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A child often learns to ride a bicycle in the driveway, free of unforeseen obstacles. Yet when she first rides in the street, we hope that ifa car
suddenly pulls out in front of her, she will combine her innate goal of avoiding an accident with her learned knowledge of the bicycle, and
steer away or brake. In general, when we train to perform a new motor task, our learning is most robust if it updates the rules of online
error correction to reflect the rules and goals of the new task. Here we provide direct evidence that, after a new feedforward motor
adaptation, motor feedback responses to unanticipated errors become precisely task appropriate, even when such errors were never
experienced during training. To study this ability, we asked how, if at all, do online responses to occasional, unanticipated force pulses
during reaching arm movements change after adapting to altered arm dynamics? Specifically, do they change in a task-appropriate
manner? In our task, subjects learned novel velocity-dependent dynamics. However, occasional force-pulse perturbations produced unantici-
pated changes in velocity. Therefore, after adaptation, task-appropriate responses to unanticipated pulses should compensate corresponding
changes in velocity-dependent dynamics. We found that after adaptation, pulse responses precisely compensated these changes, although they
were never trained to do so. These results provide evidence for a smart feedback controller which automatically produces responses specific to
the learned dynamics of the current task. To accomplish this, the neural processes underlying feedback control must (1) be capable of accurate
real-time state prediction for velocity via a forward model and (2) have access to recently learned changes in internal models of limb dynamics.
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Introduction

Humans have the extraordinary ability to learn a vast array of
motor tasks with modest amounts of practice and to effectively
compensate unforeseen errors in performing each of those tasks.
This ability to perform online error feedback control is remark-
able in light of the relatively long sensorimotor loop delays im-
peding information flow between the brain and the periphery
(Cordo, 1990; Flanders et al., 1993). Indeed, the apparent com-
plexity required of such a feedback controller has led to a long-
running debate over the precise nature and importance of long-
latency supraspinal online feedback control, particularly when
movements are short and targeted (Houk and Rymer, 1981). How-
ever, cortically modulated long-latency responses are often larger
than their short-latency counterparts (Marsden et al., 1976), and
high-gain responses to visual position and velocity error informa-
tion are present throughout the entire course of even relatively quick
arm movements (Saunders and Knill, 2003, 2004). Moreover, pa-
tients with Huntington’s disease, which specifically affects supraspi-
nal structures, have been shown to have profound deficits in online
error feedback control, even at the earliest stages of this disease
(Smith et al., 2000), despite an intact ability to use error signals for
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trial-to-trial learning (Smith and Shadmehr, 2005). Together, these
observations suggest that cortically modulated mechanisms for error
feedback control play a key role in even short, rapid movements.

A significant concern with the implementation of long-
latency feedback corrections is stability. For all but the smallest
gain corrections, it has been argued that long-latency feedback
control may not be feasible because of instability caused by large
sensorimotor loop delays. However, if the motor system has a
means of predicting future state, these instabilities can be elimi-
nated (Wolpert and Miall, 1996; Bhushan and Shadmehr, 1999;
Wolpert and Flanagan, 2001). Long-latency online feedback con-
trol, therefore, might rely on a so-called forward model of dy-
namics, which enables the motor system to predict future motion
based on past motor commands and delayed sensory feedback
(Flanagan et al., 2003, Blakemore et al., 1999; Duhamel et al.,
1992; Jordan and Rumelhart, 1992; Wolpert and Miall, 1996;
Bhushan and Shadmehr, 1999; Desmurget and Grafton, 2000;
Ariff et al., 2002; Mehta and Schaal, 2002; Sommer and Wurtz,
2002). If this prediction could span the latency at which feedback
corrections take place, then feedback control driven by this pre-
diction could essentially occur in real time and avoid the insta-
bility normally associated with feedback delays.

Any long-latency feedback mechanism would be most effec-
tive if its motor output depended not only on trajectory error, but
also on the present task and environmental dynamics. This could
be accomplished if the feedback controller could learn directly
from trial-to-trial error signals, independently from the mecha-
nisms for feedforward motor adaptation. However, a more par-
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simonious feedback control policy could
simply translate desired corrective motion
into the motor output using the same
mechanism that performs this computa-
tion in feedforward control: an adaptive
inverse dynamics model (Katayama and
Kawato, 1993; Shadmehr and Mussa-
Ivaldi, 1994; Wolpert and Kawato, 1998;
Kawato, 1999). A shared internal model
for feedforward and feedback control o
would allow feedforward adaptation to au-
tomatically train feedback responses.

In the present work, we address two key
issues about the contribution of state-
predicting forward models of dynamics to
feedback control. First, is the motor sys-
tem capable of using delayed sensory in-
formation to continuously and accurately
predict the values of state variables in real
time for use in feedback control? The sec-
ond issue concerns the relationship be-
tween motor adaptation and feedback control. If we are never
trained in the art of error correction when learning a novel task, is
the motor system’s learned internal model of task dynamics au-
tomatically made available to the error feedback controller? Le.
can forward-model-based feedback control adapt automatically
to novel dynamics? And, if so, what does this tell us about the
functional relationships between forward and inverse models of
dynamics?

Null Field

Figure 1.

Materials and Methods

General task description. Subjects were instructed to make point-to-point
reaching movements in the horizontal plane while holding a handle at the
end of a robotic manipulandum (Inmotion2 arm; Interactive Motion
Technologies). Visual information on movements was provided through
a vertically oriented LCD computer monitor. A small, circular (3 mm
diameter) on-screen cursor tracked subjects’ movements and larger (1
cm diameter) circles indicated the locations of the targets toward which
subjects were instructed to make point-to-point reaching arm move-
ments. Their right arms were supported in the horizontal plane by a
ceiling-mounted sling. The starting position for forward movements
corresponded to an initial hand position in the midline 30 cm from the
chest, whereas the target position was 10 cm diagonally forward and to
the right, with an angle determined for each subject based on the physical
dynamics of his or her arm (see below, Perturbations). Although this
angle varied, the range was only 43—47°. At the end of each movement,
we provided performance feedback based on the time taken to reach the
target and the peak hand speed on that trial, with “good” for normal
movements set to 0.45-.55 slong and a top speed of 0.3-.35 m/s. The color
of the target changed to reflect the quality of the movement: red for too
fast, blue for too slow, and an expanding circle accompanied by a sound
for a good movement. Eleven naive subjects, four male and seven female,
aged 18-22, performed the experiment. All subjects provided informed
consent, and this study was approved by the Harvard University Institu-
tional Review Board.

The experiment was divided into two phases in blocks of one hundred
10 cm movements, 50 in each of two (back and forth) target directions.
The target location for each movement became the starting point for the
next. The first phase consisted of a four-block baseline period in which
no force field was active, whereas the second was a learning phase of six
blocks (blocks 5-10) during which subjects performed movements in a
viscous curl force field:

s ( 0 15\Ns
“\-150/m-
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Assistive/Resistive
Perturbation

Task illustration. Left, Sketch of a participant grasping a robotic manipulandum. The four diagonal hand-path
sketches diagram the four trial types used in our task. Null-field trials during which the robot’s motors are effectively turned off are
experienced during the baseline period, whereas force-field trials are experienced during the training period. During force-field
trials, the robotic manipulandum applies a sequence of forces to participants’ hands that are proportional in magnitude to hand
speed, but directed perpendicular to the current direction of motion. This force is updated every 5 ms. Interspersed among the
null-field and force-field trials were error-clamp and error-clamped perturbation trials. During error-clamp trials, the hand was
forced along a straight line to the target to minimize lateral motion and allow for direct measurement of the lateral force pattern
produced by participants on these trials. During error-clamped perturbation trials, large (15 N), brief (60 ms full-width at half-
max) force pulses were applied either in the direction of movement (assistive) or against it (resistive).

The effect of the field for linear movements is to laterally perturb
trajectories with a force proportional in magnitude to the speed of the
hand (Fig. 1). After the first two blocks of the learning phase, subjects’
performance reached an asymptote, so we considered blocks 7-10 to be
the “late-learning” period. Note that we refer to this period throughout
the remainder of this study. During both phases, approximately one-fifth
of all movements were laterally error clamped by applying a force chan-
nel (Scheidt et al., 2000; Smith et al., 2006) between the initial hand
position and the center of the target, which effectively counteracted lat-
eral motion and forced nearly perfect straight line movements to targets
(average maximum absolute deviation, <0.7 mm). The force channel is
implemented as a highly stiff, viscous one-dimensional spring and
damper in the direction orthogonal to the vector between the initial hand
position and the center of the target, with K = 6000 N/m and B = 250
N/(m/s). Application of this error clamp allows for high-accuracy mea-
surement of subject-produced lateral forces, because the robotic arm
must effectively produce lateral forces precisely equal and opposite to
those produced by the subject to clamp lateral error at zero. By inactivat-
ing the force field and clamping lateral error at zero for these trials, we
also eliminate the effect of changes in subjects’ arm stiffness: observed
lateral forces must be actively produced by the subject rather than a
response to lateral errors, as lateral errors are held to be essentially zero.

Movements with perturbations. During both the baseline and learning
phases, randomly distributed on %10 of all movements (half of the error-
clamp movements, but only on error-clamp movements), the robotic
arm produced brief, high-magnitude force pulses along the subject’s axis
of movement. On these trials, pulses were triggered when the subject
crossed the 2 cm point of the 10 cm movement. Half of these perturba-
tions (%20 of all trials) were “assistive,” meaning that subjects were per-
turbed in their direction of movement, whereas the other half (Y20 of all
trials), were “resistive,” so that subjects were perturbed against their
direction of movement. The perturbations were brief, bell-shaped force
pulses 15 N in magnitude and 100 ms in total duration (magnitude
>50% for 54 ms). The pulses were shaped like the velocity profiles of
minimum-jerk point-to-point movements with duration 7, = 100 ms,

such that
t\* t\? t\?
P(t) = 240(—) - 480(—) — 240(—)
Ty Ty Ty

over the time of the pulse, given directly along the axis of movement,
where P(¢) is the magnitude of the perturbing force pulse in Newtons and
t is the time since perturbation onset.

Because the goal of giving these pulses was to examine the change in
the online error feedback response as a function of learning force-field
dynamics, we wanted to ensure that the pulses themselves provided sub-
jects with no new feedback between the baseline (null field) condition,
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and the learning (force field) condition. In particular, we wanted to
ensure that subjects’ only source of lateral error feedback which could
influence their lateral force profiles was learning the force field itself on
unpulsed trials. To this end, we only gave pulses in a force channel, so that
lateral position error was clamped at zero, and the force field was always
off during pulsed trials. Thus, a perturbation movement given during the
baseline condition was precisely equivalent to a perturbation movement
given during the learning phase, aside from changes in subjects’ re-
sponses. We argue therefore that any changes in subjects’ responses to
these perturbations between the two phases was attributable to adapta-
tion to the force field on unpulsed trials, and cannot be attributed to any
learning from the perturbation trials themselves.

Because we were interested primarily in lateral force profiles during
these perturbations, we attempted to further minimize any activity lateral
to movement, beyond using the force channel, by carefully choosing the
movement direction and the perturbation direction. There were two
primary considerations. First, inertial anisotropy in the physical passive
dynamics of the coupled human and robot arm system is such that, in
general, a force perturbation will produce accelerations in both the di-
rection of applied force vector and the direction lateral to it. Thus, we
wanted the movement and perturbation direction combination which
would minimize these effects.

We noted that for these two-dimensional (i.e., planar) movements, the
mass matrix of the coupled human/robot system possesses two orthog-
onal eigendirections because this matrix is known to be symmetric. The
acceleration-dependent component of the dynamics of this system can
be expressed as follows:

(s (i )
E, M., M,, 5 a,) s’

where F and a represent force and acceleration at the hand, respectively,
and M represents the effective inertia matrix of the coupled system. Note
that the units are provided alongside each term for clarity. For this sys-
tem, only forces applied along these eigendirections will produce accel-
erations in exactly the same directions as the applied forces. Thus, a
movement along an eigendirection with a perturbation along its axis
(resistive or assistive) should eliminate lateral accelerations caused by the
perturbation itself.

To estimate this eigendirection, we had each subject perform a pre-
experiment phase during which they were given perturbations in 120
uniformly distributed directions during point-to-point movements. We
then used these force data and the accelerations they produced to esti-
mate the mass matrix for the subject, from which we could then calculate
the eigenvalues and eigenvectors. Each subject then moved along her
own eigendirection for the actual experiment, although the range across
subjects was tightly bounded between 43 and 47°. Note that this proce-
dure reduced the lateral components of the stretch responses to longitu-
dinal pulses from nearly 15 N in magnitude (data not shown) to ~2.5N
in the baseline condition (Fig. 4 A, dotted lines).

Computational modeling. We implemented two classes of feedback
control models for the human motor system to better understand the
mechanisms potentially responsible for the important features of our
data. The first model is an example of adaptive changes to feedback
responses that do not incorporate state prediction, whereas the second
model is a particular implementation of a feedback mechanism that in-
corporates both adaptation and state prediction. Full motivation for im-
plementing these models is given in Results.

In the first model, force-field compensation is learned through a rota-
tion of preferred activation directions of relevant muscles, or a nearly
equivalent rotation of baseline torque. In this model, originally suggested
by Thoroughman and Shadmehr (1999) and diagrammed in Figure 6 A,
the motor system does not know the precise dynamics of the force field.
The model takes as input a desired trajectory, which we set to a
minimum-jerk 10 cm point-to-point movement with a peak speed of
0.27 m/s, which closely approximates the mean unperturbed velocity
profile in our data (see Fig. 2B). The “inverse model” of arm dynamics
converts this desired trajectory into a planned pattern of joint torques. In
the null field, the inverse model simply accounts for the physical passive
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dynamics of the coupled human- and robot-arm system. Here, the in-
verse model learns to compensate the viscous curl force-field environ-
ment by performing a muscle rotation in the preferred directions of the
relevant muscles: biceps, triceps, and anterior and posterior deltoid.
There are a number of ways to perform the torque-to-muscle decompo-
sition depending on assumptions about the levels of biarticulation be-
tween muscles. Following Bhushan and Shadmehr (1999), we imple-
mented six different muscle-moment arm models (Wood et al., 1989;
Throughman and Shadmehr, 1999), and rotated the preferred directions
of the muscles in these models by the amounts that have been shown to
produce torques approximating the learning of this force field (between
12 and 26° of rotation depending on the model and the muscle). After
rotation, muscle activations are then recombined into joint torques for
each moment arm model. For the torque rotation model, joint torques
were simply rotated by the mean rotation angle of the relevant muscles
across all moment arm models (20.7°).

Although Thoroughman and Shadmehr (1999) only examined feed-
forward muscle activations, here we examined the effect of applying such
rotations to feedback responses as well. For simplicity, we approximated
the feedback pathway as a lumped response with linear gains on position
and velocity error (linear stiffness and viscosity) with a single delay. This
feedback response (and all other stiffness-viscosity responses described
in this study) have the general form Fpp = K- x,.(t — t4) + B*v,.(t — t,),
where Fpy is the feedback force, K is stiffness, B is viscosity, x,,, and v,,,
are the differences between desired and actual position and velocity,
respectively, and ¢4 is a time delay. We found that a time delay of 50 ms
combined with reasonable estimates of stiffness and viscosity (Mussa-
Ivaldi et al., 1985) was able to closely reproduce null-field perturbation
responses with velocity profiles similar to those in our data (compare
Figs. 4C, 6C, dotted lines). In an absolute coordinate frame (elbow and
shoulder angles taken relative to the external workspace), the joint stiff-
ness and viscosity we used were as follows:

K- 15 6\ Nm B 2.25 0.9\ Nm
“\ 616/ rad “\09 24)rad-s”

We first computed for this model a baseline feedback response torque
to the assistive and resistive pulses (movement was given in a simulated
error clamp in which lateral position and velocity were held to be zero).
We gave the model the above desired trajectory, then, as in our data,
introduced an unanticipated bell-shaped force pulse of 100 ms duration
(minimum-jerk fourth-order polynomial). We then compared this feed-
back response (without rotation) to an equivalent response with rota-
tions of the preferred directions of the muscles applied to assess the
learning-induced changes in pulse responses predicted by this model (see
Fig. 6C).

In the second model, the feedforward pathway, consisting of desired
trajectory generation and an inverse model computation of motor out-
put (joint torque), is generally the same as that above, except that the
inverse model learns the exact dynamics of the force field, rather than a
rotational approximation. However, the feedback control mechanism is
entirely different. In addition to a lumped, low-latency (At = 30 ms)
approximation of spinal feedback and intrinsic mechanical stiffness and
viscosity, this model includes a long-latency state-predicting forward-
model-based feedback controller (see Fig. 6 B). This forward model takes
as input delayed sensory information (At = 120 ms) as well as efference
copy of motor output, and predicts the future value of kinematic state
variables (e.g., position and velocity). This prediction is then compared
with the desired trajectory to estimate future error, and the controller
issues preemptive corrective accelerations to reduce error in real time. In
this model, corrective accelerations were derived from linear gains on
predicted position and velocity error:

(200 . (80} _,
K= 0 20) S 37085'

Short-latency feedback gains were chosen to be

K 15 6\ Nm B 1.5 0.6\ Nm
“\ 6 16/ rad " \0.6 1.6/ rad-s"
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The short-latency feedback gains were set to
the values used in the model used by Bhushan
and Shadmehr (1999) obtained from Gielen
and Houk (1987). This combination of param-
eters was again found to produce null-field
pulse responses with velocity profiles closely in
agreement with those in our data (compare
Figs. 4C, 6D, dotted lines).

Moreover, because the corrections are su-
praspinally mediated, the feedback controller
has access to changes in the internal model of
limb dynamics. Forward-model-issued correc-
tive accelerations, then, can be converted to
motor output via the inverse model of limb dy-
namics. Also, the prediction of the forward
model of future state is available to the inverse
model. This is an essential feature of the model:
in general, the inverse model will be highly de-
pendent on state. If there are no unanticipated
changes or errors during movement, prediction
is unnecessary. If errors occur, however, the
torques that the inverse model produces at a
given time during movement will, in general, be
significantly more appropriate if updated real-
time state predictions are available than if it
used a desired trajectory alone. In our task in
particular, because the late-learning inverse
model ideally contains an exact model of the
force field, we expect it to be able to issue
torques appropriate for the presence of the
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Figure 2.  Movement trajectories during perturbed and unperturbed movements. A-D, Position (4, €) and velocity (B, D)

profiles both in the direction of movement (4, B) and laterally (C, D), averaged across all subjects in both baseline and late in
force-field training. Gray bars indicate the 100 ms period over which the perturbation is active. The force channel successfully
clamps lateral position and velocity near zero in both conditions, assuring that the perturbation only produces longitudinal error
so thatits effect is necessarily orthogonal to the effect of the force field. Moreover, no new lateral information s given between the
baseline and learning conditions on perturbed trials, assuring an unbiased result. Note that shaded areas represent 95% confi-
dence intervals around the mean.

force field, even for unplanned changes in tra-
jectory, by using the forward model prediction.

As we did for the muscle and torque rotation models, we first tested the
forward-model-based controller by examining the null-field response to
unanticipated assistive and resistive force pulses given in a simulated
lateral error clamp. We then compared these baseline responses with the
response of the model to unanticipated force pulses after learning a per-
fect model of the force field (again in a simulated error clamp).

We also made a few changes to the model itself as presented by Bhus-
han and Shadmehr (1999) (for details, see supplemental text and supple-
mental Fig. 1, available at www.jneurosci.org as supplemental material).
To address the instability they cited, we gave the forward model the
ability to predict the effect of spinal feedback on the future position of the
arm. It is certainly most reasonable for a predictor with knowledge of
the dynamics of the arm to include in those dynamics the effect of spinal
feedback. We also gave the forward model full knowledge of all parts of
the task that in late learning we would expect it to have, namely, predic-
tion of the effect of the force field as well as the error clamp, once it is clear
that the pulse is active. Note that these final changes are not essential (for
a detailed exposition of their effects, see supplemental material, available
at www.jneurosci.org).

Results

First, we show that the paradigm itself produced the experimental
conditions that we desired. In particular, assistive and resistive
pulses produced relatively large deviations in position and veloc-
ity trajectories along the direction of movement compared with
unperturbed trajectories, whereas the force channel successfully
clamped lateral position and velocity very close to zero as shown
in Figure 2. Results shown are averaged across all 11 subjects, with
the shaded regions representing 95% confidence intervals about
the mean.

Movement kinematics associated with force

pulse perturbations

We found that the assistively and resistively directed force pulses
produced motion perturbations that were nearly equal in magni-

tude as shown in Figure 2. The maximum difference between
perturbed and unperturbed longitudinal velocity profiles aver-
aged 19.5 cm/s for assisted trials and —19.2 cm/s for resisted
trials, whereas in position the maximum differences averaged
2.61 cm for assisted trials and —2.55 cm for resisted trials. Across
all error-clamp trials, the average absolute maximum lateral dis-
placements were <0.7 mm both in the baseline case as well as
after learning the force field (Fig. 2C), so that the lateral compo-
nents of perturbed trajectories were near zero and nearly identical
to one another before and after learning. Thus, lateral errors
during pulsed trials were essentially unchanged between the base-
line and late-learning epochs, with the difference averaging ~0.7
mm for both assistively and resistively pulsed trials. Because of
how small the lateral errors were on error-clamped trials, both in
the baseline and force-field conditions, it is unlikely that our
perturbations provided subjects with lateral errors from which to
learn, implying that any learning-related effects seen in our data
are attributable to force-field learning on unpulsed trials. Even if
the submillimeter difference in lateral error seen on pulsed trials
between force-field and baseline conditions were somehow large
enough to learn from, the direction of the lateral error was oppo-
site that which would be necessary to train task-specific feedback
responses.

Note that in resistively pulsed trials, longitudinal velocity is
reduced immediately after pulse onset, and remains below base-
line levels for an additional 150 ms after pulse offset because of
the momentum change conferred by the pulse. At 150 ms after
pulse offset, the velocity becomes greater than baseline to com-
pensate the effect of the pulse. The point at which the pulsed
velocity profile crosses baseline is actually the point at which the
pulse has caused the greatest displacement relative to baseline,
and so to correct this displacement in a resistively pulsed trial, the
feedback response must provide additional longitudinal velocity
so that the movement catches up to the baseline trajectory. After
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Figure3. Force-field learning during unperturbed movements. 4, B, Lateral force profiles (4) and hand paths (B) are presented  coefficient Computed as the coefficient

in various stages of learning. Open circles mark the start of each movement, whereas filled circles mark the targets. Data from
representative early (trial 1), middle (trials 8 —10), and late-learning trials (trials 200 —205) from one participant are shown. (Note
thatinAtime s given relative to when a perturbation would be applied, but only unperturbed movements are shown here. We did
this to provide consistency with data in other figures.) C, D, Learning curves averaged across all 11 subjects with shaded regions
indicating 95% confidence intervals around the means. C, Depicts coefficients for a regression of subject-produced lateral force

onto ideal lateral force. D, Lateral error 350 ms after completing the first 2 cm of movement.

each pulse, we see a general pattern where velocity is first reduced
by the pulse, and then increased by the feedback response com-
pared with baseline. This pattern is, of course, the opposite for
assistively pulsed trials, but in both cases the turn-around point
occurs at about 150 ms after pulse offset (250 ms after pulse
onset).

Interestingly, inspection of the longitudinal position and ve-
locity profiles in error-clamp movements shown in Figure 2, A
and B, reveal that the motion in the direction of the target is
essentially unaltered by exposure to the force-field environment
(Fig. 2 A, B, compare solid and dashed lines). This is equally true
in unpulsed trials and both types of pulsed trials. This finding
indicates that any learning-related changes in motor output in-
duced by the force field are confined to the lateral direction,
without spillover to longitudinal motion. Changes in lateral pulse
response in the late-learning condition compared with baseline
could, in general, be related to force-field adaptation on unpulsed
trials, or related to experiencing a different pattern of errors on
pulse trials. However, our implementation of the error clamp
ensures that lateral errors on pulse trials are essentially zero both
before and after adaptation (Fig. 2C,D), and the finding that
longitudinal motion profiles in our task are unaffected by force-
field learning suggests that pulse-induced longitudinal errors are
also essentially unchanged. Therefore, any systematic changes in
the pulse response between the baseline and late-learning periods
can be attributed to motor adaptation induced by the force-field
environment rather than to differences in pulse-induced motor
errors driving the pulse response.

of linear regression between actual and
ideal force profiles is shown in Figure
3C. The learning curve for this adapta-
tion coefficient averaged across all 11
subjects increases significantly from
baseline levels (p < 107°), to a value
>0.9 (90% learning) late in the training
period. Shaded regions indicate 95%
confidence intervals about the mean.

Changes in feedback control associated with
force-field learning
Figure 4 B shows baseline-subtracted, late-learning lateral force
profiles averaged across all 11 subjects, with shaded regions indi-
cating 95% confidence. Consistent with previous work with such
curl force fields (Smith et al., 2006), our data show that baseline-
subtracted lateral force profiles late in learning on unpulsed trials
simply reflect the force profile necessary to counteract the force
field over the duration of the movement. These forces, shown in
orange, were learned directly from lateral errors experienced on
force-field trials during the training period shown in Figure 3B.
On movements late in learning for which subjects were ran-
domly given assistive or resistive force pulses, however, we see
that the force profile is quite different. In particular, lateral force
profiles on these trials, shown in Figure 4B in red and purple,
respectively, begin identically to their unperturbed counterpart
shown in orange, but ~200 ms after the onset of the force pulse,
begin to deviate strongly from the unperturbed profile. More
than simply differing in magnitude from unperturbed trials,
however, the apparent deviations late in the movements on per-
turbed trials are task-specific, reflecting learned dynamics of the
force field. In particular, these deviations from the unperturbed
force profiles closely match the force profiles that would ideally
compensate the effects of perturbation-induced changes in veloc-
ity on the newly learned force-field dynamics. If the learned dy-
namics of the force field automatically transferred to online error
feedback responses, an ideal perturbation response would be one
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in which the subject’s force profile appro-

Baseline and Late Learning Force Profiles D
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Figure 4.  Analysis of lateral force profiles during perturbed and unperturbed movements. A, Lateral force profiles without

assisted trials are greater and less than, re-

spectively, that of an unperturbed trial,
both with p < 10 ~°. If we instead examine
lateral force magnitude averaged over the
duration of the feedback response at 200—
600 ms (i.e., 100500 ms after perturba-
tion offset), we again find that the mean
lateral force on resisted trials is greater,
and that of assisted trials is less, than the
unperturbed condition, also with p <
10 7. Note that the shaded regions and
error bars throughout Figure 4 represent
95% confidence intervals around the
mean.

baseline adjustment. Note that small, oscillatory lateral force patterns in the responses to both assistive and resistive pulses exist
inthe null field, but that the lateral force profiles in the force-field condition are quite different from baseline and generally much
larger in magnitude. B, Here, we subtract the baseline force profiles shown in 4 from the late-learning profiles shown in A. This
eliminates the baseline pulse response from the lateral force profiles, thus leaving only the learning-induced changes in the force
profiles. The unpulsed profile in orange is thus the force pattern that was learned to balance the errors induced by the curl field
(note the similarity to the ideal force profile). The pulsed profiles are virtually identical to the unpulsed until ~200 ms after pulse
onset, when they begin to diverge. ¢, We then subtracted the unpulsed profile in B from the other profiles in B, yielding the
learning-induced changes specific to the pulse response itself. We left the subtracted unpulsed response as a zero line for
reference. Note that the pulse responses follow the preplanned (unpulsed) profile until 200 ms, when they diverge from this
baseline and begin to follow the ideal pulse response profiles. Ideal profiles are based on the lateral forces that the curl field would
produce were it active during the pulse trials, i.e., Figes) = —B * Vycruar- D, E, Comparison of the null-subtracted lateral force levels
latein learning between pulsed and unpulsed trials. Our choice of time periods at or around 300 ms after pulse offset is close to the
time at which the pulsed velocity profiles are maximally different from the unpulsed velocity profile, and should therefore
correspond to the time at which maximal difference in the response profiles might be expected. The asterisks in D and E represent
significant differences in lateral force production from unpulsed movements at the level of p < 10 . Shaded regionsin A-Cand

error bars in D and E represent 95% confidence.

Real-time state prediction

The result that force profiles in both assis-

tively perturbed and resistively perturbed trials become task spe-
cific 150 ms after perturbation offset demonstrates that during
the training of simple unpulsed movements in a force field, the
motor system automatically updates its rules for online error
correction so that responses to force pulses are, after a time delay,
fully appropriate for the presence of the force field, although the
force pulse and force field were never experienced together. Fur-
thermore, as this particular force field is velocity dependent, an
appropriate perturbation response requires that the motor sys-
tem have accurate information about its velocity after perturba-
tion. In the presence of motor loop delays, the motor command
for producing the appropriate lateral force for a given velocity
must be issued before sensory information about that velocity is
available. Therefore, our results suggest that the motor system
has access to a predictive model of limb dynamics that can pro-
vide accurate online state prediction for velocity. Such a forward
model, which could integrate delayed sensory information with
efference copy of motor output to accurately predict future ve-
locity, would be particularly useful to the motor system if the arm
is perturbed off course. This can be seen directly in the single-trial

data in Figure 5 where, plotted with subjects actual longitudinal
velocity profiles, we show subjects’ velocity predictions, namely
their lateral force profiles scaled down by the force-field magni-
tude, V,,,eq = Flateral/ (15 N/(m/s)). In general, the accuracy of this
state prediction is quite remarkable. When all pulsed trials from
all subjects are considered, lateral force profiles can predict
>80% of the variance in longitudinal velocity. Figure 5C shows
the R? value for a linear regression of the lateral forces subjects
produced onto the corresponding longitudinal velocities in all
late-learning pulse trials. We performed this regression separately
at each time point during the movement to examine how the
precision of real-time state prediction during pulsed movements
evolves in time. We find that state prediction accuracy initially
climbs after movement onset but then falls to zero when the force
pulse is applied because this pulse cannot be predicted. Then,
~150 ms after pulse offset (250 ms after onset), the prediction
becomes increasingly accurate. At ~400 ms after pulse onset,
lateral force linearly predicts 82% of the variance in longitudinal
velocity. The accuracy of this prediction is maintained fairly well
until movement termination (550—600 ms after pulse onset).
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Real-time velocity estimation. 4, B, Lateral force profile responses on individual trials can predict longitudinal velocity profiles in real time on assistive (4) and resistive (B) perturbation

trials. Dashed lines represent longitudinal velocity profiles on several individual trials, whereas solid lines represent real-time predictions of those velocity profiles obtained from lateral force
production. The single orange dotted line represents the average across all subjects of the unpulsed velocity profile. Note that for clarity force profiles were smoothed with a 7 Hz Butterworth
low-pass filter. €, The R? statistic for a linear regression of lateral force produced in the perturbation response onto the perturbation-induced change in longitudinal velocity at the same time point.
The correlation between these quantities across all trials is computed separately for each time step. The R? statistic represents the variance in the real-time longitudinal velocity profiles thatis linearly
predicted by lateral forces that subjects produce. Note that lateral force profiles predict >80% of the variance in velocity profiles. The dashed line represents the R2 value significant at p = 10 ~°.
D, Overthe time period where state prediction is most accurate, we computed the R ? statistic for velocity prediction over arange of leads and lags. The black line indicates the lag at which prediction
is most accurate for each pointin time, and the black asterisk represents the single best prediction during movement. The dark gray region indicates 95% confidence, whereas the light gray indicates
99% confidence. Note that the state prediction is most accurate 400 ms after perturbation onset and at zero lag (i.e., in real time).

Note that even when assistive and resistive trials are considered
separately, force profiles still show significant ability to predict
variability in longitudinal velocity in real time (R* = 0.22 and
0.34, assistive and resistive, respectively; p < 10 ~®in both cases).

We also considered whether this state prediction is truly in
real time, or whether some nonzero lag between lateral force and
longitudinal velocity produced more accurate predictions. In
Figure 5D, we performed the same regression analysis as in Figure
5C, but over a range of leads and lags (=200 ms). Because a range
of lags were examined at each time point in movement, this anal-
ysis produces a prediction surface characterized by the cross-
correlation between longitudinal velocity and lateral force over
all trials at each time point. Note that the data in Figure 5C rep-
resents a vertical slice through this surface at zero lag. Also note
that the optimal lag at each time point occurs at the maximum of
the corresponding horizontal slice through this surface. In Figure
5D, these points are marked in black, with 95% and 99% confi-
dence intervals shaded in dark gray and light gray, respectively.
Although this analysis is intrinsically a type of cross-correlation,
for consistency with Figure 5C, we report R” rather than R.

The main result here is that in the time period when state
prediction (velocity prediction) is best (350—450 ms after pertur-
bation onset), the optimal time lag is <30 ms. The overall best
prediction occurs at 300 ms after pulse offset (400 ms after onset)
at a lag of just 5 ms (as indicated by the asterisk in Fig. 5D). For
time points later than 450 ms after perturbation onset, the reli-
ability of the prediction decreases, but the optimal time lag re-
mains near zero and is not significantly different from zero, sug-
gesting continued real-time state prediction. But note that the

contours are relatively flat in the time period around zero lag,
indicating that in this region prediction accuracy is not very sen-
sitive to lag, and thus accurate estimation of prediction lags is not
possible (as would be expected from the fact that both force pro-
files and the velocity profiles are relatively smooth and do not
tend to change much over 50—80 ms). Earlier in movement,
accuracy decreases and the optimal lag is no longer in real time;
although even at 300 ms after pulse onset, when the optimal lag is
—70 ms (force leads velocity by 70 ms), the difference in predic-
tion accuracy between this lag and real time is only ~10%.

Model comparisons

The main observation in our data was that feedforward learning
of the force-field environment produced consistent changes in
feedback responses. Because we carefully controlled motion er-
rors when probing feedback responses, we note that any feedback
controller that is not adaptive (in the sense that the relationship
between error and response is unaltered by learning) will show no
such learning-related changes in pulse response. In other words,
it would predict a flat line in Figure 4C. With this in mind, we
implemented two classes of adaptive feedback control models.
Because our results suggested that a state-predicting forward
model of dynamics might be necessary to produce lateral force
profiles appropriate for the altered longitudinal velocity trajecto-
ries in the postpulse period, we wanted to test (1) whether an
adaptive but nonpredictive feedback control policy might be able
to explain our results as well and (2) whether a state-predicting
forward model of dynamics really could produce the task-
appropriate responses observed in our data.
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We first explored whether simple ad-
justments to short-latency feedback re-
sponses could account for our results. If
changes in short-latency segmental re-
sponses were indeed able to account for
the learning-related changes in pulse re-
sponse observed in our data, this would
imply that the stiffness (K) and viscosity
(B) matrices that characterize these re-
sponses would have changed. We note that
because the longitudinal component of the
pulse response is essentially unaltered dur-
ing learning, it is unlikely that the overall
scale of these matrices substantially
changed. We therefore explored the possi-
bility that these matrices changed to rotate
(or redirect) feedback responses com-
pared with the baseline state. Specifically,
we tested the effects of a rotation of base-
line feedback torque and muscle activation
in response to force pulses, where the
amount and direction of rotation were ap-
propriate for compensating the effect of
the force field on unpulsed trials. Thor-
oughman and Shadmehr (1999) previ-
ously suggested a model for feedforward
learning in which the motor system can
approximate the dynamics of the force
field by rotating the preferred direction for
the muscles involved in actuating each
movement. These found that simple rota-
tion of ~20° explained feedforward
changes in muscle activation in a force-
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Figure 6.  Comparisons of experimental data with models of muscle rotation and forward-model-based control strategies. 4,

B, Block diagrams are shown for a feedback-rotation control strategy (4) and a forward-model-based predictive feedback control
(B). These models are adapted from those of Thoroughman and Shadmehr (1999) and Bhushan and Shadmehr (1999), respec-
tively. The simulations in € and D result from these models. C, Learning-induced changes in perturbation responses for a set of
learning models implementing rotations of preferred direction for muscle activity (thin lines) or torque (thick gray line). Six
different but related upper limb muscle models were implemented following the model of Thoroughman and Shadmehr (1999),
but the rotated feedback responses from them are so similar that they are difficult to distinguish from one another or from the
torque rotation model in C. The feedback responses for the rotation models are plotted atop the ideal (Figea = —B * Vactual)
perturbation response for reference (dotted line). Baseline feedback responses for rotations in € are determined via a standard
delayed stiffness viscosity, Foution = K * Xenl(t — tg) & B Vot — t,). Neither rotation of muscles’ preferred directions nor
rotation of baseline feedback torque can account for the change in perturbation response as a function of force-field learning that
we see in our data. D, Learning-induced changes in perturbation responses for a state-predicting forward model controller. Note
that this model closely approximates the response profile observed in our data shown in Figure 4C. Parameters for these models
were chosen to produce baseline responses that most closely approximated tangential velocity profiles in our data (for additional
details, see Materials and Methods).

field adaptation task. Here, we tested

whether such rotations of the preferred direction for feedback
responses could generally explain our results and produce task-
appropriate feedback responses to unpredictable perturbations.
In other words, could changes in muscular preferred direction
that produce task-appropriate changes in feedforward control
also produce task-appropriate changes in feedback responses?

The set of muscle and torque rotation models we studied are
diagrammed in Figure 6A (for a complete description, see the
Materials and Methods). Figure 6C shows the simulation results
for the muscle and torque rotation models. The simulation re-
sults shown in this panel are analogous to those shown in Figure
4C for our data. The dotted lines again represent the ideal pattern
of forces, as calculated by scaling the pulse-induced change in
longitudinal velocity profile by the magnitude of the force field.
The solid lines represent the change in lateral pulse response
between the null-field condition and after learning the force field.
The results show that stiffness-viscosity-based feedback in con-
junction with a simple rotation of either muscles’ preferred di-
rections or net torque produce consistent learning-related
changes in perturbation responses. However, the learning-
related changes in these responses do not closely correspond to
those observed in our data and are not task appropriate.

Rather, these learning-related changes are substantially oppo-
site in direction from both the ideal learning-related responses
and the responses we observed experimentally. An explanation
lies in the properties of the feedback control mechanism: the
torque and muscle rotations induce lateral (rotated) forces that
approximately compensate anticipated force-field dynamics.
Note that this rotation only approximates compensation for

force-field dynamics because these dynamics are purely based on
velocity, whereas torques and muscles activation are based on the
more complex physical dynamics of the arm that are dependent
on acceleration and position in addition to velocity. On an un-
perturbed trial, the direction of lateral force production approx-
imately corresponds to the direction of movement and speed,
and these muscle and torque rotation models can perform fairly
well. However, if a large perturbation is applied, the relationship
between applied force and movement velocity changes radically.
In particular, when correcting for a resistive perturbation, sub-
jects must pull their arm forward. Applying a rotation to this
forward corrective force will produce more lateral force (appro-
priate for a faster movement), when in fact this resistive pertur-
bation has slowed the hand speed, and a task-appropriate re-
sponse should therefore reduce lateral force. Thus, in this case,
forces produced by feedback rotation will be opposite the direc-
tion of the movement speed error induced by the pulse; thus,
rather than this lateral force pattern compensating the pulse-
induced change, it will be nearly opposite, as shown in Figure 6C.
Thus, although these muscle and torque rotation models can
grossly approximate anticipated force-field dynamics on unper-
turbed trials, they cannot account for the learning-induced
changes in perturbation responses that our data show. Note that
feedback corrections can be conceived of as corrective submove-
ments that add to the feedforward motor output. The simulation
results for this feedback rotation model suggest that applying
corrective submovements which compensate the feedforward
dynamics of the force field would also produce responses with
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learning-related components that are substantially opposite
those seen in our data.

We next studied the pulse responses of a state-predicting for-
ward model of dynamics. Figure 6 D shows the results from this
forward-model-based controller. As in the analysis of our data,
ideal curves were determined from pulse-induced changes in lon-
gitudinal velocity, whereas lateral forces were determined from
learning-induced changes in the pulse responses of the model.
For this model, we see behavior closely approximating our results
(Fig. 4C). In particular, there are no consistent learning-induced
changes in pulse response until 180 ms after the onset of the force
pulse. At this point, the forward model begins to receive delayed
sensory information about the force pulse, and begins to accu-
rately predict the pulsed velocity profile. Importantly, these pre-
dictions are then made available to the inverse model, so that
subsequently produced lateral forces become appropriate for the
perturbed velocity trajectory, and thus track the ideal force pro-
file. Thus, in the output of this model, as in our data, the control-
ler produces additional lateral force (because of the additional
predicted longitudinal velocity) late in resisted trials, and pro-
duces less (because of less longitudinal velocity) on assisted trials.

It is important to note that these models are not meant to
suggest a precise form for the motor controller, but merely to
help argue that any putative feedback controller should contain a
predictive forward model, and be altered appropriately by feed-
forward learning. The muscle and torque rotation models clearly
cannot represent all possible models of adaptive but nonpredic-
tive feedback control; however, our results with these models
indicate that adaptivity alone is insufficient to produce task-
appropriate responses to unanticipated errors. Because feedback
control of any kind is inherently delayed, responses must incor-
porate some type of prediction if they are to account for limb state
or other features of the task dynamics at the time these responses
actually take effect, as is seen in our data. Similarly, the forward-
model simulations do not indicate that any predictive model au-
tomatically produces task-appropriate responses, but instead
shows that this class of adaptive, predictive models can generate
task-appropriate responses that reproduce the main features of
our data.

Discussion

In this study, we examined the way in which motor adaptation
affects online responses to untrained and unanticipated pertur-
bations in humans. We aimed to answer the question: how do
newly learned changes in the motor system’s internal models for
feedforward control of novel dynamics affect feedback control
responses? To accomplish this, we studied the feedback responses
to unanticipated motor errors when these errors had never them-
selves been trained in the newly learned force-field dynamics.

In doing so, we were careful to ensure that probing the online
feedback response to force pulses did not itself influence the
force-field learning in which we were interested. The key feature
of our paradigm was the clamping of lateral errors so that error
feedback on pulsed movements was constrained to be fully or-
thogonal to the type of error necessary to bring about force-field
learning. As a result, we were able to measure learning-related
changes in lateral force production without providing a useful
training (or untraining) signal for this force production. Thus, we
effectively measured perturbation-specific responses without
training perturbation-specific responses. We ensured that force-
field-induced motor adaptation generated laterally directed er-
rors and learned responses, whereas the force-pulse perturba-
tions we applied produced errors localized to the direction of

J. Neurosci., October 15,2008 - 28(42):10663—10673 + 10671

movement. This localization was achieved by applying only assis-
tive and resistively directed force-pulse perturbations and refined
by using a lateral error clamp and by carefully choosing move-
ment and perturbation directions to take advantage of favorable
eigendirection arm dynamics.

It could be argued that the force channel itself constitutes a
type of perturbation. However, close examination of our data
show that the error clamp has no significant effect on longitudinal
velocity, either in the baseline condition or late in learning the force
field (supplemental material, available at www.jneurosci.org). Fur-
thermore, a key feature of our analysis was that we examined the
difference between lateral responses before and after learning,
both of which were recorded in error-clamp trials. Therefore,
unless there was a specific interaction between a putative error-
clamp perturbation and the force-field learning, any effect of
such a putative error-clamp perturbation would be removed by
baseline adjustment (Fig. 4B). Moreover, examination of
learning-related changes in lateral force profiles in all types of
error-clamped trials that we studied shows that these responses
appear to be fully accounted for by a match to the ideal force-field
compensation, suggesting little or no interaction between learn-
ing and the error clamp.

Two important technical features of our task were that we
could directly measure lateral force patterns on error-clamp trials
and that the velocity dependence of the viscous curl force field
meant that we had a very precise notion of what an ideal lateral
compensation for the perturbation-induced longitudinal veloc-
ity errors should look like, facilitating analysis of the experimen-
tally observed lateral force profiles. Our paradigm simulta-
neously allowed for learning of a novel motor adaptation task and
examination of its effect on online error feedback, without the
latter affecting the former.

Of a number of proposed explanations of the relationship of
feedback control to task learning and the formation of internal
models, we found one general class of controllers that can explain
our data, namely task-specific feedback controllers. In particular,
to produce the output seen in our experiment, the we suggest that
the feedback controller must (1) contain a forward model capable
of accurate real-time state prediction for velocity and (2) com-
bine the state predictions of that forward model with recently
learned changes in internal models of limb dynamics. These char-
acteristics allow, after a time delay, for lateral force profiles in
perturbation responses to be nearly perfect in their task specific-
ity after learning.

Controllers that do not meet these criteria do not appear to be
capable of reproducing our data. A model that relies only on
standard stiffness-viscosity error feedback is insufficient: this
controller would predict no change between the perturbation
responses in our baseline and late-learning conditions (Fig. 4C,
flat line). Furthermore, if we add to this some sort of learning
dependence without the incorporation of real-time state predic-
tion, the controller remains unable to explain our data. To illus-
trate that an adaptive feedback controller lacking state prediction
is unable to account for our data, we implemented controllers
which rely on standard stiffness-viscosity feedback in conjunc-
tion with force-field-specific rotation of baseline (1) preferred
muscle activation direction and (2) feedback torque. We found
that these controllers produced responses inconsistent with our
data.

Implementing a controller that relies on forward-model state
prediction in conjunction with learned changes in internal model
dynamics, we demonstrated that such a controller can, in princi-
ple, reproduce the main features of our data. The controller, after
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a time delay, produces a nearly ideal force profile, namely the
opposite of what the force field would be expected to produce
were the field active during the perturbed movement.

Previous work has suggested that such a state predictor is
probably available to the motor system. Ariff et al. (2002) showed
that when instructed to track their unseen hands during reaching
movements, subjects made saccades that, even after unantici-
pated perturbations to the arm, accurately predicted the future
position of the hand, typically ahead by 150-200 ms. However,
the small number of saccades over the course of a reaching move-
ment combined with their discrete nature makes it unclear
whether the nervous system can continuously provide real-time
state prediction. Our data show that state prediction can be con-
tinuous and in real time.

Several studies have found that responses to unexpected per-
turbations during movement do not always directly reflect the
joint kinematics associated with the perturbation (Latash, 2000;
Hasan, 2005). Rather, in some cases these feedback corrections
appear to generally respond to endpoint errors somewhat inde-
pendently of the associated joint kinematics in a way that can
mimic voluntary movement. This can perhaps be seen most
clearly when joint kinetics are redundant so that endpoint errors
caused by perturbation at one joint can be compensated by cor-
rective responses at other joints (Latash, 2000).

Others have also suggested previously that a component of
feedback control may reflect an internal model of dynamics. Re-
search into human reflex responses to perturbations of the arm
during postural conditions have suggested that short- and long-
latency components of these responses may respond to different
errors and state variables (Lacquaniti and Soechting, 1984; So-
echting and Lacquaniti, 1988, Kurtzer et al., 2008). EMG data
from these studies show that whereas short-latency spinal reflexes
respond solely to muscle stretch, long-latency reflexes may re-
spond to net changes in torque rather than changes in joint angle
alone, as would be predicted by a simple stretch response. Be-
cause of intrinsic mechanical coupling between the physical dy-
namics of connected joints such as the elbow and the shoulder,
shoulder muscle responses lead to both elbow and shoulder mo-
tion and vice versa. Therefore, muscles responses related to joint
torques can counteract the consequences of external perturba-
tions more effectively than muscle responses related only to joint
motion encoded by muscle stretch. These studies therefore sug-
gest that long-latency reflexes may generate responses to simple
perturbations of the arm that take into account its intrinsic phys-
ical dynamics. But are the properties of normal arm dynamics
intrinsically built in to these long-latency responses in some
sense? Or are they learned over a lifetime of experience? Or are
theses responses constructed so that they can automatically ac-
count for current internal models of the limb? Our results suggest
the latter.

More recently, Wang et al., (2001) examined how motor out-
put evolved when unanticipated force pulses were delivered dur-
ing reaching movements between baseline and late force-field
training conditions. They reported that this change in motor out-
put reflected learning the force-field dynamics. However, during
this study, only the raw motor output produced on pulsed trials,
before and after adaptation, were compared. This is equivalent to
looking at only the resistively perturbed (purple) trace in Figure
4 B (which generally reflects force-field dynamics) without com-
paring it to the unperturbed (orange) trace. Therefore, overall
feedforward changes in motor output associated with learning
the force-field dynamics were not dissociated from perturbation-
induced feedback changes in these dynamics, and feedback-
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specific changes in motor output brought about by learning were
not examined in this study. Here, we were able to examine such
feedback-specific changes and show that they precisely reflect
newly learned dynamics.

Our results provide strong support for some properties of the
motor system that would be generally required for the implemen-
tation of optimal feedback control (OFC), but may be at odds
with a key prediction of OFC. OFC responses must incorporate
the task goal, current limb state, and knowledge of system dy-
namics (Kuo, 1995; Todorov and Jordan, 2002; Kording and
Wolpert, 2004, 2006; Scott, 2004). Although it is clear that both
limb state and task goal can affect feedback responses, we are not
aware of previous evidence that learned changes in system dy-
namics can alone alter feedback responses when limb state and
task goal remain unchanged. Our data show that training that
modifies knowledge of system dynamics can alter online error
feedback responses even when other determinants of these re-
sponses are held constant. Furthermore, we show that feedback
responses change in ways that are appropriate for the current task
dynamics: after learning the force-field dynamics, assistive and
resistive perturbation responses accurately reflect what a feed-
back controller with perfect knowledge of the force field should
produce, given the changes in longitudinal velocity induced by
these perturbations. Additionally, we show the ability of the feed-
back controller to incorporate accurate real-time prediction of
limb state. Because OFC responses must be a function of limb
state, the ability to accurately predict state is essential for imple-
mentation of an optimal feedback control policy.

However, it is important to note that learning-related changes
in feedback responses we observed very closely reflected those
that would be ideal to counteract the expected effect of newly
learned dynamics only if subjects intended to follow the same
trajectory as in the unpulsed condition (i.e., the ideal force pro-
files displayed in Fig. 4 correspond to the force profile required
for maintenance of the baseline motion trajectory). Although we
note that maintenance of a static desired trajectory before and
after changes to the force-field environment nicely explains the
learning-related changes in feedback responses that we observed,
the idea of a static desired trajectory is inherently at odds with
ideas about OFC that generally predict that optimal responses
involve continuous replanning of future motion trajectories.

Our data provides clear evidence for a neural control system
capable of monitoring and predicting in real time the state vari-
ables relevant to the learned dynamics of a task and combining
these predictions with learned changes in internal models of limb
dynamics.
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