
Behavioral/Systems/Cognitive

The Statistics of Repeating Patterns of Cortical Activity Can
Be Reproduced by a Model Network of Stochastic Binary
Neurons

Alex Roxin,1 Vincent Hakim,2 and Nicolas Brunel3,4

1Computational Neuroscience, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08003 Barcelona, Spain,
2Laboratoire de Physique Statistique, Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR)
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Calcium imaging of the spontaneous activity in cortical slices has revealed repeating spatiotemporal patterns of transitions between
so-called down states and up states (Ikegaya et al., 2004). Here we fit a model network of stochastic binary neurons to data from these
experiments, and in doing so reproduce the distributions of such patterns. We use two versions of this model: (1) an unconnected network
in which neurons are activated as independent Poisson processes; and (2) a network with an interaction matrix, estimated from the data,
representing effective interactions between the neurons. The unconnected model (model 1) is sufficient to account for the statistics of
repeating patterns in 11 of the 15 datasets studied. Model 2, with interactions between neurons, is required to account for pattern statistics
of the remaining four. Three of these four datasets are the ones that contain the largest number of transitions, suggesting that long
datasets are in general necessary to render interactions statistically visible. We then study the topology of the matrix of interactions
estimated for these four datasets. For three of the four datasets, we find sparse matrices with long-tailed degree distributions and an
overrepresentation of certain network motifs. The remaining dataset exhibits a strongly interconnected, spatially localized subgroup of
neurons. In all cases, we find that interactions between neurons facilitate the generation of long patterns that do not repeat exactly.
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Introduction
It has been argued that information may be encoded in the cere-
bral cortex via precisely timed patterns of spiking activity (Abeles,
1991). This has been contrasted with the scenario in which infor-
mation is represented by the average firing rates of neurons
(Shadlen and Newsome, 1998). At the level of individual spikes,
several studies suggest that firing patterns with millisecond pre-
cision occur above chance and significantly correlate with behav-
ior (Abeles et al., 1993; Prut et al., 1998; Shmiel et al., 2006),
whereas this has been contested by others (Baker and Lemon,
2000). It was reported that subthreshold membrane fluctuations
repeated precisely in vivo (Ikegaya et al., 2004), although recent
work suggests that repetitions occur at chance levels (Mokeichev
et al., 2007). Most evidence for either side in this debate has come
from electrophysiological recordings, which typically resolve the
single-spike activity of a relatively small number of spatially lo-
calized neurons.

Recent advances in calcium imaging have enabled the simul-

taneous recording of the activity of large ensembles of neurons in
slices (Mao et al., 2001; Cossart et al., 2003; Ikegaya et al., 2004;
MacLean et al., 2005) at a different time scale. Intracellular re-
cordings made during these experiments show that rapid in-
creases in the calcium signal correspond to transitions from
down states to up states in the cortical cells. Furthermore, spon-
taneously occurring sequences of these transitions were found to
form reliably repeating spatiotemporal patterns (Ikegaya et al.,
2004) that occur on a time scale of hundreds of milliseconds to
seconds. A relevant question is whether these patterns represent
the transient exploration of an intrinsic cortical state or merely a
chance occurrence attributable to spontaneous activity. Indeed,
unlike the highly synchronous slow-wave activity seen in slice
preparations previously (Sanchez-Vives and McCormick, 2000;
Compte et al., 2003), the repeating patterns of transitions appear
to be composed of small numbers of coactivating neurons. This
suggests that fluctuations are driving the network into various
attractor states, corresponding to the patterns themselves.

We explore this question by fitting a network of stochastic
binary neurons to the patterns of activity found by Ikegaya et al.
(2004). In particular, we reproduce statistical measures of the
recorded data, including the distributions of repeating patterns.
We show that the majority of the data are well described by a
model in which neurons undergo transitions spontaneously and
independently of one another. Nonetheless, a significant minor-
ity of the datasets are consistent with a stochastic model in which
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pairwise interactions between neurons are required and lead to
the generation of long, repeated sequences of transitions. The
matrices of pairwise interactions are sparse and exhibit a wide,
monotonically decreasing degree distribution.

Materials and Methods
Datasets
We received 15 datasets from Ikegaya et al. (2004) from the laboratory of
Rafael Yuste (Columbia University, New York, NY). The datasets pro-
vide the times of transition from a down state to an up state for each
neuron in the data, inferred from fluorescence changes in calcium sig-
nals. They also provide the spatial location of each cell in the slice. The
temporal resolution is 100 ms, i.e., 10 frames � 1 s. For details on the
correspondence between the calcium signal and spiking activity in these
experiments, refer to Ikegaya et al. (2004). For ease of identification in the
figures, in this paper we identify each dataset with a colored symbol (see
Fig. 2). However, for ease of reading in the text, we will refer to the
datasets given by the solid colored symbols as datasets 1 (black), 2 (red),
3 (green), and 4 (cyan).

Pattern distributions
Patterns are defined as sequences of transitions from down to up states
with a maximum duration of 50 frames (5 s) that occur at least twice (we
do not quantify the number of repetitions of each pattern in this work
beyond this criterion). For each dataset, we count all patterns of a given
length, from 2 up to a length of 20. Length here refers to the number of
neurons participating in the pattern, and not the number of down-to-up
transitions, nor the number of repetitions of the pattern.

We use the template-matching algorithm described by Ikegaya et al.
(2004). Briefly, given a reference cell c1 and a reference transition time t1,
a vector (c2, . . . , cM, t2, . . . , tM) is constructed that contains all M � 1
transitions occurring within 50 frames (5 s) of the reference transition.
Here, ci is the index of the ith cell undergoing a transition (the same cell
may undergo several transitions within the same 50 frame time window),
and ti is the time at which this transition occurs. The template (c1, c2, . . . ,
cM, t1, t2, . . . , tM) is then shifted to the next transition of the cell of
reference. Any transitions that line up with the template now constitute a
pattern. If j frames of jitter are allowed, then transitions that can be
shifted by j or fewer frames to line up with the template constitute a
pattern. Note that once jitter is allowed, the repeat of a pattern may
include activations whose order is reversed. Thus, for example, with two
frames of jitter the pattern (c1, c2, t, t � 1) would be considered a repeat
of the pattern (c1, c2, t�, t� � 1) (as would patterns with a transition of c2

at times t � 3, t � 2, t � 1, and t). We now include a simple example to
illustrate the process. Let us assume neuron c1 � 2 undergoes a transition
at time t1 � 100. Then we look for all of the transitions occurring between
times 100 and 150. These might be of cells c2 � 1, c3 � 20, and c4 � 11 at
times t2 � 105, t3 � 149, and t4 � 149. Here, M � 4. These transitions
now constitute our template. Let us now further assume that the subse-
quent transition of neuron c1 � 2 occurs at t1 � 200. The cells that
undergo transitions between times 200 and 250 are c2 � 1, c3 � 20, and c4

� 8. These transitions occur at times t2 � 205, t3 � 249, and t4 � 249. We
see that there is a three-neuron pattern (c1, c2, c3) that has repeated with
zero jitter (J � 0). The transition at time t4 does not participate in the
pattern, because in the template it is cell 11, whereas in the current 50
frame window it is cell 8.

Model
The model consists of N binary neurons, and the time evolution is dis-
crete, with each time step representing �t � 100 ms, and the total time is
T. At any time step, each neuron may or may not undergo a transition to
the up state. We consider four variants of the model: (1) independent
Poisson neurons with a refractory period and stationary rates; (2) inde-
pendent Poisson neurons with a refractory period and nonstationary
rates; (3) stochastic binary neurons with a refractory period, stationary
spontaneous rates, and probabilistic pairwise interactions; and (4) sto-
chastic binary neurons with a refractory period, nonstationary sponta-
neous rates, and probabilistic pairwise interactions. Below, we describe

each model in detail and explain how they can be fit to the experimental
data.

(1) Stationary Poisson model
This model has the following parameters: (1) p̂i' the probability that
neuron i will become active spontaneously; and (2) �r ' the effective
refractory period, which is an integer greater than or equal to zero. These
parameters can be estimated straightforwardly from the data. If the num-
ber of transitions of neuron i in the dataset is given by ni, then the
transition rate �i � ni/T, where T is the total number of frames. The
Poisson rate is given by p̂i � �i/(1 � �i�r), where the refractory period �r

is read off from the intertransition interval (ITI) distribution (see Fig. 1
and supplemental Figures S.7–S.20, available at www.jneurosci.org as
supplemental material). Note that this model is guaranteed to reproduce
mean transition rates. The ITI distribution of a Poisson neuron with a
refractory period is just an exponential with an offset equal to the refrac-
tory period. Figure 1d (inset) shows that the ITI distribution averaged
over all neurons in dataset 4 is not exponential, because it is not a straight
line on a log-lin scale. This fact can be explained by noting that the ITI
distribution summed over many Poisson neurons with different rates is a
weighted sum of exponentials with different exponents (see an example
in supplemental material, available at www.jneurosci.org).

(2) Nonstationary Poisson model
Same as 1 with the exception that the rates �i � �i ( f ) now depend on the
frame f. This is done by calculating a 600 frame (1 min) sliding average,
which assumes a very slow drift in the underlying rates.

(3) Stochastic model with interactions and stationary
spontaneous rates
In this model, we still assume that the neurons can spontaneously un-
dergo transitions. However, in addition we now allow for pairwise inter-
actions between neurons. In particular, the model has the following pa-
rameters: (1) p̂i ' the probability that neuron i will become active
spontaneously at each time step; (2) �r' the effective refractory period,
which is an integer greater than or equal to zero; and (3) pij' the excess
probability that neuron i will become active at time step n � �d because of
neuron j being active at time step n, where �d is the delay in the interaction
and is an integer drawn randomly from 1 to w, where w is the maximum
latency. The challenge in fitting this model to the data consists of esti-
mating the interaction probabilities pijs and the maximum delay w.

Interaction probabilities pij. Here we take a very simple approach. For
each pair of neurons (i, j), we count the number of times in the dataset
that a transition of neuron j coincides or is followed by a transition of
neuron i within w frames. This yields an integer value for the number of
coincident transitions Cij. If neurons i and j were independent Poisson
processes, then we could calculate the expected value of Cij. If the number
of transitions of neuron j is nj, then the mean number of coincident
transitions with neuron i is just nj�i where �i � ni/T is the rate of neuron
i. Counting coincidences with a time lag of 0 to w gives

E(Cij)Poisson � �1 � w�
ninj

T
, (1)

� �ij.

If the Cij from the data is significantly larger than �ij, then we assume
there is an effective interaction between neurons i and j. Given that the
datasets we work with contain relatively few transitions, we consider
“significantly larger” to mean greater than one SD from the mean. We
thus take

pij�
1

nj
[Cij�(�ij���ij)]�, (2)

where �x�� � x if x � 0 and is zero otherwise, and � � 1. Here we take the
variance in the number of coincident transitions Cij to be �ij

2 � �ij. This
is a good approximation when the mean ITI of the neurons is much
greater than the refractory period. This formula means that the proba-
bility of neuron j causing a transition in neuron i is just the fraction of
excess coincident transitions in the data compared with the mean plus
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one SD of independent Poisson neurons. Equation 2 can then be thought
of as an ansatz that is applied to the data, allowing us to extract the pijs
directly. Finally, we note that if Cij � 2, then pij is set to zero. Examples of
the distribution of Cijs in datasets 1– 4 as well as a graphical interpretation
of Equation 2 can be found in section 2 of the supplemental material
(available at www.jneurosci.org).

Maximum delay w. To apply Equations 1 and 2, we must furthermore
choose a value for w. A value of w � 5 was chosen by inspecting changes
in the ITI distribution within patterns for different values of the jitter.
The most pronounced changes occurred in approximately the first five
frames, indicating that sequences of activations with latencies greater
than this were most likely attributable to chance. Note that several data-
sets exhibited too few patterns to accurately measure this effect. In prin-
ciple, the parameters � and w could be allowed to vary, potentially result-
ing in better fits, although this has not been systematically explored. The
fits we present here have, in fact, not been systematically optimized as a
function of this or any other parameter.

Once the pijs have been estimated in this way, the spontaneous rates p̂i

are calculated to ensure that the mean rate for each neuron in the simu-
lation matches the rate of the corresponding neuron in the dataset. This
is done in the following way. For a neuron i in the model, the probability
of undergoing a transition can be approximated by

pi � p̂i��
j

�jpij, (3)

where the first term is the probability of spontaneous activation, and the
second term is the probability that a presynaptic neuron j causes a tran-
sition, summed over all neurons j. Equation 3 is a good approximation
when the rates �i and transition probabilities are small. The rate of neu-

ron i, �i, is just p̂i divided by a factor, �1, which takes into account the
refractory period

�i �
pi

1 � pi�r
. (4)

Finally, we now rewrite Equation 4 for p̂i, which yields

p̂i �
�i 	 �1 	 �i�r��j� jpij

1��i�r
. (5)

In the model, we assume that the “postsynaptic” neuron undergoes a
transition �d frames after the “presynaptic” neuron, where �d is uni-
formly distributed between 1 and w. A simpler choice would be to render
the model Markovian, i.e., �d � 1 always. However, such a model fails to
produce pattern statistics consistent with those found in experiments.
Indeed, the latency between subsequent transitions within a pattern most
often is �1, indicating that, if neuronal interactions are present, their
effect is felt over several hundred milliseconds. Because we assume in
Equation 2 that interactions occur within a window w, the weakest as-
sumption we can make concerning the delay is that it is uniformly dis-
tributed within that window. This choice furthermore results in a cross-
correlogram of the simulated transitions with a width that agrees
qualitatively with that of the experimental data (for an example, see
supplemental Figure S.6, available at www.jneurosci.org as supplemental
material). We also conducted simulations with a probability distribution
for the delay that decays in time, leading to results qualitatively similar to
the case with a uniform distribution. This suggests that the crucial prop-
erty of the delay in the interactions is the time scale (hundreds of milli-

Figure 1. Example of one experimental dataset. a, Raster plot in which each dot represents a transition from a down state to an up state in a cortical cell. Color-coded insets, Blowups of the raster
plot in which repeated patterns are indicated. The six-cell pattern (in red) repeats after a few seconds, whereas the five-cell pattern (in blue) does so after several hundred seconds. b, The number
of occurrences of repeating patterns as a function of pattern length. Shown are distributions for jitters of between 0 and 5 (see symbols in legend). c, The time-varying rate of transitions, calculated
with a running average of 500 ms (5 bins). Inset, Mean transition rate for each neuron. d, The ITI distribution for all cells. An offset of 	1 s (10 bins) is indicated by the dashed line. Inset, The same
distribution on a log-lin scale.
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seconds) and not the precise form. See supplemental material (available at
www.jneurosci.org) for details of these simulations. Note also that although
we consider coincident transitions in calculating the pijs, we do not allow �d

to be zero in the simulations for simplicity.

(4) Stochastic model with interactions and nonstationary
spontaneous rates
Same as 3 with the exception that the rates now depend on the frame f.
Now we have

�ij � �1 � w��
f�1

T

�i� f ��j(f), (6)

and again �ij
2 � �ij. The spontaneous rates are given by

p̂i� f � �
�i� f � 	 
1 	 �i� f ��r��j� j� f � pij

1 	 �i� f ��r
, (7)

where pij is given by Equation 2.

Goodness of fit
We test the similarity between the pattern dis-
tributions and those obtained from simulations
of the model. To do so, we first fit the model as
described in the preceding section. We then
perform n simulations of the model, thereby
generating n simulated datasets. We count the
number of patterns for each of these n simu-
lated datasets. We then calculate the measure

d� J� �
1

2nN�
��1

n �
i�1

N

ei� J� 	 si

�� J�� 2


�i� J�� 2 , (8)

where ei( J) is the number of patterns of length i
in the experimental dataset for a jitter J. Simi-
larly, si

�( J) is the number of patterns of length i
in the �th simulated dataset for a jitter of J,
whereas �i( J) is the SD of this value over all n
simulations. Here, n � 100.

Because the number of realizations of the
simulated data are finite, for long enough pat-
tern lengths the number of patterns determined
numerically will be identically equal to zero. In
light of this, to allow for arbitrary pattern length
in calculating d, we must estimate the variance
�i

2( J) when si
�( J) � 0 for all �. We do this by

assuming an exponential dependence in the
mean number of patterns as a function of pat-
tern length, which is approximately consistent
with the experimental and simulated data.
Thus, we take E(si) � E(si�1) 2/E(si�2), and the
variance is then taken to be �i

2( J) �
E[si( J)](1 � E[si( J)]/n), which assumes a bino-
mial distribution, i.e., a fixed probability
E[si( J)]/n of finding a pattern on each realiza-
tion. Once we have extrapolated �i

2( J) in this
way to all is, we can calculate d( J) for any value
of N. However, we note that if for a given i both
ei and si

�( J) (for all �) are identically equal to
zero, then the corresponding contribution to
the sum will be zero. The value of d will thereby
decrease because of the normalizing factor N,
i.e., one can obtain arbitrarily low d by taking N
large enough. Thus, to avoid spuriously low val-
ues of d, rather than choosing an arbitrary N to
calculate d( J), we take the value of N for which
eN�1 first reaches zero.

If the underlying stochastic process for the experimental and simu-
lated data were the same, then for a sufficiently large number of realiza-
tions of both we would have d( J) 	 1, because ei( J) � �( J) � �i( J)
e and
si( J) � �( J) � �i( J)
s, where 
e and 
s are uncorrelated random variables
with unit variance. That is, the mean and variance of both processes are
the same. Plugging these formulas into Equation 8, we find lim d( J)3 1
as the number of realizations grows. Because we only have one “realiza-
tion” of the experimental data, we should expect that d( J) differ from 1
even given identical stochastic processes. As an example, if the number of
patterns found in the data were exactly equal to the mean of the stochastic
process described by the simulations, i.e., ei � E(si), for all pattern lengths
i, then d( J) � 0.5 exactly. On the other hand, an outlier value of ei for just
one i can lead to a large value of d( J). We must therefore assume that the
numbers of patterns found in the data are actually representative of the
underlying random process; i.e., we assume that large values of d( J)
indicate distinct processes. Conservatively, then, we can say that if d( J) is
of order 1, then the pattern distributions are approximately consistent
with those generated by the model. Although d( J) provides a means of
quantifying the goodness of fit for analysis, we also include the fits of all
four models to all datasets for all patterns lengths i and all jitters J (see

Figure 2. Data from all experimental datasets. a, A scatter plot showing the number of transitions per neuron versus the total
number of active neurons. Each dataset is represented by a different symbol. The datasets given by the solid circles are those for
which pairwise interactions are needed to reproduce the distributions of repeating patterns. They are also numbered 1– 4 for ease
of reference in the text. Note that the dataset from Figure 1 is given by the solid blue circle (dataset 4). b, The pattern distributions
as in Figure 1b for all datasets and for different jitters. The symbols correspond to the datasets shown in a.
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supplemental Figures S.21–S.32, available at
www.jneurosci.org as supplemental material).

Drawing randomized matrices
We test three types of randomized surrogate
matrices: (1) randomized connections within
the full matrix, (2) randomized connections
within the connected subgraph, and (3) ran-
domized connections keeping the degree distri-
bution intact. In each case, we assume that there
are N neurons and k nonzero connections be-
tween neurons, where k � N (N � 1) (self-
connections are not allowed). For datasets 1– 4,
in fact, k �� N(N � 1), i.e., the connectivity is
sparse.

(1) We designate each connection in the
original matrix by the pair 
l � (i, j), l �
{1, . . . , k}, where i and j are the postsynaptic and
presynaptic neurons, respectively. For each
connection, we then generate two random inte-
gers, a and b, uniformly distributed between 1
and N, but excluding self-connections and mul-
tiple connections, i.e., a � {1, . . . , N}, b �
{1, . . . , N}, b � a. We then rewire this connec-
tion such that 
l � (a, b). We repeat this pro-
cedure for all k connections.

(2) We first identify the neurons that neither
receive nor send out any connections; i.e., they
are unconnected. Mathematically, a neuron u is
unconnected if �j�1

N ( puj � pju) � 0; i.e., there
are no incoming nor outgoing connections. If
there are N � N� unconnected neurons, then
we can define a subgraph of the original matrix,
which consists of only N� � N neurons, all of
which are connected. The subgraph contains all
of the connections present in the original ma-
trix. We now work with the connected sub-
graph of N� neurons and k connections and
conduct the random rewiring as in 1 above.

(3) The degree distribution of a graph is the
distribution of links at each node. In a directed
graph such as the ones we consider, one can
define an in-degree and an out-degree distribu-
tion, which refer to incoming and outgoing
connections, respectively. For datasets 2– 4, we
have numerically calculated the in-degree and
out-degree distributions (see Fig. 10). To these,
we have fit analytical expressions �in(k) and
�out(k). These expressions can be interpreted as
the probability of choosing a neuron at random
and finding that it has k incoming and outgoing
connections, respectively. We can make use of
�in and �out to generate randomized matrices
from datasets 2– 4 while keeping the degree dis-
tribution intact. We first define two vectors of
length N, x and y, where the elements of the
vectors are random numbers drawn from �in and �out, respectively, i.e., x
is distributed according to �in and xi is an integer that is a particular
sample from �in and represents the number of incoming connections to
neuron i. Analogously, y is distributed according to �out, and yi represents
the number of outgoing connections from the same neuron i. We now
have two copies of each neuron, one with incoming connections and one
with outgoing connections. The total number of incoming and outgoing
connections is I � �i�1

N xi and O � �i�1
N yi, respectively. Generically, we

will find that I � O. To enforce the self-consistent condition I � O, we
selectively prune away and add on connections. If I � O, then we choose
a neuron i at random, and with a probability 0.5, we eliminate one in-
coming connection with a probability p � xi/I, i.e., xi3 xi � 1. Otherwise
we add one outgoing connection with a probability p � yi/O, i.e., yi3 yi

� 1. We continue this procedure until I � O. If O � I, we prune away
outgoing connections and add on incoming connections in an analogous
way. We have checked numerically that the pruned and augmented x and
y continue to be distributed according to �in and �out, respectively. Once
I � O, we choose an incoming connection and an outgoing connection at
random, excluding self-connections and multiple connections. If they
are from neurons i and j, then this represents a pair 
l � (i, j), where l �
{1, . . . , I}. We repeat this procedure for all I connections. This results in
a matrix in which the connections have been randomized, but the in-
degree and out-degree distributions have not changed.

So far, we have only discussed the presence or absence of a nonzero pij

and not the actual value itself. In all cases 1–3, nonzero weights pij are set
to be a randomly reshuffled version of the original weight matrix.

Figure 3. Goodness of fits of the models to the data. a, The average value of the goodness of fit d over all jitters for each dataset.
Values of d of order 1 indicate a good fit. Black bars, Values obtained from a fit of the stationary Poisson model with refractory
period. Red bars, Nonstationary Poisson model with refractory period. Green bars, Stochastic model with interactions and station-
ary spontaneous rates. Blue bars, Stochastic model with interactions and nonstationary spontaneous rates. The model providing
the best fit is indicated for each dataset by an asterisk of the corresponding color. Datasets are represented by the same symbols
as in Figure 2. Eight of the 15 datasets are best described by a Poisson model with stationary rates and a refractory period, whereas
two are best described by a nonstationary Poisson model. Of the remaining five, two are best described by the stochastic model
with interactions and stationary rates, whereas three are better described by the stochastic model with interactions and nonsta-
tionary spontaneous rates; however, for one dataset (open yellow square), the improvement in the goodness of fit from the model
with interactions is marginal compared with the Poisson model. b, The goodness of fit d( J) as a function of jitter for the stationary
Poisson model. Each curve is a dataset, given by the corresponding symbol. c, Same as b but for the nonstationary Poisson model.
Only datasets not well fit by the stationary Poisson model are shown. d, Same as b for the stochastic model with stationary
spontaneous rates. Only datasets not well fit by a Poisson model are shown. e, Same as d but with nonstationary spontaneous
rates. Only datasets not well fit by a Poisson model are shown.
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Results
We first discuss the experimental data, then the fit of the model to
the data, and finally the properties of the resulting matrices of
interactions pij.

Experimental data
We study 15 datasets of varying numbers of neurons and varying
durations. An example of a dataset is shown in Figure 1. Figure 1a
shows the “raster” plot of transitions from a dataset 4 with 243
neurons (Fig. 2a, solid cyan circle). From the naked eye, it seems
that some neurons undergo more transitions than others, i.e.,
rates vary across neurons, and that for some neurons the rate of
transitions changes in time. This is typically seen in most datasets.
Our focus here, however, will be on the statistics of repeating
patterns of activity, two examples of which are shown in Figure
1a. Length-6 (i.e., the pattern is made up of six transitions) and
length-5 patterns are shown in red and blue, respectively, in the
insets. Whereas the red pattern repeats after several seconds, the
blue pattern does so after several hundred seconds. We counted
all patterns ranging from length 2 to length 20 that occurred at
least twice in this dataset. The resulting distribution is shown in
Figure 1b for five values of the jitter in the replay or repetition of
the pattern. We have included the total transition rate as a
“length-1” pattern to constrain the models to reproduce the total
number of transitions; i.e., the model should reproduce, on av-
erage, both the distribution of patterns and the total number of
transitions. The trend is clearly for larger numbers of patterns
with increasing jitter. Figure 1c shows the transition rate of the
dataset, averaged over all neurons, as well as the mean transition
rate of each neuron (inset), whereas Figure 1d shows the ITI
distribution. The ITI distribution is set off from zero as indicated
by the vertical dashed line. This offset is taken as the effective
refractory period in the model for the neurons in this dataset. The
sharp decrease in the ITI distribution for short ITIs (see inset) is
consistent with independent Poisson processes with heteroge-
neous underlying rates [see Materials and Methods and supple-
mental material (available at www.jneurosci.org)]. See supple-
mental material (available at www.jneurosci.org) for the
equivalent of Figure 1 for the remaining 14 datasets.

There are significant variations in rates and pattern statistics
in the experimental data as indicated by Figure 2. Figure 2a is a
scatter plot in which each symbol indicates the number of active
neurons and mean number of transitions per neuron in one of
the 15 corresponding datasets. The number of active neurons,

defined as neurons exhibiting at least one transition, ranges from
43 to 299, whereas the number of transitions per neuron ranges
from slightly less than 3 to more than 20. Note that the dataset
featured in Figure 3 of Ikegaya et al. (2004) is given here by dataset
1. Pattern distributions for values of the jitter between 0 and 5 are
shown in Figure 2b. The symbols correspond to the datasets
shown in Figure 2a; this convention will be used in the figures
that follow. The four datasets for which we find a significant
effective interaction between neurons are denoted by the solid
circles and are additionally labeled 1– 4 for ease of reference in
later sections.

Fits of the model
We seek the simplest possible model that can successfully repro-
duce data such as those shown in Figures 1 and 2. Given the
irregularity of the activity seen in all datasets, it seems reasonable
to choose a stochastic model in which transitions occur probabi-
listically. This is furthermore consistent with the notion of pat-
terns that may repeat imperfectly because of jitter in the transi-
tion times. We will consider four variants of a stochastic model:
(1) a stationary Poisson model, (2) a nonstationary Poisson
model, (3) a model with pairwise interactions and stationary
spontaneous rates, and (4) a stochastic model with pairwise in-
teractions and nonstationary spontaneous rates. See Materials
and Methods for details of each model. In all models, there is an
effective refractory period, estimated from the offset in the ITI
distribution as shown in Figure 1d. This reflects, to some extent,
the fact that once a cell has undergone a transition to an up state,
it will reside there for some time before dropping back to the
down state.

All four of the models listed above can be fit to each dataset
straightforwardly (see Materials and Methods). Once a fit has
been made, simulated datasets can be generated and the pattern
distributions determined. These distributions are then compared
with the experimental ones, and a goodness of fit for each value of
the jitter d( J) is estimated (see Materials and Methods). For this
particular measure, d( J) of order 1 indicates a good fit. Figure 3a
shows the goodness of fit �d�, where the brackets indicate an av-
erage over jitter.

The first striking feature of this graph is that the datasets can
be sharply divided in two categories: for the four datasets shown
on the left, the stationary Poisson model provides a very bad fit of
the data, with �d� � 100. For the remaining 11 datasets, the sta-
tionary Poisson model provides a much better fit, with �d� � 10.
We first examine the datasets that are best fit by the Poisson
model. In fact, the value of �d� for the stationary Poisson model
(black) is in the range [0.6 –1.0] for 8 of these 11 datasets, as
indicated by the black asterisk. The three remaining datasets have
�d�s in the range [1.8 –5.2]. The nonstationary Poisson (red)
model improves the quality of fit for two of these datasets, pro-
viding �d�s of 0.9 and 1.5, respectively (datasets indicated by red
asterisk). For the last of these datasets (open dark-green square),
the nonstationary model with interactions provides the best fit to
the data, but there is only a minor improvement in the goodness-
of-fit measure between this model and the Poisson model. We
therefore do not consider this dataset further.

We now turn to the four datasets that are very poorly fit by the
stationary Poisson model (solid circles). In all these datasets, add-
ing interactions very strongly improves the quality of the fit, with
resulting �d�s in the range [2.6 – 6.1]. Two are best fit by a model
with stationary spontaneous rates (datasets 1 and 3) and two by a
model with nonstationary spontaneous rates (datasets 2 and 4).
Note that dataset 1 is too short in duration to allow for any

Figure 4. Goodness of Poisson fit as a function of pattern length. The goodness of fit as a
function of pattern length d( L) of the stationary Poisson model is shown as a function of the
pattern length for dataset 1. We chose this dataset as exemplary because it is the only one for
which low-jitter patterns are not captured by a Poisson model and therefore provides the
strongest test of the Poisson hypothesis. Note that d( L) is of order 1 for short patterns (L � 5).
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nonstationarities (T � 60 s). The poorer fit
of the nonstationary model to dataset 3
compared with the stationary model is
likely a result of overfitting. Specifically,
the nonstationary model fits a determinis-
tic change in rates to what are most likely
stochastic fluctuations.

Figure 3b– e shows the goodness of fit
d( J) as a function of jitter for the four
models (1– 4, respectively). Note that with
the exception of the dataset 1, all datasets
are consistent with a Poisson process (Fig.
3a,b) for low values of jitter. Indeed, d( J) is
of order 1 for J � 0, 1 in this case. This
suggests that the occurrence of precisely
repeating patterns is entirely explained by
independent Poisson processes. This is not
the case if we consider greater degrees of
jitter, where pairwise interactions between
neurons are needed to account for pattern
statistics (Fig. 3c,d). In addition, if we look
at the goodness of fit as a function of pat-
tern length, we find that short patterns can
be explained by independent Poisson pro-
cesses. Figure 4 shows the goodness of fit of
the stationary Poisson model to dataset 1
as a function of the pattern length L. Only
patterns involving five or more neurons
cannot be captured by this model. This
suggests that activity resulting from recur-
rent connections between neurons tends
to generate noisy patterns that both are
long and typically do not repeat exactly.

The datasets for which interactions are
estimated to be present (except for dataset
1) all contain considerably more data than
the other datasets. It may be that pattern
statistics that deviate from those generated
by a Poisson process with refractory period
are only detectable given a sufficiently
large dataset. To investigate this, we broke
sets 2– 4 into smaller subsets of data: two
subsets for dataset 2 and four subsets for
each of the datasets 3 and 4. This yielded a total of 10 datasets
from the original three, which we then fit with the stationary and
nonstationary Poisson models. In 7 of the 10 cases, the nonsta-
tionary Poisson model provided a much better fit than the orig-
inal datasets �d� � 10), whereas for 3 subsets, neither Poisson
model increased significantly the quality of fit (see section 2 and
supplemental Figs. S.2–S.5, available at www.jneurosci.org as
supplemental material). This suggests that the good fit of a Pois-
son model to the 11 original datasets may be, in part, explained by
a lack of data. Thus it may be that had more data been available, the
distributions of repeating patterns would only have been repro-
duced by a model with interactions.

Properties of the interaction matrices
Here we study the properties of the matrices pij estimated for
datasets 1– 4, which are reasonably well fit by a stochastic model
with pairwise interactions. Figure 5 shows the connectivity ma-
trix for each of the four datasets in which a filled entry indicates a
nonzero pij for that pair, j on the x-axis and i on the y-axis. The
identity of the dataset is indicated by the corresponding symbol.

Figure 5a shows the connectivity of dataset 1. Of a total of 83
active neurons, 19 form a connected subgraph of 46 links. The
degree of connectedness (the number of connections divided by
the total number of possible connections) within this subgraph is
therefore 13%. In addition, we have highlighted those connec-
tions for which pij � 0.5 by enlarging the corresponding square.
This reveals a strongly interconnected subnetwork of neurons
(neurons 6, 13, 29, 30, 37, 38, and 56). The matrices in Figure
5b– d are all qualitatively similar to one another. The connectivity
is relatively diffuse with no obvious structure. However, all three
matrices exhibit vertical and horizontal “stripes,” which indicate
that some neurons receive a large number of outgoing and in-
coming connections; i.e., they connect broadly across the net-
work. The degree of connectedness within the connected sub-
graph is 3.1, 5.5, and 4.5% for datasets 2, 3, and 4, respectively.

Figures 6 –9 show the spatial topology of the estimated con-
nectivities for datasets 1– 4. Circles indicate the actual spatial lo-
cation of each neuron in the slice, where the diameter of the circle
is proportional to the transition rate of each neuron. Arrows
indicate the presence of a nonzero pij, and the width of the arrow

Figure 5. Network topology extracted from the analysis. The matrix topology of the four datasets for which a nonzero con-
nectivity was estimated is shown. The matrix entry is filled in by a black square wherever pij is nonzero. This therefore shows the
presence of a connection but not its strength. In each case, the dataset is indicated by the corresponding symbol. a (solid black
circle), A very sparse matrix (0.7% connection probability). However, only 19 neurons actually form a connected subgraph,
yielding a connection probability of 13%. The strongest connections pij � 0.5 form a strongly interconnected subgraph of their
own, here shown by slightly enlarged squares. See Results. b (solid red circle), The sparseness within the connected subgraph is
3.1%. Visible are horizontal and vertical striations indicating neurons with a high degree of incoming and outgoing connections,
respectively. c (solid green circle), The sparseness within the connected subgraph is 5.5%. Visible are horizontal and vertical
striations indicating neurons with a high degree of incoming and outgoing connections, respectively. d (solid cyan circle), The
sparseness within the connected subgraph is 4.5%. Visible are horizontal and vertical striations indicating neurons with a high
degree of incoming and outgoing connections, respectively.
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is proportional to the value of pij. Figure 6a shows that connec-
tions span the entire network, although a highly spatially struc-
tured subnetwork of neurons is apparent in the bottom left part
of the slice. This spatially localized subnetwork is, in fact, made
up of the most strongly connected neurons. This is illustrated in
Figure 6b, in which all of the connections for which pij � 0.5 are
colored in red. We also colored those neurons in red that make up
the long length-10 pattern observed and shown in Figure 3A of
Ikegaya et al. (2004). It is clear that the neurons with pij � 0.5 are

those that are primarily responsible for the
generation of this pattern. The spatial to-
pology of the remaining three datasets ap-
pears qualitatively similar (for datasets
2– 4, see Figs. 7–9, respectively). The net-
works are broadly connected, and no ob-
vious spatial structure is present (Figs. 7a,
8a, 9a). We also show the topology of the
strongest connections pij � 0.2 in Figures
7b, 8b, and 9b. Note that in contrast to
Figure 6b, in which the strongest connec-
tions formed a spatially localized subnet-
work, here they are spatially unstructured,
as in Figure 7b, or strong connections are
nearly absent, as in Figures 8b and 9b. In
fact, the network topology for datasets 2– 4
always appears spatially unstructured to
the eye for any threshold value of pij.

Further characterization of the interac-
tion matrices for datasets 2– 4 is shown in
Figure 10. Figure 10a– c shows the distri-
bution of pijs, which is approximately ex-
ponential in all three cases. The probability
of connection as a function of distance is
shown in the inset. Error bars are SEs. Fig-
ure 10, d and f, shows the ratio of the num-
ber of various types of doublet (inset) and
triplet connection motifs to the number of
motifs in a network in which connection
probabilities are independent, as in Song et
al. (2005). Here, only the topology of the
network is considered, i.e., the presence or
absence of a nonzero pij and not the value
of pij itself. Each type of motif is indicated
by a corresponding diagram. A blowup of
the different triplet motifs is shown at the
bottom of Figure 10. The actual number of
motifs found in each case is given above
each bar. In all three cases, we find an over-
representation of both bidirectional con-
nections as well as the more highly con-
nected triplet motifs. These findings are
approximately consistent with results from
simultaneous, multiple intracellular record-
ings in cortical slices (Song et al., 2005).

The degree distribution �(k) gives the
probability of choosing a neuron in a net-
work at random and finding k links (Albert
and Barabási, 2002). Figure 10g–i shows
the degree distributions for both incoming
(solid lines) and outgoing (dotted lines)
connections. The insets show the histo-
grams on a linear scale. The distributions
are approximately consistent with a trun-

cated power law given by �(k) 	 1/k, for Figure 10, g and i, and
�(k) 	 1/k 1/2 for Figure 10h (see dashed lines).

The degree distribution and distributions of doublet and trip-
let motifs are not independent. Indeed, the null hypothesis used
to calculate the number of motifs relative to random in Figure
10d–f is that connections are made randomly with a fixed prob-
ability. This prescription for making connections would result in
a binomial degree distribution, which is clearly inconsistent with
the monotonically decreasing distributions seen in Figure 10g–i.

Figure 6. Spatial organization of networks of dataset 1. The spatial position of each neuron in the slice is represented by a circle.
The diameter of the circle is proportional to the rate of transitions from the down to the up state in the corresponding neuron.
Arrows indicate a nonzero pij as estimated from the model. The thickness of the arrow is proportional to the value of pij. Scale bar,
100 �m. a, Full topology. b, Connections for which pij � 0.5 are colored in red. These strong connections clearly form a spatially
localized subnetwork of neurons. Those neurons participating in the length-10 pattern are shown in red and correlate strongly
with the spatially localized subnetwork.

Figure 7. Spatial organization of networks of dataset 2. The spatial position of each neuron in the slice is represented by a circle.
The diameter of the circle is proportional to the rate of transitions from the down to the up state in the corresponding neuron.
Arrows indicate a nonzero pij as estimated from the model. The thickness of the arrow is proportional to the value of pij. Scale bar,
100 �m. a, Full topology. b, Only connections with pij � 0.2.
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We explore to what extent the deviation of
the distribution of doublet and triplet mo-
tifs is attributable to the form of the degree
distribution. To do so, we generate
100,000 networks by laying down connec-
tions randomly with a probability of 0.035
and 100,000 networks with a truncated
power-law degree distribution given by
�(k) 	 1/k. These values result in a similar
mean degree for both networks �k� 	 6. In
both cases, we take a system size equivalent
to the connected subgraph of dataset 2
(161 neurons). Histograms of the degree
of incoming (solid lines) and outgoing
(dotted lines) connections for the random
and power-law networks over all 100,000
realizations can be seen in Figure 11, a and
b, respectively. The inset in Figure 11b
shows the agreement of the theoretical de-
gree distribution �(k) used to generate the
networks to the histogram. Figure 11, c
and d, shows the number of doublet and
triplet motifs for the purely random and
power-law networks averaged over
100,000 realizations. Error bars indicate
the SD of fluctuations in the numbers of
motifs across realizations resulting from
the finite size of the networks. We have
checked that after 100,000 realizations any
error in the measurement of the mean or
SD is negligible. It can be seen from Figure
11c that the network motifs are consistent
with a random graph, as should be the
case. Figure 11d indicates that not all of the
features of the overrepresentation of dou-
blet and triplet motifs in Figure 10e– g can
be explained by the presence of a power-
law degree distribution. In particular,
there is no overrepresentation of doublet
motifs. Furthermore, the overrepresenta-
tion of triplet motifs seems to directly re-
flect the increased amount of convergence
and divergence related to nodes with large
degree, or “hubs.” Note, in particular, that
triplet motifs 6 and 11, which involve
clockwise or counterclockwise chains of
connections, are not overrepresented. This
can be contrasted with patterns 4, 5, 7–10,
and 12–16, all of which involve patterns of
convergent or divergent connections. The
overrepresentation of bidirectional dou-
blets and certain triplet motifs in the three
datasets we are considering therefore re-
flects additional structure in the network
topology beyond the degree distribution alone.

We may ask what properties of the interaction matrices lead to
the distributions for the repeating patterns of activity that agree
with the experimental data. In particular, if we can generate ran-
domized surrogate matrices in which this property is preserved,
we should also preserve the resulting pattern distributions. We
test three different surrogate matrices. It may be that the distri-
bution of weights pij alone (Fig 10a– c) is sufficient to generate the
pattern distributions without any additional network structure.

We test this hypothesis by rewiring each connection by choosing
two neurons at random, one presynaptic and one postsynaptic,
with equal probability from the total number of active neurons in
the dataset. Among other effects, this will result in the elimination
of any overrepresentation of motifs present. Figure 12 shows the
goodness of fit averaged over jitters �d� for this particular surro-
gate, given by the black bar. The pattern distributions for this case
are clearly altered.

Second, we have noted earlier that not all active neurons are

Figure 8. Spatial organization of networks of dataset 3. The spatial position of each neuron in the slice is represented by a circle.
The diameter of the circle is proportional to the rate of transitions from the down to the up state in the corresponding neuron.
Arrows indicate a nonzero pij as estimated from the model. The thickness of the arrow is proportional to the value of pij. Scale bar,
100 �m. a, Full topology. b, Only connections with pij � 0.2.

Figure 9. Spatial organization of networks of dataset 4. The spatial position of each neuron in the slice is represented by a circle.
The diameter of the circle is proportional to the rate of transitions from the down to the up state in the corresponding neuron.
Arrows indicate a nonzero pij as estimated from the model. The thickness of the arrow is proportional to the value of pij. Scale bar,
100 �m. a, Full topology. b, Only connections with pij � 0.2.
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connected via incoming or outgoing connections to other neu-
rons. It may be that the particular structure of the connected
subgraph is of importance. To test this, we randomize connec-
tions by choosing two neurons at random from within the con-
nected subgraph. The corresponding goodness of fit (red) shown
in Figure 12 is close to 1 for dataset 1. Indeed, we saw previously
that this dataset exhibits a small, highly interconnected subnet-
work. This hypothesis is, however, insufficient to generate the
pattern distributions for the remaining three datasets.

Finally, we consider the role of the degree distribution. As we
have seen, in a standard Erdös-Renyi graph in which connections
are laid down independently and with equal probability, the de-
gree distribution is binomial and thus nonmonotonic; i.e., there
is a “preferred” value k � pN, where p is the probability of con-
nection and N is the size of the network (Albert and Barabási,
2002). The degree distributions in Figure 10g–i are clearly mono-
tonically decreasing and exhibit long tails, indicating that the

topologies of the interaction matrices do not form standard ran-
dom graphs. To explore the role of the degree distribution in
generating the statistics of repeating patterns, we randomize the
connections by drawing random numbers from the power-law fit
of the degree distributions shown by the dotted lines in Figure
10g–i. These random numbers are used to assign incoming and
outgoing connections to neurons chosen at random from within
the connected subgraph. The “ends” of the incoming and outgo-
ing connections must then be “tied” together self-consistently
(see Materials and Methods). Simulated pattern distributions us-
ing such interaction matrices agree well with the experimental
data (Fig. 12, blue). We also constructed randomized matrices for
which only the in- or the out-degree distribution is kept, whereas
the other is seeded randomly and is thus binomial (data not
shown). Neither of these hybrid topologies succeeds in generat-
ing the pattern statistics as well as the original matrix. Nonethe-
less, maintaining a power-law degree distribution of the outgoing

Figure 10. Properties of the graphs of interactions. a, The distribution of pijs for dataset 2. Note the log-lin scale. Inset, The probability of connection as a function of distance averaged over all
pairs of neurons. The probability of connections decreases only weakly with distance. b, As in a for dataset 3. c, As in a for dataset 4. d, Network motifs for dataset 2. Shown is the ratio of the number
of motifs compared with that found in a random network. As in the study by Song et al. (2005), the null hypothesis is generated by assuming independent connection probabilities. Inset, Doublets.
Main panel, Triplets. A blowup of the triplet motifs is shown at the bottom of the figure. e, As in d for dataset 3. f, As in d for dataset 4. g, The degree distributions (solid line, in distribution; dotted
line, out distribution) �(k) for dataset 2. Note the log-log scale, and see inset for a linear scale. A suggestive fit to a truncated power law distribution is indicated by the dashed line. See Results. h,
As in g for dataset 3. i, As in g for dataset 4.
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connections does significantly better than
the alternative scenario. This suggests that
single neurons with a large number of out-
going connections significantly contribute
to the generation of long, noisy patterns.

Discussion
The main goal of our study was to find a
simple model capable of reproducing the
statistics of the repeating patterns seen in
calcium-imaging work in slice (Ikegaya et
al., 2004). In 11 of the 15 datasets we ana-
lyze, a Poisson model with refractory pe-
riod provides a good fit, whereas for the
remaining four, the presence of pairwise
interactions greatly improves the fit over a
simple Poisson model. We have asked the
question, what is it about the structure in
the pairwise interactions that generates the
repeating patterns in these four datasets?
We have looked at several possibilities: the
distribution of interaction strengths alone,
the structure of the connected subgraph,
and the degree distribution. For dataset 1,
the structure of the connected subgraph
appears crucial. For datasets 2– 4, one can
rewire connections randomly, as long as
the in-degree and out-degree distributions
are held intact, and obtain numbers of re-
peating patterns similar to those seen in
the data. This means that there is a statis-
tical ensemble of random networks that
produce repeating patterns similar to
those seen in experiments. This, in turn, suggests that one should
be cautious in interpreting the functional usefulness of such re-
peating patterns.

Do repeating patterns of transitions between down states and
up states occur above chance in the data we have studied? If we
define chance as meaning “consistent with independent Poisson
neurons with a refractory period” (our models 1 and 2), then in
11 of the 15 datasets repeating patterns do not occur above
chance. In three of the remaining four datasets (datasets 2– 4),
short patterns and exactly repeating patterns (low jitter) do not
occur above chance. In these datasets, long patterns with some
jitter do occur above chance. Finally, in dataset 1, sufficiently long
patterns occur above chance for any jitter. However, datasets 2– 4
have both larger numbers of neurons and more transitions per
neurons than the others. The fact that 11 of the remaining 12
datasets can be well fit by independent Poisson processes might
therefore be attributable to the fact that there are simply not
enough spikes to detect connectivity in those datasets. We have
broken datasets 2– 4 down into 10 smaller subsets and found that
seven of them can be well fit by a Poisson model (see supplemen-
tal material, available at www.jneurosci.org). This suggests that
the 11 experimental datasets whose distribution of repeating pat-
terns can be explained by a Poisson model alone may have yielded
nonzero interaction matrices had they been longer.

Having summarized our main findings, we would like to re-
view the pedigree of the data we have analyzed to place our work
in its proper context. The data were originally presented in a study
in which repeating patterns of neuronal activity were found to occur
on two distinct time scales (Ikegaya et al., 2004), as follows.

A time scale of milliseconds
In vitro recordings from mouse primary visual cortex and in vivo
recordings from cat primary visual cortex revealed patterns of
subthreshold voltage fluctuations that repeated with millisecond
precision. The number of repeats was compared with the number
of repeats in time-shuffled surrogate data series and found to be
significantly larger. The surrogate time series was generated by
thresholding the voltage traces, thereby keeping track of the larg-

Figure 11. Doublet and triplet motifs for random networks with binomial or power-law degree distributions. a, Histogram of
the degree of incoming (solid lines) and outgoing (dotted lines) connections in 100,000 networks of 161 neurons in which
connections are made with a fixed probability of p � 0.035. b, Histogram of the degree of incoming (solid lines) and outgoing
(dotted lines) connections in 100,000 networks of 161 neurons generated from a truncated power-law degree distribution. Inset,
Log-log plot of the same histogram and the function used to randomly generate the degree of connections (dashed line), �(k) 	
1/k. c, The number of doublet and triplet motifs in the random network compared with that predicted from a random network.
Values are averaged over 100,000 realizations, and error bars show one SD (see Results). d, The number of doublet and triplet
motifs in the network with power-law degree distribution compared with that predicted from a random network. Values are
averaged over 100,000 realizations, and error bars show one SD (see Results).

Figure 12. Goodness of fit of models with randomized connectivity. Goodness of fit d of
models with randomized connectivity. Three randomization paradigms were tested for the
connections pij: (1) within full graph, (2) only within the connected subgraph, and (3) within the
connected subgraph while keeping the degree distribution intact. The pattern distributions
were unchanged in dataset 1. Dotted lines show the goodness of fit for the original, best-fit
model. See Materials and Methods for a description of how the randomized connectivities were
generated. The model providing the best fit is indicated for each dataset by an asterisk of the
corresponding color.
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est postsynaptic potentials (PSPs), and then shuffling the inter-
vals between PSPs. A more recent study looked at repeating pat-
terns in subthreshold activity in in vivo recordings in rat barrel
cortex and cat striate cortex (Mokeichev et al., 2007). The authors
compared the number of repeats to repeats found in three types
of surrogate data series: time-shuffled traces without threshold-
ing, phase-randomized traces, and traces generated from a simple
neuron model with Poisson inputs. In all three cases, they found
that the surrogate data produced comparable numbers of repeats
to the original data.

A time scale of hundreds of milliseconds to seconds
Calcium imaging recordings from primary visual and medial pre-
frontal cortex in mice showed repeating patterns of transitions
from down to up states in cortical cells, which occurred on the
time scale of hundreds of milliseconds to seconds. The number of
repeating patterns found was compared with that found in three
different types of surrogate datasets: (1) shuffling of ITIs within
neurons, (2) shuffling of spikes across neurons, and (3) exchange
of spikes across neurons. In all three cases, the authors found a sig-
nificantly lower number of repeating patterns in the surrogate data.

Our work has revisited the calcium imaging data and shown
that a simple stochastic model incorporating spontaneous activ-
ity, pairwise interactions, and a refractory period is sufficient to
reproduce the distributions of repeating patterns. It is instructive
to ask what the relationship is between the three surrogates used
by Ikegaya et al. (2004) and in the model we propose. Surrogate 1
destroys any nonstationarities in the data, while maintaining the
number of transitions and the ITI distribution for each neuron.
Surrogates 2 and 3 maintain nonstationarities while eliminating
any effective refractory period, and surrogate 2 also destroys the
number of transitions per neuron. None of the three surrogates
should provide a good fit to datasets 1– 4, because they addition-
ally destroy any asymmetric pairwise correlations between neu-
rons. We have tested this by generating 100 surrogate datasets for
dataset 1 (solid black circle) for each type of surrogate, which
results in values of the goodness of fit �d� � 10 2. This is consistent
with Figure 3E–G from Ikegaya et al. (2004), which shows signif-
icantly fewer repeating patterns arise in the surrogate datasets.
However, surrogate 1 should not give a significantly different
number of repeating patterns compared with the dataset’s best fit
by the stationary Poisson model. To test this, we have generated
surrogates for the dataset given by the open red square and find
that surrogates 1 and 3 yield a �d� near 1, whereas �d� is of order 102
for surrogate 2. Our work is complementary to that of Mokeichev
et al. (2007), in that it deals with patterns of transitions in cortical
cells that occur on a much longer time scale that the subthreshold
fluctuations. Unlike Mokeichev et al. (2007), we do find that
patterns occur above chance in some of the data compared with a
simple Poisson model with refractory period.

The simple, stochastic model we have used here is appropriate
for relatively small datasets in which the number of “events”
(here transitions) per neuron is low. More sophisticated methods
have been proposed when long spike trains are available, includ-

ing a network likelihood model for extracting the connectivity
matrix (Okatan et al., 2005). Recently, patterns of spiking activity
across retinal ganglion cells were reproduced by a simple, sto-
chastic model of pairwise interactions, equivalent to the well
known Ising model (Schneidman et al., 2006). In this case, the
spiking patterns studied occurred at zero time lag, leading to a
symmetric interaction matrix. Such studies and the present one
suggest that it is possible to infer interactions or correlations
between neurons from their patterns of activity. Relating interac-
tion strengths or correlations extracted from data in this way to
actual functional synaptic contacts between neurons would be an
endeavor of some interest.
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