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Perceived Shape Similarity among Unfamiliar Objects and
the Organization of the Human Object Vision Pathway
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Humans rely heavily on shape similarity among objects for object categorization and identification. Studies using functional magnetic
resonance imaging (fMRI) have shown that a large region in human occipitotemporal cortex processes the shape of meaningful as well as
unfamiliar objects. Here, we investigate whether the functional organization of this region as measured with fMRI is related to perceived
shape similarity. We found that unfamiliar object classes that are rated as having a similar shape were associated with a very similar
response pattern distributed across object-selective cortex, whereas object classes that were rated as being very different in shape were
associated with a more different response pattern. Human observers, as well as object-selective cortex, were very sensitive to differences
in shape features of the objects such as straight versus curved versus “spiky” edges, more so than to differences in overall shape envelope.
Response patterns in retinotopic areas V1, V2, and V4 were not found to be related to perceived shape. The functional organization in area
V3 was partially related to perceived shape but without a stronger sensitivity for shape features relative to overall shape envelope. Thus,
for unfamiliar objects, the organization of human object-selective cortex is strongly related to perceived shape, and this shape-based
organization emerges gradually throughout the object vision pathway.
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Introduction
Object shape and shape similarity among objects is important for
the categorization and identification of objects (Rosch et al.,
1976; Tversky and Hemenway, 1984; Biederman and Ju, 1988).
The lateral occipital complex (LOC), a large region in human
ventral visual cortex, plays a central role in the perception of
object shape (Malach et al., 1995; Grill-Spector et al., 1998b;
Murray et al., 2002; Grill-Spector and Malach, 2004). The overall
LOC response depends on the perception of a coherent object
shape (Grill-Spector et al., 1998a; Kourtzi and Kanwisher, 2000,
2001; Lerner et al., 2002; Hayworth and Biederman, 2006), and
the shape representations in LOC are relatively invariant to image
transformations such as size, position, and viewpoint (Grill-
Spector et al., 1999; Vuilleumier et al., 2002; Ewbank et al., 2005).
Furthermore, LOC is activated irrespectively of whether objects
are meaningful (e.g., cars, flowers, etc.) or not (Malach et al.,
1995; Kanwisher et al., 1997b).

Despite this overwhelming evidence that LOC processes per-
ceived object shape, it is currently unknown what the role is of
shape features for the functional organization of human LOC.

Previous studies reporting distributed patterns of selectivity in
LOC for well known object classes (cars, flowers, etc.) have not
dissociated shape from nonvisual factors such as function and
meaning, and from low-level visual factors such as retinotopic
envelope (Haxby et al., 2001; Spiridon and Kanwisher, 2002; Cox
and Savoy, 2003; O’Toole et al., 2005). Suggesting a role for visual
factors, recent studies showed that unfamiliar, artificial objects
evoke a distributed response pattern in LOC that is different for
different objects (Op de Beeck et al., 2006; Williams et al., 2007).
However, these recent studies included a very small stimulus set
with only three object classes, and differences between the three
object classes in their retinotopic envelope might explain the
object-specific response patterns, especially as several recent
studies have suggested that at least part of LOC contains a retino-
topic map (Brewer et al., 2005; Larsson and Heeger, 2006). A
recent study in monkeys (Op de Beeck et al., 2008b) suggested
that the selectivity for unfamiliar objects in regions homolog to
human LOC [monkey inferior temporal (IT) cortex] is tolerant
to changes in stimulus position and task context; but also, this
study did not directly show that the selectivity for unfamiliar
objects is related to perceived shape.

Here, we present a study with stimuli from nine artificial ob-
ject classes that was designed to directly show that the functional
organization of LOC is related to perceived shape similarity. As
done in many previous studies (Nosofsky, 1986; Edelman, 1998;
Op de Beeck et al., 2001; Kayaert et al., 2005), we empirically
verified perceived shape similarity among these object classes
with similarity ratings. We found a highly significant relationship
between the rated shape similarity among object classes and the
amount of overlap in the pattern of selectivity in LOC. These
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findings demonstrate that the organiza-
tion of human object-selective regions is
related to perceived shape similarity.

Materials and Methods
Subjects
Twenty-eight adult volunteers participated in
four experiments, two behavioral experiments
(N � 8 in each) and two functional magnetic
resonance imaging (fMRI) experiments (N � 6
in each; including eight males and 10 right
handed). Each subject participated in only one
experiment. The experiments were approved by
the relevant ethical boards, that is, the ethical
committee of the Faculty of Psychology and Ed-
ucational Sciences (Katholieke Universiteit
Leuven, Leuven, Belgium) and the committee
for medical ethics of the Katholieke Universiteit
Leuven, Leuven, Belgium, respectively.

Stimuli
The stimulus set consisted of exemplars from
nine object classes. The prototype (“average ex-
emplar”) of each object class is shown in Figure
1 A, B. Other exemplars from an object class
were very similar to the prototype (Fig. 1C), and
within-class variation was very small compared
with the differences between classes. We in-
cluded multiple exemplars per object class in
the fMRI experiment to be consistent with pre-
vious work and because we hoped that this
within-class variation would reduce the
amount of interstimulus adaptation in the
fMRI blocks compared with a situation in
which the same image would be shown
throughout a block. More details on stimulus
construction and the within-class variation in object shape can be found
in previous studies (Op de Beeck et al., 2006). For all subjects in the
behavioral experiments and for six subjects in the fMRI study (experi-
ment 1), the novel object images were presented on a gray background
(Fig. 1 A). For the other six fMRI subjects (experiment 2), all novel object
images were equated in their spatial frequency amplitude spectrum; this
image manipulation resulted in extra 1/f frequency noise inserted on top
of objects and background (Fig. 1 B).

Each image was presented with a resolution of 200 � 200 pixels (cor-
responding to a retinal stimulus size between 8 and 10 visual degrees).
The software used for stimulus presentation and response registration in
the behavioral experiments was E-Prime (Psychology Software Tools).
The software used for stimulus presentation and response registration in
the fMRI study was PsychToolbox (Brainard, 1997).

As a simple measure of retinotopic overlap among the stimuli from
different object classes, we computed a pixel-based measure of similarity
between pairs of object classes, using the prototypical class exemplars.
For each pair of images, we computed the difference in each pixel (max-
imal difference 1), squared it, summed it across all pixels, took the square
root of this sum, and normalized the resulting number by the square root
of the number of pixels. As the resulting number is a difference measure
(diff) instead of a similarity index (sim), we inverted it to get an index of
pixel-based similarity: sim � 1 � diff. Pixel-based measures have been
used previously as a benchmark for physical similarity (Cutzu and Edel-
man, 1998; Grill-Spector et al., 1999; Op de Beeck et al., 2001; Allred et
al., 2005). Although this measure is very simplistic, its relevance for low-
level visual coding is supported by the correlation of 0.83 between the
pixel-based physical similarity and the similarity among our stimuli in
how they activate the simple cell-like S1 units in the input layer of the
hierarchical model of Riesenhuber and Poggio (for this, the stimuli were
rescaled to size 128 � 128 pixels) (Jiang et al., 2006). All these measures
show higher similarity for images with the same shape envelope (same

column in Fig. 1 A) than for images with a different shape envelope (ratio
of 1.37 over 1).

Behavioral experiments
We performed a behavioral experiment to assess perceived shape simi-
larity. The experiment started with a very short familiarization phase in
which the nine prototypes of the object classes were shown in a random
order (1 s per image). This short preview was included to familiarize
subjects with the range of objects in the experiment.

Next, subjects were requested to rate the similarity in shape between
the successively presented prototypes of different object classes (stimulus
duration, 150 ms; interstimulus interval, 500 ms) by pressing a key from
1 (shape is not similar at all) to 7 (very similar in shape). Subjects were
instructed to use the entire scale for their responses in the rating task, and
the preview phase allows them to calibrate the scale (as such avoiding a
short period of instability at the start of the rating task). This procedure
allows us to compare the relative similarity of different object pairs with
maximal sensitivity. For each subject, each unique order of the nine
object images was presented six times. No trials were included in which
the two objects were exactly the same. These data were averaged to form
a 9 � 9 similarity matrix, and further averaging of corresponding cells
[e.g., cell (i,j) with cell (j,i)] was done to make this matrix symmetric.

In addition to this first behavioral experiment, we performed a control
experiment that was an almost identical replication of the first experi-
ment. There was one critical difference: the instructions in the control
experiment and the behavioral labels of the rating scale did not mention
“shape”. Instead, subjects were asked to rate the overall similarity be-
tween objects.

Scanning
Functional images were acquired in a 3T Philips Intera magnet (Depart-
ment of Radiology, Katholieke Universiteit Leuven, Leuven, Belgium)
with a 8-channel SENSE head coil with an echo-planar imaging sequence
(105 time points per time series or “run”; repetition time, 3 s; echo time,

Figure 1. Stimulus set used in all experiments. A, B, The prototypical exemplar from the nine object classes on a gray back-
ground (A) and after processing to equate Fourier amplitude spectrum (B). We refer to shape features to denote the shape
properties that are the same within rows and different between rows, and shape envelope to denote the shape properties that are
the same within columns and different between columns. C, The prototype of each class (middle row) is shown together with the
exemplars that are most distinct from the prototype.
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30 ms; acquisition matrix 104 � 104, resulting in a 2.1 � 2.1 in-plane
voxel size; 50 slices oriented approximately halfway between a coronal
and horizontal orientation and including most of cortex except the most
superior parts of frontal and parietal cortex, with slice thickness 2 mm
and interslice gap 0.2 mm). We also acquired a T1-weighted anatomical
image (resolution 1 � 1 � 1.2 mm).

Experimental runs. Runs (N � 9) consisted of 21 blocks of 15 s, includ-
ing three fixation blocks (at the start, middle, and end of the run) and two
blocks of each novel object class. The order of the conditions was coun-
terbalanced across runs and across subjects. Twenty different exemplars
of a particular object class were presented for 150 ms (interstimulus
interval, 600 ms) in each stimulus block (the same 20 exemplars in each
block of a particular condition). The spatial position of each stimulus was
determined randomly with a maximum position offset from the fixation
point of 6 visual degrees.

The task instructions in the experimental runs were different for two
groups of subjects. In experiment 1, the six subjects performed a color-
change detection task on images presented on a gray background. For
this task, the objects were presented in color (low in saturation), and
subjects had to press a key each time an object had a different color than
the previous object (three changes in each block of 20 stimuli). The
saturation of the color was adapted between runs so that the task required
some effort to solve (low saturation) but was still associated with good
performance (across all four subjects, 94% of the color changes were
detected). In experiment 2, the six subjects viewed the images of Figure
1 B with objects on a textured background. These subjects were given a
short preview of the prototype exemplars from the nine object classes
before the experiment, and they were instructed to simply press a button
each time the object images changed from one class to another (so at the
start of each block of 15 s). Subjects detected 93% of the block transitions.
It is clear that the manipulations of image spatial frequency content and
task are confounded across subjects. The purpose of these manipulations
was not to investigate each factor by itself but to minimize the possibility
that any effect of perceived shape similarity that we would observe would
be restricted to a specific way of presenting the shape information (with
or without differences among stimuli in spatial frequency content) or to
a specific task context.

Localizer runs for object-selective cortex. Runs (N � 2) consisted of 15 s
blocks of fixation spot, intact object images, and Fourier-scrambled im-
ages (stimulus duration, 300 ms; interstimulus interval, 450 ms). In ex-
periment 1, subjects performed the same color task during the localizer
runs as they did during the experimental runs. In experiment 2, subjects
were instructed to passively look at the fixation spot. In each stimulus
block, stimulus position was either in the upper or in the lower visual
field (border of the stimulus 0.6 visual degrees from the horizontal me-
ridian), with a jitter in the horizontal stimulus position of maximum 4
visual degrees from the vertical meridian.

Retinotopic mapping. Eight subjects (six from experiment 1 and two
from experiment 2) participated in a short additional scan session in
which we determined the anatomical location of the representations of
the horizontal and vertical meridian. Runs (N � 3) consisted of 15 s
blocks of fixation spot and of horizontally or vertically oriented wedges.
The wedges were shown on a gray background and contained black and
white patterns that changed at a frequency of 2.7 Hz (maximal extent of
the wedges was 11.5 visual degrees from the fixation point). Changes
included not only luminance reversals but also changes in the structure of
the patterns (checkerboards with varying position of the checks and with
rectangular as well as circular checks). Subjects were instructed to fixate a
small red dot at the center of the screen.

Analysis of imaging data
Data were analyzed using the Statistical Parametric Mapping software
package (SPM5, Wellcome Department of Cognitive Neurology,
London, UK), as well as custom Matlab code.

Preprocessing. Preprocessing involved realignment to correct for mo-
tion, coregistration of functional and anatomical images, segmentation
(Ashburner and Friston, 2005), and spatial normalization to a Montreal
Neurological Institute template. During spatial normalization, func-
tional images were resampled to a voxel size of 2 � 2 � 2 mm. Finally,

functional images were spatially smoothed (4 mm full-width-half-
maximum kernel). We have shown previously in contrast-enhanced
monkey fMRI that smoothing of twice the voxel size increases the signal-
to-noise ratio also for multivoxel analyses with these stimuli (Op de
Beeck et al., 2008b), and similar observations were made in the context of
the present study (supplemental Fig. 1, available at www.jneurosci.org as
supplemental material).

Localizer runs and object-selective regions of interest. Statistical model-
ing of the signal in each voxel in each subject included a general linear
model applied on preprocessed images, with four independent variables
(one variable for each combination of intact vs Fourier-scrambled im-
ages and upper vs lower visual field) and six covariates (the translation
and rotation parameters needed for realignment). Region of interest
(ROI) definition was based on a combination of functional and anatom-
ical criteria. LOC was defined as all voxels in lateral occipital (LO) and
ventral occipitotemporal regions that were significantly activated in the
contrast (intact objects � scrambled images). For some analyses, we
made a further distinction between LO and occipitotemporal posterior
fusiform (PF). If these two subregions were hard to distinguish because
the object-selective activation was continuous, then we were conservative
to include voxels, and we left out the voxels on the border. In nine of
twelve subjects, significance for the ROI selection was determined with a
threshold of p � 0.0001 (uncorrected for multiple comparisons). In three
other subjects, we decided to take a more liberal threshold ( p � 0.001 or
p � 0.01, uncorrected for multiple comparisons) to compensate for a
lower quality of the localizer data in these subjects. Across subjects, the
LOC, LO, and PF ROI contained a median of 602, 321, and 189 voxels,
respectively.

Retinotopic mapping. Statistical modeling of the signal in each voxel in
each subject included a general linear model applied on preprocessed
images, with two independent variables (horizontal and vertical wedges)
and six covariates (the translation and rotation parameters needed for
realignment). The anatomical location of areas V1, V2, V3, and V4v was
determined based on the activation in the contrast of horizontal versus
vertical wedges. The selected voxels do not include the foveal confluence
because of problems to reliably differentiate the retinotopic areas at this
position (Dumoulin and Wandell, 2008); voxels on the border of areas
were not included at all, and voxels were further constrained to be in gray
matter. Across subjects, the V1, V2, V3, and V4v ROI contained a median
of 279, 237, 156, and 149 voxels, respectively. As LOC was defined based
on a functional criterion that might avoid the inclusion of voxels with
noisy signal, we also defined a pooled V1 � V2 ROI for which we further
constrained voxels to be significantly activated ( p � 0.0001, uncorrected
for multiple comparisons) during the object localizer scans in at least one
of the following contrasts: upper visual field stimuli versus rest, lower
visual field stimuli versus rest, or upper visual field stimuli versus lower
visual field stimuli. This V1 � V2 ROI contained a median of 251 voxels.

Experimental runs. For each block of each condition, we calculated the
average signal in the time window 6 –12 s after block onset in each LOC
voxel, and we converted these arbitrary signal values in values of percent-
age signal change compared with the fixation blocks in the same run.
Similar results were obtained by using the parameter estimates obtained
after fitting a general linear model to the data (with nine conditions and
six covariates to model the alignment parameters) instead of extracting
PSC values directly from the raw data.

In the correlational analyses, we computed correlations after previ-
ously introduced methods for multivoxel pattern analysis (Haxby et al.,
2001). The data were divided in two random subsets of runs (one with
five runs and another one with four runs). We constructed lists as long as
the number of voxels, and each list contained the PSC for all voxels for a
particular condition in one subset. Then the values in each list of the first
subset were correlated with the values in each list of the second subset,
resulting in an asymmetrical 9 � 9 correlation matrix. This matrix was
made symmetrical by averaging corresponding cells [e.g., cell (i,j) with
cell (j,i)]. The procedure of dividing the data in two random subsets was
applied nine times, and the obtained similarity matrices were averaged
across these nine comparisons. These values are referred to as LOC, LO,
PF, and V1 similarity (depending on the ROI). Finally, the similarity
matrices of individual subjects were averaged.
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Analysis of similarity matrices
For each type of similarity (e.g., perceived similarity, LOC similarity, and
V1 similarity, etc.), we have a similarity matrix per subject and an aver-
aged similarity matrix. In addition, we have a similarity matrix that con-
tains the pixel-based similarity. We performed several analyses on these
similarity matrices.

Computation of reliability. Following methods published previously
(Op de Beeck et al., 2008b), we determined the reliability of the data in
each matrix by split-half analyses as commonly applied in psychometrics
(Cronbach, 1949; Lewis-Beck, 1994). First, we vectorized each matrix by
putting all 36 cells below the diagonal into a vector. Second, we split the
total group of subjects in two halves, and we correlated the two vectors
corresponding to the matrix of the two subject halves (we did this 50
times for each dataset to get a good estimate of reliability). Finally, we
corrected this split-half correlation to get the reliability of the full dataset
according to the Spearman-Brown formula: reliability � 2 � r/(1 � r).

Reliability as an upper bound for correlations between datasets. The
reliability of an experiment takes into account the noise in a dataset, and
it provides us with an upper bound of the correlation that we can expect
(the explainable variance) if we correlate data from different experi-
ments, or data obtained from different sources (e.g., similarity ratings vs
activation patterns in the brain). As explained previously (Op de Beeck et
al., 2008b), if two datasets have a reliability R1 and R2, then the maximal
correlation between the two experiments that we can expect given the
noise within each experiment is equal to �R1 � R2.

Permutation statistics. We performed permutation statistics to deter-
mine the significance of correlations between vectorized similarity ma-
trices, taking into account the variability across subjects. For each sub-
ject, we randomly shuffled the order of the nine conditions, and we
reordered the individual similarity matrices according to the new condi-
tion order. Then we performed the aforementioned analyses to deter-
mine the reliability of the reshuffled data and the correlation between
reshuffled datasets. We performed this procedure 1000 times, and we
computed the probability that the reliability and correlations were equal
or larger than, respectively, the reliability and correlations observed with
the unshuffled data. The results from these permutation statistics were
consistent with results from conventional parametric tests. For example,
the correlation between LOC similarity and perceived shape similarity
was also significantly higher than zero according to a t test across subjects
(across all subjects: t � 9.66, p � 0.0001; experiment 1: t � 6.47, p �
0.0013; experiment 2: t � 6.73, p � 0.0011).

Multivoxel pattern classification. We used a linear support vector ma-
chine (SVM) and a cross-validation procedure (Kamitani and Tong,
2005; Li et al., 2007) to further investigate the effects found in the corre-
lational analyses. The input of the classifier was expressed in PSC as used
for the correlational analyses. Linear SVM was implemented using the
OSU SVM matlab toolbox (www.sourceforge.net/projects/svm/). For
each pair of conditions, a linear SVM was trained using the data from five
individual runs to find the hyperplane that separates the data from the
two conditions, and the performance of the classifier on this pairwise
classification was calculated for the average data from the remaining four
runs; this procedure was applied nine times per pair of conditions with a
random assignment of runs to the training and test set.

Multidimensional scaling
We performed multidimensional scaling (MDS) (using the Alternating
Least-squares SCALing algorithm of F. W. Young, Psychometric Labo-
ratory, University of North Carolina, Chapel Hill, NC) to visualize the
representation space of the nine object classes according to the various
metrics that we obtained (pixel-based, perceived, and LOC similarity).
MDS places the nine stimuli in a low-dimensional space in a way that
optimizes the correspondence between the relative proximity among the
stimuli and the similarity in the similarity matrix (Shepard, 1980). For
each two-dimensional space that is shown, we mention the proportion of
the variance in the similarity data that is explained by the distances be-
tween stimuli. In this study, we use MDS as an exploratory tool for
visualization, not as the basis for any statistical analysis, nor do we claim
that two dimensions are the “true” dimensionality of each dataset.

Results
We designed a stimulus set containing artificial objects that al-
lowed us to dissociate perceived object shape from the retino-
topic envelope of stimuli (Fig. 1A,B). The stimulus set included
object classes that overlapped strongly in retinotopic envelope
and overall aspect ratio, shown in the same column. We will use
the label “shape envelope” for the properties in common to object
classes from the same column. At the same time, the object classes
within each column differed greatly in the properties of the lines
and angles that make up the object shape. In Figure 1A,B, the first
row contains objects with smoothly varying contours, the second
row objects with sharp protrusions/spikes, and the third row ob-
jects with straight edges and angles. We will use the label “shape
features” for the properties in common to object classes from the
same row. Note that we use these two labels, envelope and fea-
tures, as descriptive terms to summarize a wide variety of under-
lying shape changes, but without any claim that these are the two
dimensions along which shape is represented.

As an indication of the similarity of these object classes ac-
cording to simple metrics of the local, pixel-wise overlap of im-
ages, we calculated a measure of pixel-based similarity, and we
applied MDS to visualize the overall pattern of similarity (see
Materials and Methods). The MDS-derived two-dimensional
pixel-based object space (Fig. 2) reveals that object classes with a
corresponding shape-envelope cluster together (indicating high
similarity), whereas object class with corresponding shape fea-
tures do not.

Perceived shape similarity among the novel object classes
We asked human volunteers to rate the similarity in shape among
pairs of novel object classes. Different subjects agreed very well in
the object pairs they rated as being very similar and in the object
pairs they rated as being more different in shape. Based on inter-
subject agreement, the reliability of the averaged similarity rat-
ings was 0.94 ( p � 0.001; see Materials and Methods, Permuta-
tion statistics).

As shown in Figure 3A, we computed for each observer the
average rated similarity for pairs of objects that overlapped in
shape envelope (“same envelope”), in shape features (“same fea-
tures”), or in none of these properties (“all different”). Across
subjects (two-tailed paired t test, N � 8), the rated similarity in
the all-different pairs was significantly different from the same-
features pairs (t � 6.27; p � 0.0004) and also from the same-
envelope pairs (t � 5.92; p � 0.0006). Same-features pairs tended
to be more similar than same-envelope pairs, but this difference
did not reach significance (t � 1.83; p � 0.11).

On top of averaging the data across such a limited number of
conditions, we used MDS to analyze the full similarity matrix.
The MDS-derived two-dimensional perceived object space in
Figure 3B shows how important the shape features are for per-
ceived shape: objects with corresponding shape features tend to
be located in proximal locations. This result is very different from
the pixel-based object space shown in Figure 2, where clustering
was dominated by correspondence in shape envelope. Thus, it is
especially the pairs with correspondence in shape features that
allow for a dissociation between pixel-based similarity and per-
ceived similarity. Across all possible object pairs (N � 36), the
correlation between perceived similarity and pixel-based similar-
ity was only 0.16 ( p � 0.17; see Materials and Methods, Permu-
tation statistics). Thus, the perceived shape similarity among two
objects was independent from the pixel-based similarity among
these objects. As a consequence, we can dissociate these two vari-
ables in how they relate to spatial patterns of brain activity.
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Perceived shape similarity and similarity in the pattern of
selectivity in object-selective cortex
Subjects were scanned while they viewed exemplars from the nine
object classes, and LOC was localized in each subject (Fig. 4A).
We used multivoxel correlational analyses, a sensitive tool for
investigating patterns of activation distributed across voxels
(Haxby et al., 2001; Norman et al., 2006; Downing et al., 2007),
because univariate methods did not consistently reveal individual
voxels with significant selectivity (either at a corrected threshold
of p � 0.05 or an uncorrected threshold of p � 0.0001) in pairwise
contrasts of object classes in the present study.

We applied these correlational analyses in the independently
localized LOC to investigate whether distributed patterns of se-
lectivity were present in our data and, most importantly, whether
the similarity of the selectivity patterns for different object classes
was related to perceived shape similarity. We obtained two mea-

sures of the pattern of selectivity for each object class in each
subject by splitting time series in independent subsets of runs
(illustrated for a few object classes in Fig. 4B). Next, the pattern of
selectivity in one subset for each object class was correlated with
the pattern of selectivity in the other subset for each object class.
The strength of this correlation is a measure of how similar the
patterns of selectivity are, here referred to as “LOC similarity.”
Confirming the existence of reproducible patterns of selectivity,
we found a significantly higher LOC similarity when comparing
the same object class than when comparing different object
classes (paired t test across all 12 subjects, t � 7.83; p � 0.0001).
Thus, we obtained enough data for each object class to find reli-
able patterns of selectivity (even higher same-object correlations
would be obtained if we would have more data per condition,
requiring fewer conditions with equal scan time) (supplemental
Fig. 1, available at www.jneurosci.org as supplemental material).

Here, we are interested in how LOC similarity varies depend-

Figure 2. Pixel-based physical similarity among the nine object classes. A, Pixel-based sim-
ilarity as a function of correspondence in shape envelope and shape features. The average
similarity is shown for three groups of object pairs: objects that correspond in shape envelope
(Env), objects that correspond in shape features (Ftr), and objects that are different in both
envelope and features (all different). Error bars represent the SEM across stimulus pairs. B, The
MDS-derived two-dimensional representation space of the nine prototypical exemplars based
on the pixel-based measure of image similarity. If two stimuli are physically similar, then their
points in this spatial representation are close together. The representation space shows that
stimuli with the same shape envelope have a high pixel-based similarity. The R 2 illustrates the
fit between pixel-based similarity and the proximity between points.

Figure 3. Perceived shape similarity among the nine object classes. A, Perceived similarity as
a function of correspondence in shape envelope and shape features. The average similarity is
shown for three groups of object pairs: objects that correspond in shape envelope (Env), objects
that correspond in shape features (Ftr), and objects that are different in both shape envelope
and features (all different). Error bars represent the SEM across subjects. B, The MDS-derived
two-dimensional representation space of the nine object classes based on perceived shape
similarity.
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ing on which two object classes are compared. As done previously
for perceived similarity in Figure 3A, we computed for each ob-
server the average LOC similarity for specific subgroups of object
pairs (Fig. 5A): the correlation in the pattern of selectivity for the
same object class between odd and even runs (“all same” pairs),
or for two different object classes that overlapped in shape enve-
lope (same-envelope pairs), in shape features (same-features
pairs), or in none of these properties (all-different pairs). Across
all 12 subjects, the LOC similarity in the same-features pairs was
significantly higher than in the all-different pairs (t � 6.13; p �
0.0001; two-tailed paired t test, N � 12). A similar trend was
observed for same-envelope pairs, but this effect did not reach
significance (comparison of same-envelope pairs and all-
different pairs, t � 2.09; p � 0.061). There was a significant
difference between same-features pairs and same-envelope pairs
(t � 3.87; p � 0.0026). Thus, of all comparisons of different
object classes, the object classes that correspond in shape features,
being perceptually very similar (Fig. 3), yielded the most similar
patterns of selectivity in object-selective cortex. Despite this rel-
atively high similarity in the pattern of selectivity, even the object

classes that correspond in shape features (but differ in shape en-
velope) can be discriminated based on the pattern of selectivity in
object-selective cortex: the LOC similarity in same-features pairs
was significantly smaller than the LOC similarity in all same pairs
(t � 6.13; p � 0.001).

From a brain decoding perspective, we expected that object
classes that are perceptually similar would be hard to classify
using a linear pattern classifier. For each pair of object classes, we
determined how accurately linear SVMs could learn to assign a
pattern of selectivity to the correct object class. As shown in Fig-
ure 5B, we computed for each observer the average classification
performance for pairs of objects in three of the conditions de-
fined previously (the fourth condition identified before, all same,
is not applicable here as the classifier specifically serves to differ-
entiate different conditions): pairs of objects that overlapped in
shape envelope (same envelope), in shape features (same fea-
tures), or in none of these properties (all different). Across sub-
jects (two-tailed paired t test, N � 12), the classification perfor-
mance in the same-features pairs was significantly worse than in
the all-different pairs (t � 3.09; p � 0.01) and in the same-

Figure 4. Illustration of distributed patterns of selectivity in human object-selective cortex. A, Location of the LOC in a single subject. LOC voxels in lateral occipital and ventral occipitotemporal
cortex were selected as having a significant preference in the contrast (intact objects � scrambled images) (thresholded at p � 0.0001, uncorrected for multiple comparisons). Data are shown on
top of the PALS human atlas using CARET software (Van Essen et al., 2001, 2002) in a ventrolateral view of the inflated cortical surface. B, Patterns of selectivity for the same subject in LOC in odd runs
for one object class (“smoothies”) and in even runs for a few object classes. Responses are expressed as PSC relative to the mean response to all object classes. These selectivity maps are not
thresholded for significance, and individual voxels rarely display reliable selectivity for particular object classes. Nevertheless, part of the pattern of selectivity across voxels replicates across
independent datasets. For each object class shown for the even runs, the correlation with the selectivity pattern for smoothies in odd runs is given below the images.
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envelope pairs (t � 7.33; p � 0.0001). The classification perfor-
mance was not different in the same-envelope pairs compared
with the all-different pairs (t � 1.93; p � 0.080). Thus, of all
comparisons of different object classes, the object classes that
correspond in shape features, being perceptually very similar
(Fig. 3), yielded the most confusable patterns of selectivity in
object-selective cortex.

All these analyses focused on the average similarity in groups
of object pairs. In addition, we analyzed the full similarity matrix
with MDS. The MDS-derived two-dimensional perceived object
space, shown in Figure 5C, reveals that the LOC object space is
similar to the perceived object space shown in Figure 3B, in that
objects with corresponding shape features tend to be located in
proximal locations. This result is again very different from the
pixel-based object space shown in Figure 2.

The role of perceived similarity and other factors for
explaining LOC similarity in experiments 1 and 2
Confirming the existence of reproducible patterns of selectivity,
we found a significantly higher LOC similarity when comparing
the same object class than when comparing different object
classes in each experiment (experiment 1: t � 10.18, p � 0.0001;
experiment 2: t � 4.47, p � 0.0066). The importance of corre-
spondence in shape features for the overlap in the spatial pattern
of selectivity in LOC was also confirmed in each experiment (Fig.
6A). Each experiment showed a significant difference between
same-features pairs and same-envelope pairs, with higher LOC
similarity in the same-features pairs (experiment 1: t � 2.59, p �
0.049; experiment 2: t � 3.62, p � 0.0152). In addition, we cor-
related how LOC similarity varied across all 36 individual object
pairs with how perceived shape similarity varied across object
pairs (Fig. 6B; supplemental Table 1, available at www.
jneurosci.org as supplemental material, shows correlations
within the three subsets of object pairs defined above). Across
these object pairs, LOC similarity correlated strongly with per-
ceived shape similarity in experiment 1 (r � 0.49, p � 0.003;
Materials and Methods, Permutation statistics) and in experi-
ment 2 (r � 0.54, p � 0.001). Thus, the selectivity patterns in LOC
are related to perceived similarity in each experiment.

We found one significant difference between experiment 1
and experiment 2 and that is the strength of the correlations in the
all same condition, which proved to be higher in experiment 1
than in experiment 2: t(10) � 2.65; p � 0.024. This finding sug-
gests that the selectivity patterns were more reliable and probably
stronger in experiment 1. Note, however, that the correlation
with perceived similarity was at least as strong in experiment 2
compared with experiment 1 (see above).

Figure 5. Similarity among the nine object classes with respect to the selectivity pattern in
object-selective cortex (LOC similarity). A, The average LOC similarity is shown for four groups of
object pairs: a comparison of the same object in odd and even runs (all same), a comparison of
two objects that correspond in shape envelope (Env), in shape features (Ftr), or objects that are
different in both envelope and features (all different). Error bars represent the SEM across
subjects. B, Performance of a linear support vector machine classifier among the nine object
classes as a function of correspondence in shape envelope and shape features. Error bars repre-
sent the SEM across subjects. Note that object pairs that are high in similarity in panel A (the Ftr
condition), are more easily confused by a classifier. C, The MDS-derived two-dimensional rep-
resentation space of the nine object classes based on LOC similarity.

Figure 6. Relationship between LOC similarity and perceived shape similarity in experiment
1 (left) and in experiment 2 (right). A, The average LOC similarity is shown for four groups of
object pairs: a comparison of the same object in odd and even runs (all same), a comparison of
two objects that correspond in shape envelope (Env), in shape features (Ftr), or objects that are
different in both envelope and features (all different). Error bars represent the SEM across
subjects. B, Scatter plots of LOC similarity against perceived shape similarity for all object pairs.
Coloring in these scatterplots refers to the object pair group that each pair belongs to in panel A:
red for Env, green for Ftr, and blue for all different.
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Although we found that the correspondence in how two un-
familiar objects activate LOC is correlated strongly with per-
ceived shape similarity in each experiment, the correlation is not
equal to one. There are two possible explanations. First, the cor-
relation might be less than one because data are inherently not
perfect and contain a noise factor. Further analyses indicate that
the correlation is definitely limited by noise inherent to the data.
Based on intersubject agreement in the pattern of similarity
across the 36 different object pairs, we computed the reliability of
the averaged LOC similarity matrix (see Materials and Methods).
This reliability was significantly higher than zero (Materials and
Methods, Permutation statistics) in experiment 1 (r � 0.68; p �
0.001) and in experiment 2 (r � 0.67; p � 0.001). Based on this
reliability and the reliability of our measure of perceived similar-
ity (reliability of 0.94), the maximal correlation that can be ex-
pected given the limitations posed by data noise is 0.80 (experi-
ment 1) and 0.79 (experiment 2). If we compare these values with
the observed correlations of 0.49 and 0.54, then it is clear that a
substantial part of LOC similarity is explained by perceived shape
similarity.

Nevertheless, there is still some room for other factors that
might contribute partly to LOC similarity. These factors might be
methodological in nature and relate to the difficulty of compar-
ing totally different variables (behavioral ratings and fMRI activ-
ity patterns). If this would be true, then perceived shape would
still be a perfect explanation for LOC similarity, but methodolog-
ical limitations would prevent us from finding a perfect fit. The
simplest possibility would be that one of the measures would have
to be monotonically scaled before comparing it with the other
measure, but such a problem is not immediately obvious in the
scatter plots.

A second explanation is suggested by a comparison of Figure
3A with Figure 5A and the related statistical analyses of each
dataset. For perceived similarity, the effect of correspondence in
shape envelope was significant, and it was approximately half as
large as the effect of correspondence in shape features. For LOC
similarity, the effect of correspondence in shape envelope (com-
pared with the condition all different) failed to reach significance,
and the LOC similarity in the same-envelope condition was
much closer to the all-different than to the same-features condi-
tion. Is there really a differential role of shape envelope for per-
ceived similarity compared with LOC similarity? Any explicit test
of this question has to deal with the problem that the two types of
similarity are expressed on different scales. To solve this problem,
we calculated a normalized index that takes the similarity in
same-envelope condition minus the similarity in the all-different
condition, normalizing the resulting value by dividing it by the
similarity in same-features condition minus the similarity in the
all-different condition. The values in the numerator were calcu-
lated per individual subject, whereas the values in the denomina-
tor were averaged across subjects (the latter was done to improve
the reliability of the index). Higher values indicate stronger ef-
fects of correspondence in shape envelope relative to the effect of
correspondence in shape features. On average, this index was 0.51
(SEM � 0.29) for perceived similarity and 0.23 (SEM � 0.11) for
LOC similarity. These two values were not significantly different
(unpaired t test, t(18) � 1.03; p � 0.32). Thus, there is no signifi-
cant difference between perceived similarity and LOC similarity
in the effect of shape envelope.

Another explanation for the less than perfect fit between per-
ceived shape similarity and LOC similarity is that other func-
tional properties in addition to perceived shape might contribute
to how LOC responds to unfamiliar objects. We investigated

whether a simple, pixel-based metric of image similarity might
explain part of the LOC similarity, but this was not the case (sup-
plemental Fig. 2, scatter plots, available at www.jneurosci.org as
supplemental material): LOC similarity was not correlated with
pixel-based similarity in experiment 1 (r � �0.09; p � 0.69) nor
in experiment 2 (r � 0.017; p � 0.42).

We wondered what other properties the object classes might
have that are not shape. With familiar objects, several candidates
would exist (e.g., semantic associations), but this is less clear with
unfamiliar objects. Thus, we replicated our basic behavioral ex-
periment with one small change: we asked subjects to rate the
overall similarity between objects without mentioning shape in
the instructions or in the verbal labels of the different numbers of
the scale. If there would be any functional properties that subjects
deem relevant for similarity but that do not fall under the concept
of shape, then we would expect that this slight difference in the
instructions and in the definition of the scale would matter and
that it would affect the similarity ratings. However, the two be-
havioral experiments resulted in the same rated similarity: across
all possible object pairs (N � 36), the correlation between per-
ceived shape similarity (data from the initial experiment) and
perceived “overall” similarity (data from the control experiment)
was 0.94. Overall similarity was also affected strongly by corre-
spondence in shape features, significantly more strongly ( p �
0.05; paired t test across subjects) than by correspondence in
shape envelope (higher similarity in same-features pairs than in
same-envelope pairs). Thus, human observers do not use any
other object features to rate overall similarity than the properties
that are used in ratings of shape similarity.

The role of perceived shape similarity in subdivisions of LOC
Because LOC is a large cortical region, previous studies have fo-
cused on smaller subregions (Grill-Spector and Malach, 2004).
The most common distinction is between the lateral occipital
gyrus (area LO) and occipitotemporal or posterior fusiform cor-
tex (area PF). Confirming the existence of reproducible patterns
of selectivity in each area, we found a significantly higher similar-
ity when comparing the same object class than when comparing
different object classes (area LO: t � 9.5, p � 0.0001; area PF: t �
4.97, p � 0.0004; paired t tests across all 12 subjects). In addition,
the same-condition correlations were significantly higher in area
LO compared with area PF (t � 5.92; p � 0.0001).

Other analyses reveal that the selectivity patterns in each of
these regions are related to perceived shape similarity. First, each
region showed a significant difference between same-features
pairs and same-envelope pairs (Fig. 7A), with highest similarity in
selectivity patterns in the same-features pairs (area LO: t � 2.21,
p � 0.049; area PF: t � 3.25, p � 0.0078). Second, the similarity of
selectivity patterns correlated strongly with perceived shape sim-
ilarity across all object pairs in area LO (r � 0.54, p � 0.001;
Materials and Methods, Permutation statistics) and in area PF
(r � 0.59; p � 0.001). No correlation was found with pixel-based
similarity (area LO: r � 0.0062, p � 0.47; area PF: r � 0.013, p �
0.45) (supplemental Fig. 3, scatter plots, available at www.
jneurosci.org as supplemental material). Thus, the selectivity pat-
terns in each subregion of LOC are related to perceived shape
similarity.

The pattern of selectivity in retinotopic cortex
We expected a role of perceived shape similarity for the func-
tional organization of higher regions in the object vision path-
way. It is unclear to what extent shape contributes to the organi-
zation of lower stages in this hierarchically organized pathway.
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Several hypotheses can be formulated. First, lower stages in this
hierarchy, such as primary visual cortex or V1, are known to be
retinotopically organized, so the selectivity patterns in these re-
gions might be related instead to our pixel-based measure of
similarity that relates to the retinotopic envelope of the object
classes. However, because we presented the objects with a wide
scatter in retinotopic position (see Materials and Methods), we
did not expect a strong effect of retinotopy.

Second, neurons in retinotopic regions process various at-
tributes that are related to shape and curvature (Pasupathy and
Connor, 1999; Hegdé and Van Essen, 2000, 2007). It is possible
that these functional properties determine part of the organiza-
tion of these regions, resulting in reliable patterns of selectivity
that might be partially related to perceived shape similarity.

We defined the retinotopic areas V1, V2, V3, and V4v in eight
subjects, and we obtained a measure of neural similarity in each
ROI by correlating the pattern of selectivity for each object class
in random subsets of runs with the pattern of selectivity for each
object class in the other runs. The results are shown in Figures 8
and 9. In V1 and V2, we found no significantly higher similarity
when comparing the same object class than when comparing
different object classes (V1: t � 1.86, p � 0.11; V2: t � 2.03, p �
0.08), nor did V1 or V2 similarity correlate significantly with
perceived shape similarity (V1: r � 0.25, p � 0.10; V2: r � 0.21,
p � 0.12) or with pixel-based similarity (V1: r � 0.18, p � 0.17;
V2: r � 0.23, p � 0.11). We also defined a pooled V1 � V2 ROI
restricted to functionally active voxels (see Materials and Meth-
ods). This pooled V1 � V2 ROI still did not show ( p � 0.10) a
significantly higher similarity when comparing the same object
class than when comparing different object classes nor did it show
a significant correlation with perceived similarity (r � 0.22; p �

0.11). In contrast, the correlation between V1 � V2 similarity
and pixel-based similarity did reach significance (r � 0.32; p �
0.028).

In V3 and V4, the patterns of selectivity were reliable, as we
found a significantly higher similarity when comparing the same
object class than when comparing different object classes (V3: t �
3.68, p � 0.0078; V4: t � 2.92, p � 0.022). The correlations in the
all same condition in V3 were significantly higher than in V1 (t �
2.64; p � 0.033) and in V2 (t � 2.48; p � 0.042), but of similar
strength as in V4 (t � 0.58; p � 0.4). V3 similarity correlated
significantly with perceived shape similarity (r � 0.53; p �
0.003), whereas the correlation between V4 similarity and per-
ceived shape similarity failed to reach significance (V4: r � 0.27,
p � 0.052). V3 and V4 similarity did not correlate significantly
with pixel-based similarity (V3: r � 0.27, p � 0.064; V4: r � 0.24,
p � 0.11). Thus, of all these retinotopic regions, area V3 was the
only one in which we found a significant correlation with per-
ceived shape similarity.

As before, we also grouped object pairs in the previously de-
scribed conditions same envelope, same features, and all differ-
ent. All of the retinotopic regions, including area V3, showed a
slightly higher similarity in same envelope compared with same-
features, but this effect did not approach significance in any of
these regions ( p � 0.4). Note that area LOC showed the opposite
effect, higher similarity in same-features than in same envelope
(for the same group of eight subjects: t � 3.11; p � 0.017). To
obtain an index of the same-features preference for each cortical
regions, we subtracted same-envelope similarity from same-
features similarity. This same-features preference in area LOC
tended to be larger than in each retinotopic region: V1, p � 0.056;
V2, p � 0.024; V3, p � 0.092; V4, p � 0.034 ( p values according
to a two-tailed t test across subjects; all p values would be �0.05
according to a one-tailed test).

Figure 7. Relationship between similarity in selectivity patterns and perceived shape in LO
gyrus (left) and in the PF region (right). A, The average LO and PF similarity is shown for four
groups of object pairs: a comparison of the same object in odd and even runs (all same), a
comparison of two objects that correspond in shape envelope (Env), in shape features (Ftr), or
objects that are different in both envelope and features (all different). Error bars represent the
SEM across subjects. B, Scatter plots of LO and PF similarity against perceived shape similarity
for all object pairs. Coloring in these scatterplots refers to the object pair group that each pair
belongs to in panel A: red for Env, green for Ftr, and blue for all different.

Figure 8. Selectivity patterns in retinotopic areas V1, V2, V3, and V4v. The average similarity
is shown for four groups of object pairs: a comparison of the same object in odd and even runs
(all same), a comparison of two objects that correspond in shape envelope (Env), in shape
features (Ftr), or objects that are different in both envelope and features (all different). Error
bars represent the SEM across subjects.
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The clearest demonstration of this differential role of shape
envelope and shape features in V3 and LOC comes from the
MDS-derived two-dimensional neural space obtained using the
data from area V3 (Fig. 10). The first (horizontal) dimension in
this space is highly correlated with shape envelope: elongated
vertical objects at the left, compact objects in the middle, and
elongated horizontal objects at the right. This is very different
from the LOC object space in which shape features had a more
important role (Fig. 5C). Thus, although the overlap in patterns
of selectivity in V3 was correlated with perceived shape similarity,
the neural similarity space of V3 did not show the same impor-
tance of shape features as was found for LOC and for behavioral
ratings of perceived shape.

Discussion
We showed a strong relationship between perceived shape simi-
larity and selectivity patterns in the two major subregions of
LOC. The effect of global shape envelope on perception and LOC
response patterns was significantly smaller than the effect of
shape features, which in the context of our stimulus set refers to
various manipulations that affect the local curvature of the stim-
uli (e.g., straight vs curved edges). No reliable patterns of selec-
tivity were observed in V1 and V2. Reliable patterns of selectivity
were present in V3 and V4, and a significant effect of perceived
shape was found in area V3, but without a stronger effect of shape
features compared with shape envelope.

Our observation of the role of perceived shape similarity in
two separate experiments indicates the robustness of this finding
to changes in how exactly stimuli are shown (e.g., on a gray back-
ground or on a textured background) and changes in the task
context (color or shape task). We found one difference between
these experiments: the replicability of the selectivity patterns was
strongest in the experiment with stimuli on a gray background
and a color task. Several factors might explain this finding, in-
cluding differences in Fourier amplitude spectrum (existence of
spatial frequency map?), consequences of manipulating the im-
age amplitude spectrum for the visibility of the object contour

(most visible on a uniform background), and the degree to which
each task engages subjects (with the color task requiring more
frequent responses at more unpredictable times). Whatever the
explanation of this finding, it does not alter the result that a
strong correlation with perceived shape similarity was found in
each experiment. Other task manipulations that we did not try
might change (increase or decrease) the relationship with per-
ceived shape similarity. A related question is what would happen
if we would use a task that biases subjects to pay attention to
specific shape properties (e.g., the aspect ratio of objects).

The present findings complement a previous single-unit study
in monkey IT cortex that showed a tight relationship between the
tuning of single IT neurons and perceived shape similarity (Op de
Beeck et al., 2001). However, the present report looked at func-
tional organization instead of single-unit selectivity, focused on a
different species (human instead of monkey), and involved rela-
tively large shape differences (selectivity for object classes) in-
stead of fine metric shape differences (selectivity for exemplars
within shape groups). Together, the two studies suggest that
shape-selective regions in primates are functionally organized in
terms of shape properties that distinguish perceptually distinct
shapes (all nine object classes in the present study are easy to
discriminate) and that single neurons in these regions discrimi-
nate objects in terms of finer metric shape differences in addition
to being selective for perceptually more distinct shapes. The ac-
tual organizational unit for the clustering of functional responses
might be smaller than our voxel size (Kamitani and Tong, 2005),
and the underlying functional organization might be similar to
the feature columns as revealed by optical imaging in monkey IT
cortex (Fujita et al., 1992; Wang et al., 1996).

The hierarchical processing of shape in visual cortex
We dissociated perceived shape similarity from pixel-based/low-
level stimulus differences. Nevertheless, a low-level representa-
tion of the incoming stimulus is the starting point from which
higher-order shape representations are computed gradually
(Riesenhuber and Poggio, 2000). Many empirical findings agree
with this general hierarchical scheme (Kobatake and Tanaka,
1994; Riesenhuber and Poggio, 1999; Pasupathy and Connor,
2001). Nevertheless, current hierarchical models do not predict
which shape properties IT neurons are most selective too, which

Figure 9. Relationship between similarity in selectivity patterns and perceived shape in
retinotopic areas V1, V2, V3, and V4v. Coloring in these scatterplots refers to the object pair
group that each pair belongs to in Figure 8: red for Env, green for Ftr, and blue for all different.

Figure 10. The MDS-derived two-dimensional representation space of the nine object
classes based on the between-class similarity in selectivity patterns in area V3.
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are properties such as whether objects contain straight or curved
edges (Kayaert et al., 2005). Likewise, these models do not predict
the organization of shape-selective cortex as described here. For
example, in our data, the correlation between similarity based on
the output of the higher-level representations (“V4” units, and
likewise for view-tuned units) in the model of Riesenhuber and
Poggio (1999) and LOC similarity was only in the order of 0.10 –
0.15 (data not shown). Thus, the importance of these shape prop-
erties for shape representations is not a trivial consequence of the
increase in invariance and complexity as implemented in this
class of models. A more comprehensive computational model of
shape recognition might include an adaptive feature dictionary
(Serre et al., 2007) so that the tuning becomes more informative
for object categorization (Biederman, 1987; Edelman and Intra-
tor, 2000; Ullman et al., 2002; Kiani et al., 2007; Ullman, 2007).

Although the relationship between perceived shape similarity
and the organization of object-selective cortex is not easily cap-
tured by existing biologically plausible object recognition mod-
els, our experiments with a relatively small set of essentially arbi-
trary complex objects do not inform us about the features,
dimensions, or basis functions (Gallant et al., 1993) by which
shape is represented. We based our choice of stimulus differences
on previous studies in monkeys (Kayaert et al., 2005) and the
need to dissociate perceived shape from pixel-based similarity,
but the exact stimuli are still arbitrary and might not include the
most optimal stimuli or shape properties. With our stimulus set,
our data show a strong effect of what we have conveniently la-
beled shape features, a descriptive label that refers to a wide set of
curvature properties of the objects: do objects consist of smoothly
curved segments, sharp protrusions, or straight segments? The
aforementioned biological model of object recognition does not
explicitly code object curvature, in contrast to older models
(Biederman, 1987). Neurophysiological studies have also sug-
gested explicit processing of local shape curvature from area V1
up to area V4 (Dobbins et al., 1987; Pasupathy and Connor, 1999;
Hegdé and Van Essen, 2007). Thus, the sensitivity for shape fea-
tures as defined here might relate to the coding of curvature at
various stages of the cortical hierarchy. In our study, which fo-
cused on functional organization instead of single-unit selectiv-
ity, the stronger sensitivity of shape features such as straight ver-
sus curved contours than for other shape properties such as
aspect ratio was mostly found at the level of object-selective cor-
tex and not in the retinotopic areas. Even area V3, in which the
functional organization was correlated with perceived shape sim-
ilarity, did not show a similarly strong sensitivity for shape fea-
tures. The differences between V3 and LOC are consistent with
the notion that shape processing progresses from orientation spe-
cific representations in V3 (high sensitivity for the orientation of
the global shape envelope) (Fig. 10) to more orientation-
independent representations in LOC (high sensitivity for shape
features that might be helpful to achieve viewpoint indepen-
dence) (Kayaert et al., 2003).

Unfamiliar objects versus familiar and meaningful objects
To what extent does object shape explain the category selectivity
for highly familiar objects? Many previous studies have reported
category-selective cortical patches and patterns of selectivity in
the object vision pathway (Kanwisher et al., 1997a; Epstein and
Kanwisher, 1998; Downing et al., 2001, 2006; Haxby et al., 2001;
Schwarzlose et al., 2005; Spiridon et al., 2006). Two studies also
compared the differences in activation patterns for familiar ob-
jects with similarity metrics, exactly as we did here, using either
perceived similarity (Edelman et al., 1998) or image-based at-

tributes (O’Toole et al., 2005). However, because these studies
used exemplars from familiar object categories and did not ex-
plicitly dissociate perceived similarity for simple pixel-based met-
rics, this selectivity for familiar objects might be related to many
factors: low-level visual similarity, object form/shape (Haxby et
al., 2000), the way objects are processed (Gauthier, 2000), seman-
tic attributes (Chao et al., 1999), and eccentricity biases (Hasson
et al., 2002).

We reduced these confounds to a minimum by using unfamil-
iar object classes. Nevertheless, these factors cannot be excluded
totally. For example, when we asked subjects to try to interpret
the objects as known objects after the experiment, subjects were
creative enough to come up with interpretations (Op de Beeck et
al., 2006). However, subjects did not report using such interpre-
tations to guide their similarity ratings, and probably the opposite
is happening: shape similarity guides the interpretation of the
stimuli. The irrelevance of these interpretations for the similarity
ratings was further illustrated by the high intersubject variability
in these interpretations, whereas the ratings (both shape ratings
and ratings of overall similarity) were highly consistent across
subjects (see Results).

The importance of the intersubject consistency of perceived
shape ratings is illustrated by a recent study published in parallel
with the preparation of this report. Haushofer et al. (2008) re-
ported that manipulations of objective shape parameters relate to
neural similarity in area LO but not in area PF, whereas behav-
ioral confusion rates between stimuli correlated with neural sim-
ilarity only in area PF. These confusion rates are a measure of
overall similarity, not perceived shape similarity, and were very
variable among subjects. This measure might reflect the variable
interpretations of the stimuli by the subjects as the stimulus set
consisted of ambiguous two-dimensional shape contours (De
Winter and Wagemans, 2004; Wagemans et al., 2008). Further-
more, shape contours are suboptimal to activate LOC (Georgieva
et al., 2008), and the stimulus set included only four contours that
lacked many of the shape features manipulated in our study.
Future studies are needed to investigate the role of each of these
methodological differences and many other questions about the
representation of shape in the human brain. Our study is the first
demonstration that the selectivity patterns in area LO as well as
area PF reflect the perceived shape of shaded three-dimensional
objects varying in a range of shape properties.

For familiar objects, it is conceivable that several other factors
in addition to perceived shape contribute significantly to the ob-
served selectivity patterns. Selectivity patterns in high-level visual
cortex change when additional experience is acquired with ini-
tially novel objects (Op de Beeck et al., 2006; Weisberg et al.,
2007), thus the response pattern to familiar objects might be
determined strongly by factors that have little relationship to
perceived shape (Mahon et al., 2007). LOC is probably organized
in terms of multiple properties, shape being one of them, and the
same set of factors might have a different weight depending on
object familiarity. How the different properties are combined, the
relative weight of each property, and how these weights depend
on familiarity, are all important questions for future research (Op
de Beeck et al., 2008a).
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Hegdé J, Van Essen DC (2000) Selectivity for complex shapes in primate
visual area V2. J Neurosci 20:RC61.
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