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Abstract

It is well recognized that exposure to fine particulate matter (PM2.5) affects health adversely, yet 

few studies from South America have documented such associations due to the sparsity of PM2.5 

measurements. Lima’s topography and aging vehicular fleet results in severe air pollution with 

limited amounts of monitors to effectively quantify PM2.5 levels for epidemiologic studies. We 

developed an advanced machine learning model to estimate daily PM2.5 concentrations at a 1 km2 

spatial resolution in Lima, Peru from 2010 to 2016. We combined aerosol optical depth (AOD), 

meteorological fields from the European Centre for Medium-Range Weather Forecasts (ECMWF), 

parameters from the Weather Research and Forecasting model coupled with Chemistry (WRF-

Chem), and land use variables to fit a random forest model against ground measurements from 16 

monitoring stations. Overall cross-validation R2 (and root mean square prediction error, RMSE) 

for the random forest model was 0.70 (5.97 μg/m3). Mean PM2.5 for ground measurements was 

Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative 
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
*Correspondence: yang.liu@emory.edu.
Author Contributions: Conceptualization, Y.L., K.S. and G.F.G.; Methodology, Y.L. and B.N.V.; Validation, B.N.V.; Formal 
Analysis, B.N.V.; Data Curation, B.N.V, K.S., O.S., N.N.H, and W.C.; Writing–Original Draft Preparation, B.N.V.; Writing–Review & 
Editing, B.N.V., Y.L, K.S., N.N.H, W.C. and G.F.G.; Visualization, B.N.V..; Supervision, Y.L., K.S., and G.F.G.; Resources, J.B. and 
Q.X.; Funding Acquisition, K.S. and Y.L.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072–4292/11/6/641/s1, Figure S1: Simple 
Correlation Matrix between Weather Underground temperature and relative humidity with WRF-Chem temperature and ECMWF 
relative humidity, Figure S2: Histograms of each predictor variable, Figure S3: Monthly mean prediction maps of PM2.5 
concentrations in μg/m3 for 2015.

Conflicts of Interest: The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Remote Sens (Basel). Author manuscript; available in PMC 2019 August 01.

Published in final edited form as:
Remote Sens (Basel). 2019 March 2; 11(6): . doi:10.3390/rs11060641.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by/4.0/
http://www.mdpi.com/2072–4292/11/6/641/s1


24.7 μg/m3 while mean estimated PM2.5 was 24.9 μg/m3 in the cross-validation dataset. The mean 

difference between ground and predicted measurements was −0.09 μg/m3 (Std.Dev. = 5.97 μg/m3), 

with 94.5% of observations falling within 2 standard deviations of the difference indicating good 

agreement between ground measurements and predicted estimates. Surface downwards solar 

radiation, temperature, relative humidity, and AOD were the most important predictors, while 

percent urbanization, albedo, and cloud fraction were the least important predictors. Comparison 

of monthly mean measurements between ground and predicted PM2.5 shows good precision and 

accuracy from our model. Furthermore, mean annual maps of PM2.5 show consistent lower 

concentrations in the coast and higher concentrations in the mountains, resulting from prevailing 

coastal winds blown from the Pacific Ocean in the west. Our model allows for construction of 

long-term historical daily PM2.5 measurements at 1 km2 spatial resolution to support future 

epidemiological studies.
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1. Introduction

PM2.5 (fine particles with aerodynamic diameter of 2.5 μm or less), is emitted from a large 

variety of sources including industry, power generation, engine combustion, biomass 

burning, and natural sources such as sea spray aerosols and wind-blown dust particles [1,2]. 

PM2.5 contributes to 4.2 million global deaths in 2016, and studies have linked exposure to 

PM2.5 with increased adverse health outcomes including respiratory and cardiovascular 

diseases among not only adults, but also children from North America, Europe, and Asia [3–

6]. However, there is a limited number of air pollution studies in South America, where 

industrialization and continual urban growth may contribute to air pollution levels that far 

exceed those of Europe and North America [7,8]. Current studies on air pollution in South 

America pertain mostly to PM10 (particles with aerodynamic diameter of 10 μm) or ozone, 

and are conducted in Brazil, Colombia, and Argentina [8–16]. To date, there has been little 

to no studies that investigate health outcomes with fine scale exposure measurements in 

South America.

Lima, Peru is the third-most populous and the second-most polluted major city in the 

Americas [4]. Lima’s air pollution stems from an aging fleet of public transportation in 

urban areas and the widespread use of indoor biomass stoves in rural areas [4,5]. A report by 

Banco Bilbao Vizcaya Argentaria (BBVA) Research indicates that the average age of Lima’s 

vehicular fleet exceeds 15 years for private transport vehicles and 22 years for public 

transport vehicles [6]. Due to the densely populated urbanization of Lima, traffic congestion 

and exhaust from an aging motor fleet results in particulate matter levels that exceed the 

World Health Organization’s (WHO) standards (25 μg/m3, 24-h mean) [4,17]. A study by 

Silva et al. found that for six of the 10 ground PM2.5 monitors in Lima, 77% of the days 

between 2014 and 2015 exceeded the WHO’s 24-h standards [18]. Moreover, while only 

34% of the total population in Peru use solid fuel, 13% of the urban population and over 
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95% of the rural population rely on biomass fuel for cooking and heating, resulting in high 

levels of air pollution not only in urban areas but also in the mountainous rural areas [5]. Air 

pollution affects not only those living in Lima, but also the workers living in the rural 

communities in the outskirts of the city, who commute 90 to 180 min into the city for work 

[17]. Yet, there is a limited number of studies on the association between ambient air 

pollution and health risks in Lima. More studies are needed to assess the effects of PM2.5, 

and potentially to curtail Lima’s air pollution effects via new policies to improve air quality 

standards.

Many of the studies investigating air pollution in Lima have been cross-sectional in design, 

with childhood asthma as a popular health outcome [19,20]. To date, there have been no 

studies of air pollution and chronic disease. The limitations in directly utilizing ground-level 

air monitoring data in epidemiologic studies include the lack of monitoring stations and lack 

of daily measurements due to maintenance costs [21]. Recently, satellite remote sensing 

techniques have proven useful in estimating ground PM2.5 concentrations [1]. Satellite 

remote sensing provide aerosol optical depth (AOD), a dimensionless measure of aerosol 

light extinction within a column of air on Earth’s surface [22]. AOD can be used to estimate 

ground PM2.5 concentrations with broad spatial coverage, expanding the ground monitoring 

networks into the rural areas where ground measurements are lacking [23]. Most commonly 

used AOD products are derived from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) and Multiangle Imaging SpectroRadiometer (MISR) aboard the Earth observing 

System (EOS) satellites named Terra and Aqua launched by the National Aeronautics and 

Space Administration (NASA) in 1999 and 2002, respectively [24]. These products have 

also been widely used in recent studies to estimate PM2.5 in southern California, China, and 

Pittsburgh, Pennsylvania [25–27]. A Multiangle Implementation of Atmospheric Correction 

(MAIAC) algorithm, using time series analysis and image-based processing techniques to 

make aerosol retrievals and atmospheric corrections over both dark vegetated land and 

brighter range of surfaces, can be used to retrieve AOD to achieve stronger correlations with 

PM2.5 [28]. MAIAC AOD have been successfully implemented in estimating PM2.5 in the 

United States, Middle East, and China [28–30].

Implementation of remote sensing techniques have proven successful in China and the 

United States [1,23]. Using non-MAIAC AOD, Liu et al. compared model fit in a two-stage 

modeling technique to estimate PM2.5 in the Northeast U.S. with and without AOD, with 

results indicating that the AOD model (R2 = 0.79) has higher predicting power compared to 

the non-AOD model (R2 = 0.48) [23]. Xiao et al. conducted a study to estimate ground 

PM2.5 concentrations over the Yangtze River Delta of China using MAIAC AOD and ground 

measurements from 2013 and 2014 with results showing good fit between ground 

measurements and prediction estimates (cross-validation (CV) R2 = 0.81 for 2013 and 0.73 

for 2014) [1]. Additionally, Liang et al. implemented MAIAC AOD to estimate daily PM2.5 

concentrations in Beijing at 1 km2 spatial resolution with high accuracy (mean annual R2 

from 0.79 to 0.86) [31]. The studies listed above found that the correlation between PM2.5 

and satellite MAIAC AOD, derived from statistical models including generalized linear 

regression and generalized additive modeling, is greatly improved when land use and 

meteorological parameters are included; nonetheless, results such as these suggests that 

MAIAC AOD by itself is a strong predictor of PM2.5 concentrations [23,28].
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To date, remote sensing techniques have not been utilized in air pollution research in Lima, 

Peru due to insufficient ground monitoring data to correlate and validate model results. 

However, in recent years, the Servicio Nacional de Meteorología e Hidrología del Perú 

(SENAMHI) stations from the Ministry of Environment have begun collecting daily 

concentrations of PM2.5 in Lima, Peru. This presents an opportunity to implement satellite 

remote sensing techniques in building a model to estimate ground-level PM2.5 in a region 

with critically high levels of air pollution and limited number of epidemiological studies to 

assess its impact on health risks. In this analysis, we build a PM2.5 exposure model to 

estimate daily PM2.5 concentrations at 1 km2 spatial resolution in Lima for years 2010 to 

2016. This exposure model is derived from satellite MAIAC AOD, simulation data from 

chemical transport models (CTMs), meteorological fields from a forecast model, and land 

use parameters. The resulting daily estimates of PM2.5 may be used in epidemiologic studies 

to assess its impact on both cardiovascular and respiratory health outcomes, and potentially 

support policies that will mitigate air pollution in Lima, Peru.

2. Data and Methods

2.1. Study Area

Lima is the capital city of Peru and has over 10 million inhabitants. The city is nestled at 154 

m above sea level in the valleys of the Chillón, Rímac, and Lurín rivers, overlooking the 

Pacific Ocean in the west and the Andes Mountains lying ~3000 m above sea level in the 

east. The study region spans from ~80 km north to south and 40 km east to west, which 

includes the city of Lima and the seaport of Callao, together known as the Lima 

Metropolitan Area.

A grid of 2865 1 km2 pixels was developed to cover the study region, and a 10 km buffer 

was added to ensure accuracy of any other parameters that need to be interpolated from 

coarser resolutions down to the modeling grid cells. The added buffer also allowed for better 

estimation of PM2.5 concentrations near the outer boundaries of the study area. With the 10 

km buffer, the total number of pixels increased to 5959 during the model development and 

training period. In Figure 1, we show the study domain and location of ground monitors for 

the SENAMHI network and Johns Hopkins University (JHU) network as well as the mean 

PM2.5 level at each monitor. The JHU network is part of the Genetic Asthma Susceptibility 

to Indoor Pollution in Peru, GASP study [32].

2.2. Ground PM2.5 Data

There are ten SENAMHI stations that measure PM2.5 and PM10 concentrations in Lima, 

Peru. These 10 monitoring stations are Thermo Beta 5014i monitors utilizing; the beta ray 

attenuation method and are calibrated three times a year (February, June, and October 

starting in October 2014) [33]. SENAMHI stations recorded daily mean measurements of 

PM10 starting in 2010 and PM2.5 from 2014 to 2016, and its ten sites contributed 6389 daily 

observations from 2014 to 2016. Additionally, data from 15 mobile air quality monitors 

located in Pampas de San Juan de Miraflores were provide by Johns Hopkins University 

(JHU stations) [34]. These monitors provided one mean estimate each week from November 

2011 to March 2013, and were interpolated to the daily level by giving the six preceding 
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days the same concentration as the measured value on the seventh day. One-km2 grids that 

contained more than 1 JHU station were averaged, which reduced the number of stations 

from 15 to 6. The JHU sites provided 2081 daily observations from six grid cells to the 

model fitting dataset. Table 1 shows the elevation and total number of measurements 

available at each monitor and their respective network.

2.3. Satellite Data

Satellite aerosol optical depth (AOD) at 1 km2 spatial resolution retrieved using the MAIAC 

(Multiangle Implementation of Atmospheric Correction) algorithm was obtained from the 

MAIAC science team at NASA’s Goddard Space Flight Center. The MAIAC algorithm 

accomplishes atmospheric correction by first gridding the data to a fixed 1 km2 grid and 

accumulating of up to 16 days of measurements [35]. Using a time series analysis, the pixels 

are grouped and the surface bidirectional reflectance distribution function (BRDF) and 

aerosol parameters over both dark vegetated surfaces and bright surfaces is derived [35].

AOD measurements from Arica [36], the nearest Aerosol Robotic NETwork (AERONET) 

site located in Chile, were compared to an average of 5 × 5 km2 box of MAIAC AOD 

centered at the Arica site to assess validity and accuracy from 2010 to 2015. AERONET is a 

ground-based remote sensing network that provides global observations of AOD [37]. 

AERONET L2 measurements within 15 min of the MAIAC measurements were used in the 

validation process to ensure accuracy; however, there may be some uncertainties in the 

validation results since Arica is located 1017 km northwest of Lima. Nonetheless, 

AERONET vs. MAIAC AOD validation has been performed in the past showing good 

agreement [9,38]. The highest annual correlation coefficients between MAIAC AOD and 

measurements from Arica ranged from 0.59 to 0.74 for Aqua and 0.60 to 0.79 for Terra. The 

highest correlation coefficient was observed in 2011 for Aqua and 2012 for Terra, with the 

total number of observations ranging between 42 and 119. Subsequently, an average 

between Terra and Aqua MAIAC AOD was calculated and gap-filled through a random 

forest method discussed in Bi et al., which achieved a cross-validation R2 of 0.82 [39]. Daily 

data for cloud fraction at 5 km2 spatial resolution was downloaded from the Level-1 and 

Atmosphere Archive & Distribution System Distributed Active Archive Center (LAADS 

DAAC) [40] for 2010 to 2016 and processed through IDL. Processes of how cloud fraction 

data was used in gap-filling MAIAC AOD is described through Bi et al. [39].

2.4. Chemical Transport Model (CTM) Data

SENAMHI produces Weather Research and Forecast model coupled with Chemistry (WRF-

Chem) simulations for air quality forecasts in Lima at 5 km2 spatial resolution [41]. WRF-

Chem is a next-generation atmospheric chemical transport model (CTM) developed by the 

National Oceanic and Atmospheric Administration (NOAA) and the National Center for 

Atmospheric Research (NCAR) [42]. CTMs simultaneously simulate the emissions, 

turbulent mixing, transport, transformation, and fate of trace gasses and aerosols using a 

combination of meteorological fields, topography data, and emission modules based on 

measurements of emission factors and ambient concentrations [42]. SENAMHI WRF-Chem 

configuration has been previously described [41]. In brief, initial meteorological conditions 

were obtained from the National Centers for Environmental Prediction (NCEP) with 
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emissions inventory derived mainly from anthropogenic vehicular emissions [41]. WRF-

Chem data outputs were produced using emissions inventory based on vehicular traffic and 

packaged in monthly files with 26 vertical layers in the atmosphere every 6 h (00:00, 

06:00,12:00 and 18:00 UTC); however, only the surface layer (vertical layer 0) was used and 

an average combining all four time measurements were calculated. SENAMHI WRF-Chem 

parameters used in this study include cloud cover, albedo, surface pressure, temperature, u-

and v-wind components, simulated PM2.5, and planetary boundary layer height (PBL). 

There parameters were interpolated to the 1 km2 modeling grid using an inverse distance 

weighting method.

2.5. Meteorological Variables

Data at 6-h increments for 28 parameters including dew point, temperature, wind, and 

pressure were downloaded for January 2010 through December 2016 from the European 

Centre for Medium-Range Weather Forecasts (ECMWF) archive [43] at 12.5-km2 spatial 

resolution [44], and interpolated to the 1 km2 modeling grid using inverse distance 

weighting. Subsequently, a daily average was calculated for each variable. As part of the 

cross-validation process, a correlation analysis was performed on temperature, wind, and 

pressure between WRF-Chem and ECMWF. Furthermore, temperature and dew point from 

ECMWF was used to calculate relative humidity [45]. In addition, ground meteorological 

data was downloaded from the Weather Underground website for four individually-owned 

weather stations along with one airport station. These data were used to evaluate the quality 

of ECMWF and WRF-Chem meteorological parameters. In Figure S1 of the Supplementary 

Materials, we show a simple correlation matrix between Weather Underground temperature 

and relative humidity with WRF-Chem temperature and ECMWF relative humidity to 

investigate the relationship between measured ground observations and the quality of the 

forecasted data from ECMWF.

2.6. Land Use Variables

Elevation data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

Global Digital Elevation Map (ASTER GDEM) was downloaded from EARTHDATA for 

Lima, Peru [46]. Census population data for Lima was only available for 2012. To ensure 

completeness and consistency, LandScan™ yearly population data for 2010 through 2016 

was used [47]. Land use parameters at 30-m resolution (open shrubland, bare/sparse 

vegetation, waterbodies, and artificial/urban areas) for 2010 were derived from the 

GlobeLand30 product produced by the National High Technology Research and 

Development Program of China [48]. The 30-m spatial resolution raster was cut into 1 km2 

grids to match the MAIAC AOD grid cells, and a percent urbanization was calculated by 

dividing the area classified as urban in each 1 km2 grid cell by the total area of that cell. 

Normalized difference vegetation index (NDVI) data at 500 m spatial resolution (MYD13A1 

Version 6) was downloaded from the LAADS DAAC for years 2010 to 2016 [49]. Since 

NDVI is produced at 16 day intervals, every 15 days preceding the day with measured NDVI 

was given the same NDVI values. Road Network Data was downloaded as an ArcGIS-ready 

shapefile from the OpenStreetMap project through Geofabrik [50], and processed in 

ArcGIS. The road network map was reclassified into three classes—motorways, primary, 

and trunk roads—and secondary and tertiary roads, and a distance in meters was calculated 
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between the centroid of each study domain grid cell to the nearest segment of road based on 

class.

2.7. Random Forest Model

A random forest (RF) model was used to fit 16 predictors to 8470 ground measurements. 

The RF model’s advantages include its accuracy in learning and classifying features, its 

ability to include a large number of input variables, and its output of variable importance. 

Random forest is a supervised machine learning model that works by averaging a set of 

decision trees that calculates the best predictions based on a subset of predictors [51]. The 

RF model selects a random subset of samples from all observations with replacement, and 

subsequently selects the best set of predictors that provides the best split at each node [51]. 

The two main parameters in a random forest model are the number of predictors sampled for 

each node (mtry) of the tree and the number of trees or subset of samples to be averaged 

(ntree). Comparison of results with different settings of mtry and ntree was conducted to 

achieve the best prediction accuracy. The 16 variables used in the random forest model 

training includes predicted MAIAC AOD from the gap-filling method, NDVI, percent 

urbanization, road category 3 distance, elevation, population density, interpolated WRF-

Chem simulated PM2.5, temperature, surface pressure, albedo, cloud fraction, PBL, and 

wind V and U components, and interpolated relative humidity and surface solar radiation 

downwards from ECMWF, with mtry, and ntree set at 6, and 1000, respectively.

A 10-fold cross-validation (CV) process was carried out on the RF model to validate the 

prediction results. The model fitting dataset, consisting of 8470 ground observations, were 

randomly divided into 10 segments with each segment containing 10% of the data. Nine of 

the segments were used as a training dataset set to fit the model and the remaining segment 

is used as a testing dataset to make predictions. This process was repeated 10 times, each 

time dividing the dataset at different intervals to ensure that the segments are not repeated. 

After the 10th repetition, the total number of predictions based on the testing dataset was 

combined into one dataset and is equal to the original number of ground observations. This 

CV technique is commonly used in similar studies estimating PM2.5 and is better suited for a 

moderate to small sample size datasets.

3. Results

3.1. Description of PM2.5 Ground-Based Measurements

Daily predictions of PM2.5 started on 2 March 2010 and ended on 31 December 2016. In 

total, 2232 daily predictions were made between 2010 and 2016. In Figure S2 of the 

Supplementary Materials, we show histograms of all 16 predictors used in the modeling 

approach. Variables such as MAIAC AOD, surface solar radiation downwards, NDVI, 

temperature, and PBL were normally distributed. In contrast, variables that are temporally 

static, such as road distance and elevation, are non-normally distributed.

Figure 2 shows the time series of monthly mean ground measurements at each ground 

monitor from both the SENAMHI and the JHU networks. Mean (Std. Dev.) PM2.5 for all 

JHU monitors from November 2011 to March 2013 is 18.9 (4.7) μg/m3 with mean individual 
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monitors ranging from 16.8 (4.0) (JHU Station 11) to 19.9 (5.8) μg/m3 (JHU Station 9). The 

homogeneity of JHU measurements may be due to the spatial location of these monitors 

being clustered within 2–3 km in the south region of the study domain. In general, ground 

JHU measurements peak to 29 μg/m3 around April of 2012 and gradually decrease to 12.5 

μg/m3 in September of 2012 before increasing to a high of 30.5 μg/m3 in March of 2013. It 

is unclear if PM2.5 levels peak at this point or continue to increase as data beyond this period 

is unavailable for JHU monitors. All JHU monitors share this temporal trend; nonetheless, 

this similarity may again be due to the clustered location of the JHU monitors.

SENAMHI measurements show a slightly different temporal pattern. Mean (Std. Dev.) 

PM2.5 for all SENAMHI monitors from April 2014 to December 2016 is 26.7 (11.6) μg/m3 

with mean individual monitors ranging from 15.2 (5.3) μg/m3 (Station CDM) to 38.3 (12.2) 

μg/m3 (Station ATE). SENAMHI PM2.5 tend to peak at 52.1 μg/m3 between July and August 

of 2014 (winter) and gradually decrease to 11.8 μg/m3 around November and December 

(summer), before increasing again to a peak of 319.2 μg/m3 from March to April of 2015). 

Temporal trends ails/ indicate PM2.5 decreases from May of 2015 to a low of 13.3 μg/m3 in 

February of 2016 before increasing to a peak of 63.6 μg/m3 in June of 2016. Although most 

monitors within the SENAMHI network share this temporal trend, there is spatial variation 

coinciding with the location of the monitors. The three monitors closest to the shore 

(Stations CDM, SBJ, and SMP) all have the lowest mean PM2.5 measurements (15.2,18.2, 

and 17.2 μg/m3, respectively), while the three monitors with the highest measurements 

(ATE: 38.3 μg/m3; PPD: 32.8 μg/m3; and SJL: 31.1 μg/m3) are located further inland closer 

to the Andes Mountains;. The differences in trends between JHU and SENAMHI networks 

may lee a result of the JHU monitors being located in the southern part of Lima, where 

trends in temperature, winds, and other predictors of PM2.5 may be different compared to the 

SENAMHI stations. Furthermore, SENAMHI stations are distributed across a larger area oi 

the study domain and may have the potential to detect more spatial variability compared to 

JHU monitors. Although there is variability in the range of PM2.5 levels; between the two 

monitoring networks both networks suggests that PM2.5 levels are highest during the 

Summer; although JHU and SENAMHI stations share peaks in common during the months 

of March through May, ground measurements are only available for JHU sites from 

November of 2011 to March of 2013 and from April of 2014 to December of 2015, with no 

spatial or temporal similarities to the SENAMHI network. Therefore, a continuous and fair 

comparison of the two networks is not possible.

3.2. Random Forest Model Performance and Cross-Validation

As linear mixed effects model (LME) was original conducted (cross-validation (CV) R2 and 

root mean square error (RMSE) was 0.60 (6.85 μg/m3)); however, the RF model was found 

to outperform the traditional LME model. The RF R2 (RMSE) was 0.70 (5.95 μg/m3), and 

the CV R2 (RMSE) was 0.70 (5.97 μg/m3), indicating that the model is stable and that there 

is good fit between the predictors and the ground measurements. Figure 3 panel A shows the 

density plot of CV predicted vs. measured PM2.5 concentrations. The slope and intercept 

from the RF model CV is 1.05 and —1.04 μg/m3, respectively, indicating a good fit 

(optimal, slope = 1, intercept = 0). Results from our CV indicates the our model slightly 

overestimate lower PM2.5 measurements and underestimates higher PM2.5 measurements. 
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Furthermore, in Figure 3 panel B, we show good agreement between the ground 

measurements and our daily estimate measurements through a Bland–Altman plot. In the 

Bland–Altman plot, the difference between ground and predicted PM2.5 measurements are 

plotted against the mean of each pair. The mean difference between observations in the CV 

dataset was −0.09 μg/m3 with a standard deviation of 5.97 μg/m3. The Bland–Aleman plot 

indicates that there is good agreement between the ground and predicted measurements, with 

94.5% of the observations falling within 2 standard deviations of the mean differences. 

Figure 4 shows the importance rankings of each predictor in the RF model, which is a 

measure of parameter predictive power based on a permutation test. Under the null 

hypothesis in a random forest model, each predictor variable is not important: the 

permutation test rearranges the values of that variable to detect any improvement in 

prediction accuracy [51,52]. The RF model suggests that surface downward solar radiation, 

temperature, relative humidity, PBL, and AOD are the most important predictors of PM2.5.

Figure 5 shows a time series of monthly mean ground measurements and predictions from 

the RF model for each ground monitor. The RF model is able to track well the temporal 

variability of the ground, monitors, but tends to underestimate higher peaks and. 

overestimate the low points. This trend is observed in both the SENAMHI and JHU 

networks. We show the predicted annual mean PM2.5 concentrations across our study region 

in μg/m3 in Figure 6. Mean annual PM2.5 concentrations start at 14.6 μg/m3 along the 

coastline and gradually increases up to 48.5 μg/m3 against the Andes Mountains on the east. 

Monitors with lower mean PM2.5 measurements are also those that are located closer to the 

coastline, and are at a lower elevation. Temporally, PM2.5 levels are highest during 2010 and 

dip during 2011 to 2014, before increasing back up in2015 through 2016. Although ground 

measurements are not available for 2010, the increase in predicted mean annual PM2.5 from 

2015 t0 2016, can be observed in the monthly mean measurements from the SENAMHI 

monitors (Figure 2), which show a spike in PM2.5 during She months of April and May of 

2016 compared to relatively lower levels in 2015. Month-to-month variation can be seen in 

Supplementary Figure S3. PM2.5 is highest starting from April through October (highest in 

May-June, winter) before decreasing during the months of November to March (lowest in 

February, summer). Although this monthly trend is different from those observed in the JHU 

ground measurements, they are consistent with monthly mean SENAMHI ground 

measurements. This may be due to a smaller number of ground measurements for JHU 

compared to SENAMHI in the model fitting dataset. Furthermore, JHU monitors produced 

weekly measurements, which had to be interpolated to daily estimates for model fitting; 

therefore, monthly trends may not be meaningful for JHU measurements.

4. Discussion

Until recently, studies modeling the concentration of PM2.5 have been limited in South 

America due to lack of ground monitoring data. Previous studies have estimated historical 

ambient PM2.5 concentrations globally from a combination of satellite remote sensing data 

and chemical transport models; however, these studies were conducted at coarse resolution 

(e.g., 10 × 10 km2) and were evaluated by ground PM2.5 measurements from the literature. 

Furthermore, results from these studies do not provide daily measurements to aid in 

epidemiological health studies [53]. Brazil, Chile, Colombia, Ecuador, and Peru are the few 
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countries with existing PM2.5 monitors in South America prior to February of 2016; yet, 

Chile is the only country with known spatiotemporal and forecast models of PM2.5 [54,55]. 

The Chilean PM2.5 model was constructed using three winter months of hourly PM2.5 

measurements from 11 monitors and incorporated CTMs; however, their model did not 

incorporate satellite remote sensing techniques to enhance prediction capabilities, and could 

only forecast PM2.5 levels in the proceeding 48-h period [54]. The only current existing 

model of PM2.5 in Peru is constructed through kriging techniques using ArcGIS for the 

province of Cusco [56]. The Cusco model was derived from a singular fixed monitor that 

recorded 24-h time-integrated samples for only 12 days during July 2005, and measured 

PM2.5 at “subjectively chosen hot spots” using standalone laser photometers to augment 

ground measurements [56]. Although this study may provide support for short-term acute 

exposure of PM2.5 health studies, it does not provide daily historical measurements for 

epidemiologic studies that investigate population health effects due to acute exposure to 

PM2.5, especially outside of Cusco, like Lima, where pollution levels are much higher.

Our PM2.5 model is the first advanced model in Peru to incorporate both satellite remote 

sensing data and CTM outputs to provide daily ground measurements at 1-km2 resolution in 

Lima, the most populated and polluted region of Peru, to aid in epidemiologic studies. A 

major strength of this study is the ability to estimate PM2.5 in Lima at a high resolution 

through the implementation of MAIAC gap-filled AOD. Our finer-scale model is able to 

capture local spatiotemporal trends and, compared to coarser resolution products, are better 

suited for use in epidemiological health studies that require daily measurements of exposure 

at fine-resolution. Additionally, predictions from our model correspond well at each ground 

monitor station (as seen in Figure 5). Maximum concentrations are typically observed 

between May and September (winter months), with minimum concentrations generally 

observed between October and April (summer months); however, these trends vary from 

year to year and between each monitoring site. Furthermore, monthly variation in PM2.5 

concentrations is also affected by meteorological conditions present in Lima. In the summer 

months, Lima is subjected to smaller and less permanent marine thermal inversion due to the 

Humboldt oceanic current in the west. The result is a decrease in stratiform clouds and an 

increase in solar irradiation in conjunction with lower relative humidity and higher 

temperatures, which leads to resuspension of course PM and the prevention of secondary 

PM formation, decreasing the levels of PM2.5 [18]. However, during winter there is an 

increase in stratiform clouds along with an increase in relative humidity and light 

precipitation, resulting in wet deposition of PM10 and a subsequent increase in PM2.5 due to 

secondary formation via converted gas particulate [18].

Nonetheless, our study uses an emerging ensemble classifier—the random forest model—to 

generate our estimates which comes with limitations and uncertainties. Currently, annual 

predictions from the RF model show that concentrations of PM2.5 are lowest near the coast, 

and in and around the urban centers of Lima, while gradually rising with elevation up to the 

Andes Mountains. This may be driven by the fact that all ground PM2.5 monitors are located 

below 500 m above sea level, and monitors located at lower elevation have lower PM2.5 

levels. As a result, when PM2.5 levels are extrapolated beyond the existing ground data, their 

levels continue to increase with elevation up to the mountains and predictions made at 

elevation above 1000 m may contain more uncertainty. Furthermore, the average height of 
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JHU monitors is located at 132.7 (Std. Dev. = 43.6) meters above ground, while the mean 

height for SENAMHI monitors is 213.4 (Std. Dev. = 90.9) meters, indicating that 

SENAMHI monitors have a wider range of elevation height compared to JHU monitors. 

Additionally, JHU monitors also have a more homogeneous level of PM2.5 since their daily 

values were interpolated from weekly measurements and comprised of 25% of the total 

ground measurements, which may add to the explanation of why elevation had relatively 

lower importance in the RF model. To counter the effects of elevation in the model, distance 

from shoreline was added to the model as a predictor. Although distance from coast should 

have explained much of the variation in PM2.5 as the annual maps suggests, this variable did 

not improve the “out of bag” R2 in the RF model and also did not change the resulting 

predictions maps and was subsequently discarded from the final model. A possible reason 

for why distance from coast did not improve model performance may be due to the cluster of 

JHU monitors all residing close to the coast. Because of their proximity to each other, as 

well as to the coast, the JHU monitors do not exhibit enough spatial variability both in terms 

of PM2.5 levels to impact model performance. Furthermore, Lima’s distinct topography and 

geographic location also lends to the spatial distribution of PM2.5 concentrations. As 

discussed previously, much of Lima’s production of PM2.5 stems from an aging vehicular 

fleet located mostly in the densely populated urban areas in and around the metropolitan 

cities. Additionally, PM2.5 is also being produced in rural areas from biomass burning as 

fuel. The spatial pattern of PM2.5 seen in the annual prediction maps may be a result of 

persistent and prevailing coastal winds from the south and southwest pushing pollutants 

from the coastal cities and trapping them against the Andes Mountains in the east and 

northeast [18]. This phenomenon is similar to that seen in the Los Angeles Basin, where the 

topography is nearly identical to that of Lima with prevailing coastal winds blowing 

pollutants against the Transverse Ranges [57]. Nonetheless, census data indicate that the 

number of residents living above 1000 m above sea level is relative small and may not 

impact future epidemiologic studies.

Consequently, a limitation of this study is the lack of monitors located at higher altitudes to 

validate our results. All monitors are located centrally in the urbanized metropolitan area of 

Lima, with no monitors in the far corners of the North, East, and South in our study domain. 

Furthermore, all JHU monitors are clustered within a few kilometers of each other in the 

mid-southern region of Lima, covering six of the 2970 grid cells in the study domain, which 

may affect their predictive capabilities on the rest of the study domain leading to the lack of 

spatial variability from north to south in the study domain. Additionally, JHU ground 

measurements were collected from late 2011 to early 2013, while the SENAMHI 

measurements were collected from mid-2014 through 2016, which impact model predictive 

abilities across the years (i.e., borrowing prediction capabilities of JHU measurements to 

estimate PM2.5 in the entire study domain for 2014 to 2016 and conversely borrowing 

prediction capabilities of SENAMHI measurements to estimate PM2.5 in the entire study 

domain from 2011 to 2013). Nonetheless, JHU measurements served the purpose of 

increasing our sample size and helped make our model more stable and robust. When JHU 

measurements were not included in our RF model (the CV R2 was 0.67 (RMSE = 6.68 μg/

m3)), they were subsequently kept in the model fitting dataset to enhance not only sample 

size, but also to provide additional spatial and temporal quality to the ground measurements. 
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Finally, before utilizing and applying the model-derived dataset in epidemiological studies, 

future research will focus on evaluating model forecasting capacity on a daily basis. 

Furthermore, the SENAMHI ground monitors have longer periods of PM10 measurements. 

Future study will also explore converting PM10 measurements to PM2.5 to maximize ground 

observations in the model fitting process [58]. Silva et al. studied the relationship between 

PM2.5 and PM10 concentrations at each of the 10 SENAMHI stations with Pearson 

correlation coefficients ranging from 0.49 to 0.72, and that the annual PM2.5/PM10 for the 

stations range from 0.21 to 0.44, indicating that PM2.5 concentrations represent 21% to 44% 

of the total PM10 in Lima [18].

5. Conclusions

Our satellite-driven PM2.5 exposure model is the first of its kind in both Lima and South 

America, incorporating satellite remote sensing data, meteorological fields from chemical 

transport models, and land use parameters to estimate daily PM2.5 measurements at 1-km 

resolution, with greater spatial and temporal coverage than previous studies conducted in 

Peru. Predicted daily PM2.5 levels by our model allow for construction of consistent long-

term historical measurements that bridges the data gaps created by sparse data quality from 

both the SENAMHI and JHU monitor networks, and would provide strong data support for 

epidemiologic studies that focus on both cardiovascular and respiratory outcomes in Lima. 

Our future research will focus on converting PM10 to PM2.5 from the SENAMHI monitors 

to maximize ground observations across years prior to 2014, and improve model stability 

and precision, and further improve on the accuracy of our predictions for use in urgently 

needed epidemiologic studies to assess the impact of air pollution in Lima, Peru.
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Figure 1. 
Study domain and location of air monitors. The yellow line details the Lima political border 

while the gray line details the 10 km buffer. The; magenta circles denote the location, 

distribution, and overall mean PM2.5 concenttations in μg/m3 of the Servicio Nacional de 

Meteorología e Hidtología del Perú (SENAMHI) monitor network, while the purple circles 

denote the same information for the Johns Hopkins University (JHU) monitor network:.
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Figure 2. 
Time series of monthly mean ground PM2.5 measurements in μg/m3 at each monitor station 

for both the SENAMHI and JHU networks from November 2011 through December 201. 6. 

SENAMHI station names Eire abbreviated from the name of the location.
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Figure 3. 
(A) Density plot of ground and predicted PM2.5 measurements in μg/m3 based on the cross-

validation of the Random Forest model. (B) Bland-Altman plot of differences between 

ground and predicted PM2.5 in μg/ m3 against theme means of each pair. This p lot shows 

good agreement as 94.5% of observation pairs fall within 2 standard deviations o° the mean 

difference.
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Figure 4. 
Importance of each variable in the random forest model by percent increase mean square 

prediction error (MSE).
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Figure 5. 
Time series of monthly mean ground measurements and predicted PM2.5 in μg/m3 based on 

random forest model at each monitor station. SENAMHI station names are abbreviated from 

the name of the location.
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Figure 6. 
Annual mean prediction maps of PM2.5 in μg/m3 from the random forest model in Lima, 

Peru from 2010 to 2016.
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Table 1.

PM2.5 ground monitor information, elevation, and total number of observations at each monitor and their 

respective network.

Network Station Elevation (m.) # of Measurements

JHU Station 02 94.6 339

JHU Station 07 123.6 417

JHU Station 08 74.2 288

JHU Station 09 186.0 443

JHU Station 10 192.1 287

JHU Station 11 109.2 307

SENAMHI ATE 372.7 528

SENAMHI CDM 124.5 544

SENAMHI CRB 219.5 737

SENAMHI HCH 301.2 696

SENAMHI PPD 186.0 778

SENAMHI SBJ 131.3 581

SENAMHI SJL 237.5 757

SENAMHI SMP 58.5 775

SENAMHI STA 254.3 598

SENAMHI VMT 328.3 395

Note: SENAMHI Station is abbreviated from the name of the location. JHU stations collected measurements from November 2011 to March 2013 
and SENAMHI stations collected measurements from April 2014 to December 2016.
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