apply, we compared the two-trial decoding blocks when
the encoding block was situated at the session end (trials 10 –15)
with two-trial blocks when the encoding block was situated at the
start of the session (encoding block, trials 1– 6; decoding block 1,
trials 7 and 8; block 2, trials 9 and 10, block 3, trials 11 and 12;
block 4, trials 13 and 14). Because outcome-prediction learning is
expected to be unevenly distributed across trials (with a rapid
decrease in go-responses for the quinine and nonrewarded trials
early in the session), it is predicted that these decoding proce-
dures should yield separate or at most partially overlapping
curves for the waiting period if the progressive change in decod-
ing is indeed attributable to learning. Thus, the curve with encod-
ing by late trials should rise more steeply and then stabilize com-
pared with its temporal mirror image. As illustrated in Figure 7C,
showing the average of the decoding curves per trial block for the
waiting period (as in Fig. 7A), the curves indeed confirmed this
prediction. A one-way ANOVA ( p � 0.05) indicated that for the
waiting period all trial blocks of the two different encoding con-
ditions differed significantly from each other, except for the
fourth block. For the reward period, in which additional learning
may or may not take place, the first and the fourth trial block
differed significantly between the two encoding conditions, with
a steeper rise across trial blocks when the encoding block was at
the session end (Fig. 7D).

Altogether, these results indicate that progressive learning of
odor–reward associations coupled to motor responses is accom-
panied by a quick rise in population coding of expected reward
magnitude during the waiting period, followed by relative stabi-
lization: a time course not attributable to nonspecific drift. An
additional learning-related increase in population coding ap-
pears to take place in the reward period, although this effect is less
strong.

Figure 6. Decoding of reward magnitude within specific trial phases. The size of the recon-
struction ensemble was 37 neurons. A, B, Decoding score using time windows of increasing
duration for the waiting (A) and the reward delivery (B) periods. The horizontal axis shows the
size of the time window (in seconds) from which spikes were taken for reconstruction, and the
vertical axis shows the percentage of correctly decoded trials. C, D, The decoding success for
consecutive temporal segments in the waiting and reward periods, respectively. The horizontal
axis now shows the time segment of trial phase used for reconstruction. In C, the decoding
segments are the intervals (0 – 0.5), (0.5–1.0), and (1.0 –1.5) s relative to fluid poke onset. In D,
the segments are (0 – 0.5), (0.5–1.0), (1.0 –1.5), (1.5–2.0), (2.0 –3.0), (3.0 – 4.0), (4.0 –5.0),
(5.0 – 6.0), (6.0 – 8.0), and (8.0 –10.0) s relative to reward delivery.
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Temporal specificity of reward coding
within trials
In principle, it is possible that population
activity does not code reward magnitude
only during the single trial phases for
which it was examined. For example, in-
formation about reward amount may be
carried over from one trial period to the
next, similar to “delay cells” in, e.g., mon-
key dorsolateral prefrontal cortex (Fu-
nahashi et al., 1989). In contrast, one may
hypothesize that this type of information is
coded by specific neuronal groups, active
during a particular trial phase, without any
working memory-like activity or carryover
to the next trial phase. To examine this, the
time window in which decoding was cal-
culated for the movement period (1 s) was
shifted in time with a step size of 0.25 s
relative to the onset of this period, whereas
the time window for encoding remained
unchanged. For each step, the amount of
decoding success was recalculated. If cod-
ing of expected reward magnitude is con-
fined to periods around such a specific
event, decoding is expected to approxi-
mate chance level shortly before and after
the event period.

As expected, Figure 8A shows that dur-
ing the movement period, the decoding
score for the expected magnitude of re-
ward was highest when no time shift was
applied (
t � 0). For both negative and
positive shifts in time, the decoding scores
decreased rapidly to chance level: the
scores differed significantly from the de-
coding score calculated at time t � 0 (i.e.,
lower than two times the confidence inter-
val at time t � 0) in the period after �0.5
and before �0.5 s, suggesting a large seg-
regation with population coding during earlier and later trial
phases.

The same procedure was applied for the waiting period, hav-
ing a time frame of 1.5 s (Fig. 8B). Relative to the maximal de-
coding score obtained when no time shift was applied, the score
dropped slightly within �1.5 s after event onset, but only slowly
returned to chance level after the �1.5 s period. The decoding
score differed significantly from the decoding score at time t � 0
in the period after �2.0 s. The slow decay is likely related to a
certain consistency in ensemble firing patterns across the phases
of expected versus actual reward. In contrast, negative shifts in
time produced a steep decrease in decoding score; the decoding
scores were found to be significantly lower compared with the
score at time t � 0 in the period before �0.25 s.

For the reward period, a time window of 1.5 s was applied as
well (Fig. 8C). Also in this case, the percentage of correct decod-
ing decreased relatively slowly within �3.0 after event onset.
Shifting leftwards, the decoding scores were found to be signifi-
cantly lower compared with the score at time t � 0 in the period
before �0.25 s, again suggesting a segregation with earlier trial
phases, and in the period after �0.75 s. We also examined a time
window of 10 s for the reward period (data not shown), which
provided a comparable result, although the decay slopes for pos-

itive and negative shifts in time were less steep because an overlap
between the encoding and decoding window remained until
boundaries of �10 or �10 s were reached by time shifting.

We performed an additional analysis to examine whether the
template for encoding the magnitude during the reward phase
can be used for decoding the expected magnitude during the
anticipatory period, and how such matching develops as learning
progresses. If significant matching exists, this would confirm the
consistency of the ensemble pattern across the two trial phases.
To this end, we used the reward period for encoding and the
firing activity during the anticipatory period for decoding. We
divided the decoding block into four consecutive two-trial blocks
(block 1, trial 1 and 2; block 2, trial 3 and 4, block 3, trial 5 and 6;
block 4, trial 7 and 8) and compared decoding between these four
blocks. Trial numbers 10 –15 were used for encoding. This anal-
ysis showed that in all four trial blocks, there was a modest but
significant decoding of reward magnitude ( p � 0.05), but the
fourth block showed a significantly lower decoding score with
respect to the previous three trial blocks (mean � SEM, block 1,
38.5 � 0.2%; block 2, 38.6 � 0.2%; block 3, 38.3 � 0.3%; block 4,
35.3 � 0.4%) (Fig. 9). This indicates that initially the representa-
tion of reward magnitude is similar between these two task
phases, meaning that in this phase of the learning task there is a

Figure 7. Changes in reconstruction success across consecutive blocks of learning trials. A, B, The percentage of correctly
decoded reward amounts per trial block for the waiting and reward periods, respectively. In view of the reliability of reconstruction
because of the low number of trials per trial block, a reconstruction ensemble of 26 neurons was used, which was the minimal
number of neurons present in all sessions. The horizontal axis indicates the size of the reconstruction ensemble. In A and B,
encoding vectors were obtained from trials 10 –15 for each reward size. To maintain clarity, SEs of proportion are not shown, but
these values were generally comparable to those in Fig. 4. C, D, Mean decoding success for the encoding by late trials (i.e., 10 –15)
and its temporal mirror image (encoding by early trials; i.e., 1– 6) for the waiting (C) and reward (D) periods. The abscissa denotes
the proximity of decoding trials to the encoding block; the larger the decoding block number, the closer that block is to the
encoding block. Error bars indicate SEM values.
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large overlap in reward-related ensemble patterns of the antici-
patory and delivery phases. During later stages of the task, how-
ever, the neural representations of the reward and anticipatory
phases become more differentiated. Apparently, during task pro-
gression, the activity of the cells involved in magnitude represen-
tation shows a marked change after the transition from the antic-
ipatory to the delivery phase, which can be viewed as a partial
decorrelation of the code.

In conclusion, whereas the ensemble firing patterns in the
movement phase do not show marked carryover to adjacent
phases, a notable consistency in coding exists between the waiting
and delivery periods. This consistency is also expressed when
using the reward phase for encoding and the waiting period for
decoding, especially in the early phases of learning. As regards the
lack of consistency or carryover between the earlier trial phases
(odor sampling, movement, and waiting periods), it is of note
that our data are at variance with a view in which reward-
magnitude information would be maintained by the OFC
throughout various trial phases in a working memory-like man-
ner, as exemplified by dorsolateral prefrontal neurons in pri-
mates showing enhanced firing during delay intervals (Leon and
Shadlen, 1999; Fuster et al., 2000; Wallis et al., 2001).

Contribution of individual cells to coding of reward magnitude
Decoding expressed as a function of cell number (Fig. 5) does not
reveal individual contributions of cells to the population code of
reward magnitude, because in this calculation decoding scores
were averages across groups of randomly selected neurons. To
assess the contribution of individual cells to the decoding success,
we computed for all recorded neurons the difference in the per-
centage of decoded information when a specific cell was added to
a group of five neurons randomly selected from the same session.
Apart from the consideration that single cells may contribute
reasonably to coding by such a relatively small group, this size was
chosen arbitrarily. For each cell, this calculation was done 100
times, each time with a new randomly selected group of five
additional neurons. This procedure showed that during the
movement period, 32% of the cells (n � 219) made a minimal

Figure 8. A–C, Temporal specificity of coding reward size assessed with reference to the
movement (A), the waiting (B), and the reward delivery (C) periods. A reconstruction ensemble
of 26 cells was used, and the decoding time windows were 1 s for the movement period and 1.5 s
for both the waiting and reward periods. The abscissa plots the time (in seconds) by which the
decoding vector was shifted in 0.25 s steps relative to the encoding vector, with t � 0 at the
offset of odor sampling (A), the onset of fluid poking (B), and reward delivery (C). The decoding
score is significantly lower (i.e., lower than 2 times confidence interval) compared with time t�
0 before �0.5 s and after 0.5 s for the movement period. For the waiting period, the decoding
score is significantly lower before �0.25 s and after �2.0 s, for the reward delivery period
before �0.25 s and after �0.75 s. Parallel vertical lines indicate the average onset of odor
poking (OP), fluid poke onset (FP), reward delivery (R), and onset of the intertrial interval (IT).
For reasons of clarity, SEs of proportion are not shown. Horizontal lines represent two times the
SD above or below chance level.

Figure 9. Decoding of reward size during the waiting period when spike vectors from the
reward delivery period were used for encoding. A reconstruction ensemble of 26 neurons was
used, and the decoding time window was 1.5 s. For all four two-trial blocks (see also Fig. 7), a
decoding score was obtained significantly above chance level. The fourth trial block showed a
significantly lower decoding score with respect to the previous three trial blocks. Error bars
indicate SEM values.
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contribution to the decoding capacity of the population (between
�0.5 and 0.5%). Thirty-five percent of the cells (n � 239) made a
positive contribution (�0.5%) to successful reconstruction (av-
erage contribution � SEM, 6.5 � 0.4%), whereas 33% (n � 225)
contributed negatively (greater negative contribution than
�0.5%) with an average of 4.3 � 0.4%, implying that addition of
these cells led to a decrease in correct decoding. The positive
contribution was found to be significantly higher than the nega-
tive one (unpaired t test; p � 0.000). Three percent of the cells
(n � 20) made a contribution of �15% to the decoding score
(average, 20.1 � 0.9%), whereas 1.5% (n � 10) made a large
negative contribution (greater negative contribution than
�15%) that was significantly lower than the positive contribu-
tion, namely 17.2 � 0.7% (unpaired t test; p � 0.05).

During the waiting period, 26% of the cells (n � 178) made a
minimal contribution to the decoding capacity of the population,
whereas 40% of the cells (n � 273) made a positive contribution
(�0.5%) to successful reconstruction (average contribution �
SEM, 5.1 � 0.3%). Thirty-four percent (n � 232) contributed
negatively with an average of 4.5 � 0.3%. The average positive
contribution, however, did not differ significantly from the neg-
ative one. Examination of the number of cells that made a con-
tribution of �15% to the decoding score (either positive or neg-
ative) showed that 2% of the cells (n � 14) contributed positively
to the decoding score with an average of 21.4 � 1.9%, whereas
0.6% (n � 2) made a negative contribution that was significantly
lower than the positive contribution, namely 20.5 � 1.4% (un-
paired t test; p � 0.05).

During the reward period, 15% of the cells (n � 102) made a
minimal contribution, whereas 50% (n � 342) and 35% (n �
239) contributed in a positive (average contribution � SEM,
6.7 � 0.4%) and negative (4.0 � 0.4%) manner, respectively. The
positive contribution was found to be significantly higher than
the negative one (unpaired t test; p � 0.000). Six percent of the
cells (n � 41) contributed �15% to the decoding score in a
positive manner (23.4 � 1.3%), whereas 0.4% (n � 3) was found
to contribute �15% in a negative manner (19.0 � 1.3%). Also in
this case, the negative contribution was significantly lower com-
pared with the positive one (unpaired t test; p � 0.000).

In addition, cells that showed the largest variability in their
response toward reward magnitude (i.e., parameter variability
between 0.9 and 1.0) (Fig. 4) were removed from the entire pop-
ulation of neurons, and the decoding score for the remaining
population was recalculated (number of neurons removed:
movement period, n � 69; waiting period, n � 62; reward period,
n � 79). This resulted in decoding scores that did not differ
significantly from the decoding curves obtained using the entire
population.

In summary, for all three task phases we found large sub-
groups of cells making modest to large contributions to the pop-
ulation representation of reward magnitude, both positive and
negative. These results confirm the notion (see also Fig. 5) that
reward magnitude is coded in a distributed and redundant man-
ner. Although subsets making positive contributions generally
outweighed the “negative contributors,” it is striking to note that
so many negative contributors were found, which implies that
many cells generated firing patterns that were inconsistent with
respect to reward size across encoding and decoding trials. This
notion is especially relevant when framed in the context of the
problem, how target areas of the OFC “read out” its population
activity (cf. Pouget et al., 1998, 2000). If one considers previously
acquired results indicating that single OFC cells code informa-
tion on, e.g., expected reward size or delay until reward delivery,

one may be inclined to think that such single-cell signals can be
easily read out and used by a target area (such as the striatum) for
further computations, but this is a simplification of the problem
if one reflects on the current results. Namely, there appear to be
many other OFC neurons in the vicinity of the specifically tuned
one that may contribute “noise” and/or even make a negative
contribution to the population code, relative to that neuron. De-
spite this readout problem, the present results also show that
target areas of the OFC, if endowed with proper processing cir-
cuitry, can extract significant information on predicted and ac-
tual reward sizes from OFC population output, even in early
phases of learning.

Erroneous go-trials: quinine responses versus sucrose responses
During the task, animals learned to avoid negative response out-
comes, as visible by the low number of go-responses to quinine
(“false alarms”). We examined whether reconstruction of reward
size could be achieved by using the quinine-reinforced go trials
for encoding and positively reinforced trials for decoding. If, as
hypothesized, the decoding success during the waiting period is
truly attributable to the expectation and processing of reward
information, reconstruction for quinine versus sucrose trials
should deliver a random decoding score (i.e., close to 33.3% cor-
rect). Alternatively, however, some correct reconstruction may
occur because of the expected and actual volume of liquid in-
gested, regardless of the quality of the reinforcer (the volume of
quinine solution was equal to the middle-sized sucrose reward,
viz. 150 �l). If this is the case, a significant decoding success is
predicted to occur during both the waiting and reward period.
For this calculation, all available quinine trials were used for en-
coding, whereas for decoding, the sucrose trials 1–9 were used.
Figure 10 shows that for both the waiting and reward period, the
decoding score for reward size was around chance level regardless
of ensemble size, confirming that decoding success in Figures 5– 8
is attributable to reward quality. Using only trials with 0.15 ml of
sucrose reward to calculate the decoding score when quinine was
used for encoding yielded a similar result, namely a percentage
correct at chance level. This furthermore indicates that variations
in population activity observed during these two trial periods are
not attributable to licking behavior of the animal, because in both

Figure 10. Decoding scores for reward size (sucrose solution) when spike vectors from qui-
nine trials (amount of 0.15 ml) were used for encoding. A, B, Results for the waiting (A) and
reward delivery (B) periods. During both task phases, the decoding success for reward size is
around chance level, which indicates that the population activity represents reward quality and
not volume of liquid reinforcer. When only trials with 0.15 ml of sucrose reward were used for
decoding, a similar result was obtained: the decoding score was around chance level. To main-
tain clarity, SEs of proportion are not shown, but these values were generally comparable to
those in Figure 4.
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trial types, reinforcement was consumed by the animals [for con-
sistent single-unit results in relation to licking, see also van
Duuren et al. (2007)].

Discussion
The involvement of the OFC in decision making has been pri-
marily examined by lesion experiments or single-unit recordings
made during task performance. Based on these studies, the OFC
has been proposed to integrate learned associative information
with action plans to guide behavior in a flexible manner (Dias et
al., 1996; Schoenbaum et al., 1998, 2006; Gallagher et al., 1999;
Tremblay and Schultz, 1999; Baxter et al., 2000; Ramus and
Eichenbaum, 2000; O’Doherty et al., 2001; Fellows and Farah,
2003; Plassmann et al., 2007). However, it has remained uncer-
tain how behaviorally meaningful information is represented by
OFC population activity when adaptive behavior is required. By
performing ensemble recordings while animals learned odor-
reinforcer associations, we showed that information about re-
ward magnitude could be decoded from OFC population activity
during three trial phases, viz. when animals generated move-
ments directed at reward, during waiting for reward, and when
reward is received. Comparing reconstruction success between
these periods, the decoding score was highest for the reward pe-
riod; apparently, population activity is more discriminative with
respect to varying reward amount when based on the actual pres-
ence of reward than based on predictive information derived
from odor cues. It can be argued that during the reward period
OFC receives other information in addition to valuation inputs,
viz. sensorimotor feedback related to liquid ingestion per se, but
this does not explain the random decoding score when quinine
trials were used for encoding and sucrose trials for decoding.
Despite this argument, population activity during the reward pe-
riod may be determined by other processes in addition to reward
appraisal, e.g., tasting, which is inextricably linked to it. The lower
decoding scores observed in the waiting period may be explained
by the fact that animals were in the process of learning novel
odor–reward contingencies, which is supported by the rapidly
rising decoding scores during progressive trial blocks (Fig. 7A).
Another, not mutually exclusive explanation holds that no spe-
cific task requirement to obtain a high reward amount was
present, possibly leading to a relatively weak demand on the sys-
tem’s computational resources to represent reward magnitude.
Although animals are immobile during the waiting period, we
cannot rule out the possibility that, for example, small changes in
posture may influence neural activity within this period. Changes
in attention, intimately linked to reward expectation, might also
occur, but it is unlikely that the results would be confounded by
attentional factors, because OFC has not been implicated in at-
tention per se, and attentional modulation of firing responses
would not explain the difference between coding for sucrose ver-
sus quinine.

Development of population representation of
reward magnitude
Despite a limited number of trials, we were able to demonstrate
for the first time an increasing success in reconstructing reward
size during task progression. Across trials, animals learned to
discriminate between different reward sizes, and hence this in-
crease in correct predictions of reward size may reflect learning-
related changes. Indeed, testing the alternative hypothesis of a
nonspecific drift in ensemble response over trials indicated a
learning effect, because the forward curve (late encoding) exhib-
ited a steeper rise and a modest decay as trials progressed com-

pared with the more gradually rising backward curve (early en-
coding). Increasing decoding scores were also found for the
reward period, during which the forward curve rose more steeply
than the backward curve. This may be explained by an adaptation
in ensemble activity correlating to an additional learning process.
An initial number of trials in which the various rewards are actu-
ally assessed by the animal may be needed to train the population
to distinguish them. Admittedly, however, our task did not in-
clude requirements to assess this type of learning explicitly.

Variability and redundancy of the representation of
reward magnitude
Mean firing rates across the population showed a high degree of
variability, consistent with a great variability in activity levels
during specific trial phases. Despite this, individual cells showed a
vast range of variability values toward reward magnitude. Thus,
the great overall variability in neural activity in the population
was only partially matched by differences in individual neuronal
responses to reward size (tuning), suggesting a limited degree of
the variability in reward-magnitude representations.

Decoding scores were weakly dependent on the ensemble size
used for reconstruction (Fig. 5), and removing the fraction of
cells demonstrating high parameter variability did not signifi-
cantly alter the score, implying that the absence of these cells did
not result in a significant loss of reward-predictive information.
Considering individual cell contributions to the performance of a
small ensemble (n � 5), only a few cells made a substantial
(�15%) positive contribution to the decoding score, whereas a
large number of cells made small to moderate (0.5–15%) contri-
butions. These results are consistent with the concept of redun-
dant coding, meaning that reward magnitude is coded in a
broadly, distributed manner within OFC, and losses of consider-
able subpopulations will not lead to a strongly degraded output
signal. That the amount of cells making either a negative or pos-
itive contribution in the waiting period is about equal is compat-
ible with a gradual development of reward-predictive population
activity during learning and a moderate decoding success for this
phase. Such negative contributions may easily arise when spike
patterns show a high variability across trials inconsistent with
variations in upcoming reward size.

Temporal specificity of reward coding within and across
trial phases
In addition to decoding reward size within specific temporal
phases of learning trials, we also studied whether representations
remain detectable at a finer time resolution. When reconstruc-
tion time windows in the reward phase were gradually increased,
decoding performance tended to stabilize after �3 s, indicating
that significant representations can be detected at a time resolu-
tion finer than entire trial phases. For the waiting period, how-
ever, 1.5 s was needed to reach a significant decoding score (Fig.
6A,B). Analysis of decoding performance across successive time
segments of both trial phases (Fig. 6C,D) showed that decoding
success did not greatly vary with the temporal position of the
segment in each phase. However, this preserved decoding capac-
ity for small intervals within trial phases does not imply that the
same OFC ensemble would code reward information consis-
tently throughout the trial, as shown by a decreased success rate
when decoding frames were shifted in time (Fig. 8). For the wait-
ing period, a shift toward the right resulted in a slow decrease in
decoding success, but a shift in the reverse direction quickly
brought decoding to chance level. Apparently, cell groups repre-
senting reward-predictive information during this period do not
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generate similar representations during earlier trial phases, e.g.,
odor sampling. A similar lack of carryover was found for the
movement phase. In addition, no consistent decoding of reward
frames was found during the intertrial interval, arguing against a
maintenance of reward representations by the same neurons be-
tween consecutive trials.

Population coding of reward information in OFC:
functional implications
Only a few studies have related ensemble activity to reward pro-
cessing in OFC. In an odor-discrimination task, Schoenbaum
and Eichenbaum (1995) found that during odor sampling, en-
sembles coded odor identity and expectation of reward presented
in the following trial. This pioneering study differs from ours
because we focused on outcome prediction on the basis of a cue
within the same trial, on temporal coding specificity within trials,
and on dynamic adaptation during learning of novel associations.
Gutierrez et al. (2006) demonstrated population activity discrim-
inating water and sucrose rewards, both when animals antici-
pated reward and when they tasted it. In this experiment, predic-
tive cues were absent and animals were allowed to drink water,
followed by a session of sucrose-solution intake. Such a coarse
time indicator for outcome anticipation may be confounded by
drifts in ensemble coding over session time, and differential an-
ticipatory activity may be confounded by differences in motor
preparation. An advantage of a parametrically varied reward is
that such possible confounds can be controlled for because ani-
mals perform similar behavior to obtain different reinforcers.

The overall concept of OFC population coding emerging from
the present findings holds that representations of reinforcer qual-
ity and magnitude are broadly distributed across ensembles and
are characterized by a high, subsecond time resolution. These
properties cannot be deduced by other techniques such as single-
cell recording or functional magnetic resonance imaging. Com-
bining the current results with single-unit results suggesting task-
phase specific coding (Simmons and Richmond, 2008), neural
coding in OFC appears highly specific and well articulated for the
temporal phase an animal is in toward achieving a goal, whereas
reward parameters as magnitude are expressed more as modula-
tory signals, rather than being main determinants of firing rate.
When considering how such parallel-distributed signals may be
read out by neuronal populations in target areas of OFC, it is
noteworthy that significant readout of reward-predictive infor-
mation can occur by processing output from small groups of
neurons and of narrow time segments within trials, enabling
rapid decision making. If target populations assume a particular
functional organization such as a continuous attractor, they have
the natural capacity, at least in principle, to read out OFC output
efficiently by template matching or Bayesian reconstruction
(Pouget et al., 1998; Zhang et al., 1998; Wu and Amari, 2005).

References
Baeg EH, Kim YB, Huh K, Mook-Jung I, Kim HT, Jung MW (2003) Dynam-

ics of the population code for working memory in the prefrontal cortex.
Neuron 40:177–188.

Baxter MG, Parker A, Lindner CCC, Izquierdo AD, Murray EA (2000) Con-
trol of response selection by reinforcer value requires interaction of amyg-
dala and orbital prefrontal cortex. J Neurosci 20:4311– 4319.

Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D (1991) Reading
a neural code. Science 252:1854 –1857.

Dias R, Robbins TW, Roberts AC (1996) Dissociation in prefrontal cortex of
affective and attentional shifts. Nature 380:69 –72.

Fellows LK, Farah MJ (2003) Ventromedial frontal cortex mediates affective
shifting in humans: evidence from a reversal learning paradigm. Brain
126:1830 –1837.

Földiák P (1993) The ‘ideal homunculus’: statistical inference from neural
population responses. In: Computation and neural systems (Eeckman F,
Bower J, eds), pp. 55– 60. Norwell, MA: Kluwer Academic.

Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of vi-
sual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol
61:331–349.

Fuster JM, Bodner M, Kroger JK (2000) Cross-modal and cross-temporal
association in neurons of frontal cortex. Nature 405:347–351.

Gallagher M, McMahan RW, Schoenbaum G (1999) Orbitofrontal cortex
and representation of incentive value in associative learning. J Neurosci
19:6610 – 6614.

Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population
coding of movement direction. Science 233:1416 –1419.

Gothard KM, Skaggs WE, Moore KM, McNaughton BL (1996) Binding of
hippocampal CA1 neural activity to multiple reference frames in a
landmark-based navigation task. J Neurosci 16:823– 835.

Gray CM, Maldonado PE, Wilson M, McNaughton B (1995) Tetrodes
markedly improve the reliability and yield of multiple single-unit isola-
tion from multi-unit recordings in cat striate cortex. J Neurosci Methods
63:43–54.

Gutierrez R, Carmena JM, Nicolelis MAL, Simon SA (2006) Orbitofrontal
ensemble activity monitors licking and distinguishes among natural re-
wards. J Neurophysiol 95:119 –133.

Hikosaka K, Watanabe M (2000) Delay activity of orbital and lateral pre-
frontal neurons of the monkey varying with different rewards. Cereb
Cortex 10:263–271.

Ichihara-Takeda S, Funahashi S (2006) Reward-period activity in primate
dorsolateral prefrontal and orbitofrontal neurons is affected by reward
schedules. J Cog Neurosci 18:212–226.

Laubach M, Wessberg J, Nicolelis MA (2000) Cortical ensemble activity in-
creasingly predicts behaviour outcomes during learning in a motor task.
Nature 405:567–571.

Lehky SR, Sejnowski TJ (1990) Neural model of stereoacuity and depth in-
terpolation based on a distributed representation of stereo disparity.
J Neurosci 10:2281–2299.

Leon MI, Shadlen MN (1999) Effect of expected reward magnitude on the
response of neurons in the dorsolateral prefrontal cortex of the macaque.
Neuron 24:415– 425.

Lipton PA, Alvarez P, Eichenbaum H (1999) Crossmodal associative mem-
ory representations in rodent orbitofrontal cortex. Neuron 22:349 –359.

Louie K, Wilson MA (2001) Temporally structured replay of awake hip-
pocampal ensemble activity during rapid eye movement sleep. Neuron
29:145–156.

Narayanan NS, Kimchi EY, Laubach M (2005) Redundancy and synergy of
neuronal ensembles in rat motor cortex. J Neurosci 25:4207– 4216.

O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C (2001) Ab-
stract reward and punishment in the human orbitofrontal cortex. Nat
Neurosci 4:95–102.

Padoa-Schioppa C, Assad JA (2006) Neurons in the orbitofrontal cortex
encode economic value. Nature 441:223–226.

Paxinos G, Watson C (1996) The rat brain in stereotaxic coordinates. New
York: Academic.

Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G
(2002) Oscillations and sparsening of odor representations in the mush-
room body. Science 297:359 –365.

Plassmann H, O’Doherty J, Rangel A (2007) Orbitofrontal cortex encodes
willingness to pay in everyday economic transactions. J Neurosci
27:9984 –9988.

Pouget A, Zhang K, Deneve S, Latham PE (1998) Statistically efficient esti-
mation using population coding. Neural Comput 10:373– 401.

Pouget A, Dayan P, Zemel R (2000) Information processing with popula-
tion codes. Nat Rev Neurosci 1:125–132.

Ramus SJ, Eichenbaum H (2000) Neural correlates of olfactory recognition
memory in the rat orbitofrontal cortex. J Neurosci 20:8199 – 8208.

Ramus SJ, Davis JB, Donahue RJ, Discenza CB, Waite AA (2007) Interaction
between the orbitofrontal cortex and the hippocampal memory system
during the storage of long-term memory. Ann N Y Acad Sci
1121:216 –231.

Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes:
exploring the neural code. Cambridge, MA: MIT.

Roesch MR, Olson CR (2004) Neuronal activity to reward value and moti-
vation in primate frontal cortex. Science 304:307–310.

8602 • J. Neurosci., August 20, 2008 • 28(34):8590 – 8603 van Duuren et al. • Population Coding of Reward Magnitude



Roesch MR, Taylor AR, Schoenbaum G (2006) Encoding of time-
discounted rewards in orbitofrontal cortex is independent of value repre-
sentation. Neuron 51:509 –520.

Rolls ET, Tovee MJ (1995) Sparseness of the neuronal representation of
stimuli in the primate temporal visual cortex. J Neurophysiol 73:713–726.

Sanger TD (1996) Probability density estimation for the interpretation of
neural population codes. J Neurophysiol 76:2790 –2793.

Schoenbaum G, Eichenbaum H (1995) Information coding in the rodent
prefrontal cortex. II. Ensemble activity in orbitofrontal cortex. J Neuro-
physiol 74:751–762.

Schoenbaum G, Chiba AA, Gallagher M (1998) Orbitofrontal cortex and
basolateral amygdala encode expected outcomes during learning. Nat
Neurosci 1:155–159.

Schoenbaum G, Chiba AA, Gallagher M (1999) Neural encoding in orbito-
frontal cortex and basolateral amygdala during olfactory discrimination
learning. J Neurosci 19:1876 –1884.

Schoenbaum G, Setlow B, Saddoris MP, Gallagher M (2003) Encoding pre-
dicted outcome and acquired value in orbitofrontal cortex during cue
sampling depends upon input from the basolateral amygdala. Neuron
39:855– 867.

Schoenbaum G, Setlow B, Saddoris MP, Gallagher M (2006) Encoding
changes in orbitofrontal cortex in reversal-impaired aged rats. J Neuro-
phys 95:1509 –1517.

Simmons JM, Richmond BJ (2008) Dynamic changes in representations of
preceding and upcoming reward in monkey orbitofrontal cortex. Cereb
Cortex 18:93–103.

Thiel A, Greschner M, Eurich CW, Ammermüller J, Kretzberg J (2007)

Contribution of individual retinal ganglion cell responses to velocity and
acceleration encoding. J Neurophysiol 98:2285–2296.

Thorpe SJ, Rolls ET, Maddison S (1983) The orbitofrontal cortex: neuronal
activity in the behaving monkey. Exp Brain Res 49:93–115.

Tremblay L, Schultz W (1999) Relative reward preference in primate or-
bitofrontal cortex. Nature 398:704 –708.
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