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Development/Plasticity/Repair
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Neuronal Migration

Paolo Giacobini,' Andrea Messina,' Susan Wray,> Costanza Giampietro,’ Tiziana Crepaldi,* Peter Carmeliet,” and

Aldo Fasolo!

'Department of Human and Animal Biology, University of Torino, 10123 Torino, Italy, 2Cellular and Developmental Neurobiology Section, National
Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, *Italian Foundation for Cancer Research Institute
of Molecular Oncology, 20139 Milan, Italy, *Department of Anatomy, Pharmacology, and Forensic Medicine, University of Torino, 10125 Torino, Italy, and
SCenter for Transgene Technology and Gene Therapy, Flanders Interuniversity Institute for Biotechnology, University of Leuven, 3000 Leuven, Belgium

Reproduction in mammals is under the control of the hypothalamic neuropeptide gonadotropin hormone-releasing hormone-1 (GnRH-
1). GnRH-1-secreting neurons originate during embryonic development in the nasal placode and migrate into the forebrain along
olfactory nerves. Gradients of secreted molecules may play a role in this migratory process. In this context, hepatocyte growth factor
(HGF) is a potential candidate, because it promotes cell motility in developing brain and has been shown previously to act as a motogen
on immortalized GnRH-1 neurons (GN11). In this study, the role of HGF and its receptor Met during development of the GnRH-1 system
was examined. GnRH-1 cells express Met during their migration and downregulate its expression once they complete this process.
Tissue-type plasminogen activator (tPA), a known HGF activator, is also detected in migratory GnRH-1 neurons. Consistent with in vivo
expression, HGF is present in nasal explants, and GnRH-1 neurons express Met. HGF-neutralizing antibody was applied to explants to
examine therole of the endogenous growth factor. Migration of GnRH-1 cells and olfactory axon outgrowth were significantly reduced, in
line with disruption of a guidance gradient. Exogenous application of HGF to explants increased the distance that GnRH-1 cells migrated,
suggesting that HGF also acts as a motogen to GnRH-1 neurons. Functional experiments, performed on organotypic slice cultures, show
that creation of an opposing HGF gradient inhibits GnRH-1 neuronal migration. Finally, tPA ~/~:uPA ~/~ (urokinase-type plasminogen
activator ~/~) knock-out mice exhibit strong reduction of the GnRH-1 cell population. Together, these data indicate that HGF signaling

via Met receptor influences the development of GnRH-1.
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Introduction

Gonadotropin hormone-releasing hormone-1 (GnRH-1) regu-
lates anterior pituitary gonadotropes and, as such, is essential for
reproduction. GnRH-1-secreting neurons originate from the na-
sal placode (Wray, 2002) during embryonic development and
migrate to the hypothalamus apposed to olfactory-vomeronasal
nerves (Schwanzel-Fukuda et al., 1989; Wray et al., 1989). In
humans, several monogenic disorders leading to isolated hy-
pogonadotropic hypogonadism (IHH) are caused by disruption
of GnRH-1 neuronal ontogeny/migration (Gonzalez-Martinez et
al., 2004). However, mutations in these genes do not account for
many individuals exhibiting IHH. This suggests that the full rep-
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ertoire of molecular cues regulating the GnRH-1 migratory pro-
cess has not yet been identified.

Factors already shown to influence GnRH-1 neuron migra-
tion, either directly or indirectly via extension of olfactory axons
(Wray, 2002; Wierman et al., 2004; Tobet and Schwarting, 2006),
include neurotransmitters/neuropeptides (Fueshko et al., 1998;
Bless et al., 2000; Simonian and Herbison, 2001; Pronina et al.,
2003; Giacobini et al., 2004), surface molecules (Yoshida et
al., 1999; Gamble et al., 2005), and growth factors (Cronin et al.,
2004; Gill et al., 2004; Gill and Tsai, 2006). Guidance of the ax-
onal/migratory pathway is also an important prerequisite for es-
tablishment of the adult-like GnRH-1 cell distribution (Wray,
2002), and classical chemoattractants [(e.g., netrin-1 and stromal
cell-derived factor-1 (SDF-1)] or chemorepellents (e.g., reelin)
are distributed in gradients along the GnRH-1 migratory route
and participate in directing appropriate migration (Schwarting et
al., 2001, 2004, 2006; Cariboni et al., 2005).

Hepatocyte growth factor (HGF) is a cytokine that, via its
receptor Met, exhibits mitogenic, motogenic, and chemoattrac-
tive activities in neuronal (Ebens et al., 1996; Maina et al., 1997;
Streit and Stern, 1997; Yamamoto et al., 1997; Caton et al., 2000;
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Teraci et al., 2002; Gutierrez et al., 2004) and non-neuronal cells
(Stella and Comoglio, 1999; Urbanek et al., 2005; Son et al.,
2006). HGF and Met are widely distributed in developing brain
(Jung et al., 1994; Thewke and Seeds, 1996; Achim et al., 1997;
Thewke and Seeds, 1999; Korhonen et al., 2000); however, few
studies address the function(s) of Met signaling during brain
development. To date, HGF has been shown to have motogenic
effects on migrating cortical neurons (Powell et al., 2001, 2003;
Segarra et al., 2005). HGF is expressed in nasal embryonic mes-
enchyme with an increasing gradient toward the border between
the nose and telencephalon (Sonnenberg et al., 1993; Thewke and
Seeds, 1996). This pattern suggests that HGF/Met signaling might
impact developmental events in the GnRH-1/olfactory system. In
support of this, HGF exerts motogenic and chemotactic effects on
the GN11 immortalized GnRH-1 cell line (Giacobini et al., 2002).

To determine the role of HGF in the developing GnRH-1/
olfactory system, this study (1) characterized Met expression in
nasal regions during the period of GnRH-1 neuronal migration,
(2) perturbed HGF/Met signaling in two in vitro models (nasal
explants and slice cultures) in which primary GnRH-1 neurons
are maintained and cellular movement can be quantified, and (3)
assessed the impact of the lack of HGF activators [plasminogen
activators (PAs)] on the GnRH-1 neuronal population in PA
knock-out (KO) mice.

Materials and Methods

Animals

Experiments were conducted in accordance with current European
Union and Italian law, under authorization of the Italian Ministry of
Health, number 66/99-A.

CD-1 embryos (Charles River Laboratories, Milan, Italy) were har-
vested at embryonic day 11.5 (E11.5), E12.5, E14.5, and E17.5 (plug day,
E0.5) and used for RNA isolation, immediately frozen and stored
(—80°C) until laser-capture microscopy, or postfixed [overnight; 4%
paraformaldehyde (PFA) in 0.1 M phosphate buffer, pH 7.4] and cryo-
protected and then frozen and stored (—80°C) until processing for im-
munocytochemistry. Tissue-type PA '~ (tPA /7 ):urokinase-type
PA /" (uPA ~/7)-deficient mice and wild-type (WT) background con-
trol mice (C57B16/129sv) were provided by Prof. P. Carmeliet [Center
for Transgene Technology and Gene Therapy, Flanders Interuniversity
Institute for Biotechnology, University of Leuven, Leuven, Belgium)].
CD-1 postnatal day 10 (PN10) mice and adult knock-out and WT ani-
mals were anesthetized with an intraperitoneal injection of ketamine
(200 mg/kg) and perfused with 4% paraformaldehyde. The brains were
dissected and postfixed in the same fixative overnight at 4°C, cryopro-
tected in sucrose solutions, and then frozen and stored (—80°C) until
processing for immunohistochemistry.

Nasal explants

Nasal regions were cultured as described previously (Fueshko and Wray,
1994). Briefly, embryos were obtained from timed pregnant animals in
accordance with National Institutes of Health (NIH)/National Institute
of Neurological Disorders and Stroke guidelines and Animal Care and
Use Committee approval and with current European Union and Italian
law. Nasal pits of E11.5 staged NIH-Swiss embryos were isolated under
aseptic conditions in Gey’s balanced salt solution (Invitrogen Grand Is-
land, NY) enriched with glucose (Sigma-Aldrich, St. Louis, MO). Nasal
explants were adhered onto coverslips by a plasma (Cocalico Biologicals,
Reamstown, PA)/thrombin (Sigma-Aldrich) clot. The explants were
maintained in defined serum-free medium (SFM) (Fueshko and Wray,
1994) at 37°C with 5% CO,. From culture day 3 to day 6, fresh medium
containing fluorodeoxyuridine (8 X 10 ~> m; Sigma-Aldrich) was given
to inhibit proliferation of dividing olfactory neurons and non-neuronal
explant tissue. The medium was changed to fresh SEM twice a week.

Transcript analyses
All primers were designed from published GenBank sequences and
screened using BLAST (basic local alignment search tool) to ensure spec-
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ificity of binding. Primers were pretested on brain cDNA and thereafter
used throughout the described protocols at a concentration of 250 nm.
Amplified products were run on a 1.5% agarose gel.

Reverse transcription-PCR analysis

Total RNA was isolated from noses and brains obtained from E11.5 mice
using RNA STAT-60 (Tel-Test, Friendswood, TX) following the manu-
facturer’s protocol. Briefly, the tissue was homogenized (1 ml of RNA
STAT-60 per 50—-100 mg of tissue), chloroform was added (0.2 ml/ml
homogenate), and the mixture was spun. To the aqueous layer, isopro-
panol was added (0.5 ml) to precipitate RNA. RNA pellet was washed
(75% ethanol), air dried, and resuspended (DEPC-treated water). Total
RNA from adult mouse brain served as positive control tissue. For the
reverse transcription (RT)-PCR, 0.5 ug of each sample was used. First-
strand cDNA was synthesized using the SuperScript III First-Strand Syn-
thesis System for RT-PCR (Invitrogen) following the manufacturer’s in-
structions. PCR was performed using 4 ul of cDNA and the appropriate
oligonucleotides in 30 ul PCRs using standard reaction buffer [(in mm)
10 Tris-HCI, pH 8.3, 50 KCl, and 1.5 MgCl, ], 0.8 mm deoxynucleotide
triphosphate (Invitrogen) and 0.025 U/ul REDTaq DNA polymerase
(Sigma-Aldrich). The following primers were used: 5'-GGGA-
CTGCAGCAGCAAAGC-3" and 5'-GTCTGAGCATCTAGAGTTT-
CC-3" for c-met amplification (Chan et al., 1988). For HGF, 5'-
GGGGAATGAGAAATGCAGTCAG-3' and 5'-CCTGTATCCATGGA-
TGCTTC-3" were used (Tashiro et al., 1990). The number of cycles and
the annealing temperature used for each primer pair were as follows: 25
cycles and 59°C for c-met; 30 cycles and 55°C for HGF. No products were
amplified in water or brain RNA not reverse transcribed.

Laser capture microdissection and RT-PCR on

tissue-specific regions

Laser capture microdissection (LCM) permits cells to be isolated (“cap-
tured”) from tissue sections for molecular analyses. In this study, olfac-
tory epithelium (OE), vomeronasal organ (VNO) epithelium, and lower
jaw were captured from E14.5 and E17.5 mouse frozen sections (see Fig.
1C,D) using a PALM LCM system (Zeiss, Thornwood, NY). The laser-
microdissected tissues were popped into a sterile Microfuge cap contain-
ing 1 ul of 0.1% Triton X-100 and subsequently centrifuged for 1 min at
7500 X g (maximum) to relocate material to the bottom of a sterile tube.
Prime RNase inhibitor (7 ul diluted 1:100 in DEPC-treated water; Ep-
pendorf, Hamburg, Germany) was added. Captured tissue was used to
synthesize first-strand cDNA using the SuperScript IIT First-Strand Syn-
thesis System for RT-PCR (Invitrogen) following the manufacturer’s in-
structions. Controls without reverse transcriptase were performed to
demonstrate the absence of contaminating genomic DNA. Brain total
RNA was also reverse transcribed and used as a positive control.

PCR was performed for BIII-tubulin (a general neuronal marker),
early B-cell factor 2 (EBF-2) [an olfactory transcription factor and thus
marker of olfactory/vomeronasal receptor neurons (Wang et al., 1997)],
c-met, and HGF at 40 cycles on a thermocycler (30 s denaturation at
94°C, 30 s annealing at 55-65°C, and 2 min elongation at 72°C). PCR
primer pairs were as follows: BIII-tubulin forward primer, 5'-GAGGA-
CAGAGCCAAGTGGAC-3'; BIII-tubulin reverse primer, 5'-CAGGGC-
CAAGACAAGCAG-3'; EBF-2 forward primer, 5'-TGCAGTAGTT-
GCTAACAGTGG-3'; EBF-2 reverse primer, 5'-TTTCCAATGCTAG-
AAGCCTAAC-3'".

Cell isolation and PCR analysis

Nasal explants were washed twice with 1X PBS (without Mg * or Ca
and placed in 2 ml of the same solution. GnRH-1-like neurons were
identified by their bipolar morphology, association with outgrowing ax-
ons, and location within the explant (see Fig. 4 B). At two time points [4.5
and 28 d in vitro (div)], single GnRH-1 cells (n = 5 for each in vitro stage)
were isolated from nasal explants using a micropipette (see Fig. 4 A—C)
controlled by a micromanipulator (Narishige, Tokyo, Japan) connected
to an inverted microscope (IX51; Olympus Optical, New Hyde Park,
NY), cDNA was produced, and PCR amplification was performed as
described previously (Kramer et al., 2000; Giacobini et al., 2004 ). Briefly,
asingle cell was lysed and reverse transcribed [AMV (avian myeloblasto-
sis virus) and MMLV (Moloney murine leukemia virus)-reverse tran-
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scriptases; 37°C for 15 min; 65°C for 10 min] using an oligo-dT primer
(50 OD/ml; pd(T),9_54). The cDNA was end labeled with terminal trans-
ferase (37°C for 15 min; 65°C for 10 min). Subsequent PCR amplification
was performed using AL1 primers [ATT GGA TCC AGG CCG CTCTGG
ACA AAA TAT GAA TTC (T),,] (Dulac and Axel, 1995) for 25 cycles in
a DNA Thermal Cycler (94°C for 1 min, 42°C for 2 min, and 72°C for 6
min, with 10 s of extension time at each cycle; PerkinElmer, Wellesley,
MA). After the first 25 cycles, fresh Taq was added, and 25 more cycles of
PCR were performed minus the 10 s extensions. The resulting product
was phenol-chloroform extracted and then ethanol precipitated, and an
aliquot was run on a 1.5% agarose gel. Total brain RNA (1 ug) served as
a positive control. All cDNA pools were initially screened for GnRH-1
(correct cell phenotype), B-tubulin, and L19 (two housekeeping genes,
microtubule and ribosomal) using PCR. All cells used in this study were
positive for all three transcripts. Primers sequences used were as follows:
GnRH-1, 5'-GCTAGGCAGACAGAAACTTGC-3" and 5'-GCATCTA-
CATCTTCTTCTGCC-3'; B-tubulin, described above; and L19, 5'-
CCTGAAGGTCAAAGGGAATGTGTTC-3' and 5'-GGACAGAGTCT-
TGATGATCTCCTCC-3'. Each reaction mixture was generated as
described above, and 2 ul of each primer and 1 ul of template cDNA were
added. The PCR program was as follows: 10 min at 94°C prerun; 30 s at
94°C, 30 s at 55°C or 65°C (depending on primers), and 2 min at 72°C, for
35 cycles; and 10 min at 72°C postrun. The same PCR profile was used for
subsequent screening with the following primers: tPA forward primer
(5'-AAGTTTGCACTGGGGACAAG-3'), tPA reverse primer (5'-
TCCCAAGAGTTGAGGAGTGTG-3"), uPA forward primer (5'-GTC-
TTCCATGTGATGCTCCA-3"), and uPA reverse primers (5'-AC-
CCAGTGAGGATTGGATGA-3"). Specific bands were observed in total
E17.5 brain lanes, whereas no bands were seen in water lanes.

Immunocytochemistry

Primary antisera used were against GnRH-1 [SW-1, rabbit (Rb) poly-
clonal (Wray et al., 1988), kindly provided by Dr. S. Wray; LR-5, Rb
polyclonal, kindly provided by Dr. R. Benoit, Montreal General Hospital,
Montreal, Quebec, Canada; SMI41, mouse monoclonal antibody (Stern-
berger Monoclonals, Baltimore, MD)], HGF (#AF294-NA, goat poly-
clonal; R & D Systems, Minneapolis, MN) Met (#SP260 and #H-190,
rabbit polyclonal, and #B-2, mouse monoclonal IgG; Santa Cruz Bio-
technology, Santa Cruz, CA), peripherin (#AB1530, rabbit polyclonal;
Millipore, Billerica, MA), neural cell adhesion molecule (NCAM;
#C9672, mouse monoclonal IgG; Sigma-Aldrich), and tPA (#ASMTPA,
rabbit polyclonal; Molecular Innovations, Southfield, MI).

Mouse tissue sections or nasal explants were immunocytochemically
stained as described previously (Fueshko and Wray, 1994; Wray et al.,
1994). Mouse embryos and postnatal and adult brains were cryosec-
tioned respectively at 16 wm (embryos) and free-floating at 30 wm (post-
natal or adult brains). These sections and explants were fixed with 4%
formaldehyde for 1 h before immunocytochemistry. Briefly, sections or
nasal explants were washed in PBS, incubated in 10% NGS/0.3% Triton
X-100 (NGS/Tx-100; 1 h), washed several times in PBS, and placed in
primary antibody (overnight at 4°C). The next day, tissues were washed
in PBS, incubated in biotinylated secondary antibody [1 h; 1:500 in PBS/
0.3% Triton X-100; goat anti-rabbit biotinylated (GAR-Bt; Vector Lab-
oratories, Burlingame, CA); goat anti-mouse biotinylated (GAM-Bt;
Millipore)], and processed using a standard avidin—biotin—horseradish
peroxidase/3’, 3-diaminobenzidine (DAB) protocol. For double immu-
noperoxidase staining, the chromogen for the first antigen—antibody
complex was DAB [brown precipitate (Kramer and Wray, 2000)],
whereas the chromogen for the second antigen—antibody complex was
SG substrate (blue precipitate; Vector Laboratories). Primary antisera
dilutions were as follows: anti-GnRH-1 (SW-1; 1:3000), anti-peripherin
(1:2000), anti-Met (#SP260 and # H-190; 1:200). For double-
immunofluorescence experiments, primary antisera were diluted as fol-
lows: anti-GnRH-1 (SW-1, 1:1000; SMI41, 1:3000), anti-NCAM (1:60),
anti-HGF (1:10), anti-Met (#SP260 and # H-190; 1:100), and anti-tPA
(1:500). Sections or nasal explants were incubated overnight (4°C) in a
mixture of primary antibodies diluted in NGS/Tx-100 and visualized
using Alexa Fluor 488 and Alexa Fluor 568 conjugated secondary anti-
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bodies (1:500; Invitrogen). Anti-Met and anti-HGF antisera were incu-
bated for two nights at 4°C.

When two polyclonal primary antibodies were used (anti-Met/SW-1
and anti-tPA/SW-1), staining of the first antigen—antibody complex was
performed with goat anti-rabbit Alexa Fluor 488 (1:500; Invitrogen) sec-
ondary antibody. This step was followed by a blocking reaction with an
anti-rabbit Fab fragment (Jackson ImmunoResearch Laboratories, West
Grove, PA) (Giacobini et al., 2004) for 1 h (RT), followed by PBS washes,
fixation (4% formalin for 30 min), and more PBS washes before applica-
tion of the second primary antibody, which was visualized with conju-
gated fluorescent goat anti-rabbit cyanine 3 (Cy3; 1:800; Jackson Immu-
noResearch Laboratories).

E12.5 slice cultures were fixed with 4% PFA for 1 h and processed for
immunohistochemistry. To detect GnRH-1 immunoreactivity, slices
were incubated at 4°C for five nights with LR-5 antibody diluted 1:4000
in PBS containing 10% NGS and 1% Tx-100. For secondary antibody
processing, slices were washed several times with PBS for 1 h before
incubation overnight at 4°C with goat anti-rabbit Cy3 (1:500; Jackson
ImmunoResearch Laboratories).

Specimen were mounted in DABCO (1,4-diazabicyclo[2.2.2]octane;
Sigma-Aldrich) and observed with a laser-scanning Olympus Fluoview
confocal system (Olympus Optical).

Functional assays

Nasal explant. To determine the function of HGF in the developing
olfactory/GnRH-1 systems, pharmacological perturbations were per-
formed, and olfactory axon outgrowth and GnRH-1 cell migration were
quantified. Explants in experimental groups were maintained in SFM
containing either a blocking HGF antibody (5 ug/ml; #AF294-NA; R & D
Systems) or 25 ng/ml human recombinant HGF (Sigma-Aldrich). Drug
concentrations were based on data from previous migrational studies
(Powell et al., 2001; Giacobini et al., 2002). Nasal explants were treated at
3 div with pharmacological agents for 72 h. Control explants were main-
tained in SFM that was changed, as in the treatment groups, at 3 and 6
div. At 7 div, explants were processed for double-label immunocyto-
chemistry for GnRH-1/peripherin (see above), and then the GnRH-1 cell
migration as well as the maximum olfactory axon outgrowth were quan-
tified as described below. Treatments performed at 1 div (for 72 h) did
not induce any significant change in the parameters examined compared
with control cultures (data not shown).

Quantification of GnRH-1 cell number, migration, and olfactory fiber
outgrowth. For each explant, the number of GnRH-1-immunopositive
cells was counted on the main tissue mass, as well as in the periphery of
the explant (Fueshko et al., 1998; Giacobini et al., 2004). The main tissue
mass contained the nasal pit/olfactory epithelial region, surrounding
mesenchyme, and nasal midline cartilage (see Fig. 3, schematic). The
periphery refers to the area surrounding the main tissue mass into which
cells had spread and/or migrated. Data are presented as mean *+ SEM.
Quantification of GnRH-1 cell migration and olfactory axon outgrowth
was performed digitizing the stained explant. Images were taken under
an Olympus IX50 inverted microscope (Olympus Optical) equipped
with a CCD camera CoolSNAP-Pro (Media Cybernetics, Silver Spring)
and images edited with Image-Pro Plus software (Media Cybernetics).
For cell migrational measurements, a caliber with a series of concentric
arcs separated by a uniform distance (200 wm) was overlaid on the dig-
itized image. The total number of cells in each zone of the periphery of
the explant was recorded via computer-assisted analysis (Image-Pro Plus
software; Media Cybernetics) (see Fig. 6). In general, under all treatment
conditions, the number of GnRH-1 cells decreases as a function of dis-
tance from the main tissue mass. GnRH-1 cell migration was calculated
as the distance from the main tissue mass edge to the outer sector of the
periphery.

For fiber outgrowth measurements, the distance from the border of
the explant at which the majority of peripherin-positive fibers ended was
recorded; this method was chosen because the complex nature of the
fiber network prevented quantification of individual fiber lengths. A
mean distance for fiber outgrowth was obtained for each treatment
group, and values were reported as the mean = SEM. All experiments
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used explants generated by different individuals on multiple culture
dates.

Statistical analysis of fiber outgrowth was performed with a one-way
ANOVA followed by Fisher’s least significant difference (LSD) post hoc
analysis ( p < 0.05) using the statistical software SPSS 12.0 (SPSS, Chi-
cago, IL). A mean total GnRH-1 cell number (inside the explant and/or in
the periphery) was obtained for each treatment group and analyzed using
aone-way ANOVA. These values were taken as an indication of GnRH-1
cell survival. Data for cell movement were compared for SFM and exper-
imental groups by constructing contingency tables and applying the x>
test for independence. This nonparametric analysis was chosen because
zonal distance (200 wm grouping) was used instead of continuous mea-
surements, and the number of observations per treatment (culture num-
ber) was not identical. A stringent p value of 0.001 was chosen for signif-
icance in these experiments.

HGF-expressing cells
To obtain HGF clones in which expression of murine HGF can be spe-
cifically induced by doxycycline (Dox), we adopted the tetracycline
(Tet)-Off technology described by Gossen and Bujard (1992). The mouse
HGF cDNA was inserted in the bidirectional pBI response plasmid con-
taining enhanced green fluorescent protein (EGFP) as a reporter gene
(Baron et al., 1995), which makes it possible to trace cells expressing the
transgene by EGFP imaging. The plasmid was introduced into stable
Madin-Darby canine kidney (MDCK) Tet-Off cells, and clones resistant
to blasticidin were selected and expanded. The HGF cDNA construct was
amplified from murine HGF plasmid (a kind gift from Dr. W. J. LaRo-
chelle) using the Platinum Pfx polymerase (Invitrogen) and the following
oligonucleotides (Sigma-Aldrich): 5'-TTGCACGCGTCCACCAT-
GATGTGGGGGACCAAAC-3" and 5'-TTACACGCGTGTTAACTTA-
CTTTCCAAGTCGGTTCATCTCTATGTCTGTATACAACTTGTATG-
TCAAAA-3'. The obtained cDNA encoded the full-length HGF se-
quence, flanked with Mlul sites and fused to a Kozak consensus ribosome
binding site at the N terminus and to oligonucleotides encoding the 11 aa
vesicular stomatitis virus glycoprotein G (VSVG) tag at the C terminus.
The fidelity of the HGF insert was verified by sequencing (MWG Biotech,
Ebersberg, Germany). The insert was then ligated into the Mlul site of
pBI-EGFP (Clontech, Mountain View, CA) to generate the HGF-TRE-
EGFP responder plasmid. MDCK cells expressing the tetracycline trans-
activator (tTA) under cytomegalovirus promoter (MDCK-Tet-Off cell
line; Clontech) were transfected with pBI-HGF-TRE-EGFP plasmid and
a blasticidin selection plasmid. Exponentially growing MDCK-tTA cells
were seeded 24 h before DNA transfer on 10 cm tissue culture dishes and
transfected using Lipofectamine 2000 (Invitrogen). Cells were selectively
grown in growth media containing 5 wg/ml blasticidin (Sigma-Aldrich)
for 2 weeks. Different resistant clones were picked by selective trypsiniza-
tion and checked for inducible expression of EGFP reporter gene and
HGF by in vivo imaging of EGFP and scatter assay of conditioned me-
dium, respectively (see Fig. 8). Clone n.1, which expresses high levels of
EGFP- and HGF-transfected protein, was selected for this study.
Tet-Off cells were grown in monolayer at 37°C in 5% CO,, in DMEM
(Invitrogen) containing 4500 mg of glucose, 1 mm sodium pyruvate, 2
mM glutamine, 100 ug/ml streptomycin, and 100 U/ml penicillin, and
supplemented with 10% fetal bovine serum (FBS; Invitrogen). To
turn off EGFP and HGF expression, Dox (1 ug/ml) was added to the
culture medium. Cells within six passages were used throughout the
experiments.

Western blot

For Western blotting analysis, equal amounts of proteins (100 ug)
were boiled in sample buffer (33% bromphenol blue, 33% B-mercapto-
ethanol, and 33% glycerol) and subjected to 7% SDS-PAGE. Proteins
were blotted onto Hybond-C Extra membrane (GE Healthcare, Piscat-
away, NJ). Filters were probed with specific primary antibodies: 1:500
anti-mouse met #B-2 (Santa Cruz Biotechnology), 1:500 HGF goat anti-
serum (R & D Systems), 1:1000 P5D4 Mab (monoclonal antibody)
mouse antiserum raised against the 11 aa C terminus of VSVG (Crepaldi
etal., 1997) to detect HGF protein in lysates from MDCK cells expressing
tagged HGF. In the latter case, total extracts were run under nonreducing

Giacobini et al. @ HGF Regulates GnRH-1 Neuronal Migration

conditions. Immunoblots were developed with an enhanced chemilumi-
nescence kit, ECL (GE Healthcare).

Cell scattering assay

A classic scatter assay, using Met-expressing MDCK epithelial cells
(Stoker et al., 1987; Montesano et al., 1991; Powell et al., 2001), was used
to determine whether culture medium conditioned (CM) by nasal ex-
plants or Tet-Off cells contained functional HGF. MDCK cells were cul-
tured in the same medium used for transfected cells, supplemented with
5% FBS (Invitrogen). MDCK cells (8000) were plated onto glass cover-
slips. The following day, discrete colonies were formed and then treated
with known concentrations of HGF or CM (diluted 1:1 in fresh culture
medium) collected from nasal explants at 3 div (medium conditioned for
3 d) or from Tet-Off cells cultured in the absence or presence of Dox
(medium conditioned for 5-7 d). In a subset of experiments, a blocking-
function HGF antibody was added (5 wg/ml). Twenty-four hours later,
the MDCK cells were washed in PBS, fixed with 4% formaldehyde, and
stained either by the nuclear cell dye 4,6-diamidino-2-phenylindole
(DAPI) or by crystal violet. Images were taken under an Olympus IX50
inverted microscope (Olympus Optical) equipped with a CCD camera
CoolSNAP-Pro (Media Cybernetics). Quantitative analysis of the scatter
response was performed on digitized images that were overlaid on circles
with a diameter of 80 wm (see Fig. 5E). MDCK cells were counted within
each circle superimposed on areas in which cells were detectable. In
general, the number of cells within these counting frames decreases as a
function of cell scatter. Values were reported as the mean = SEM.
ANOVA followed by Fisher’s LSD post hoc analysis was used to compare
groups ( p < 0.001).

Tet-Off cell aggregates

Tet-Off cells were collected by trypsinization, resuspended in 20 ul of
growth-factor free Matrigel (BD Biosciences, San Jose, CA) diluted 1:1
with the culture medium and seeded in 20 ul drops of this solution
(200,000 cells for both cell lines, with or without Dox) on the lid of a
culture dish. The lid was then turned upside down and incubated at 37°C
for 10—20 min. As the droplets of cell aggregates were set, they were cut
into four pieces (each one containing ~50,000 cells) with a sterile blade.

Embryonic slice cultures

Timed pregnant CD-1 mice (Charles River Laboratories) were harvested
at E12.5 to generate whole-head organotypic slice cultures following the
procedures described previously (Tobet et al., 1996; Bless et al., 2000).
Briefly, embryonic heads were embedded in 8% low-gelling-temperature
agarose (type VIla; Sigma-Aldrich), and parasagittal sections were cut at
300 wm using a vibratome and placed into Petri dishes containing ice-
cold dissection medium (Leibovitz’s L-15; pH 7.4; Invitrogen). These
slices were moved carefully to avoid any torsion, stretch, or compression
trauma, which may compromise the migration of GnRH-1 neurons in
vitro.

Day 0. E12.5 organotypic slices went through all of the steps described
above until the point of plating. At this point, the tissue was fixed with 4%
PFA and stained for GnRH-1 as described above.

Day 1. All slices that were subjected to functional treatments were
maintained in culture for 24 h. Organotypic slices were plated onto 30
mm Millicell inserts (Millipore) coated with a thin layer of growth factor-
free Matrigel (BD Biosciences). The inserts were placed into dishes con-
taining 2 ml of culture medium. This medium was partially removed
from the wells, such that only a thin layer of liquid remained covering
each slice. The slices were maintained in a humidified incubator (37°C)
for 1 d. The slice culture medium consisted of Neurobasal medium (In-
vitrogen) supplemented with B27 supplement (Invitrogen), 0.5 mm glu-
tamine (Invitrogen), and 25 pg/ml gentamycin (Invitrogen).

Aggregates of Tet-Off cells (50,000 cells) expressing EGFP-HGF (with
or without Dox) were placed at the rostral tip of the nasal region at 0 div.
After 24 h, organotypic cultures were fixed with 4% PFA and stained for
GnRH-1 as described above. Slices were used for the quantitative analy-
ses if they contained at least 250 GnRH-1-immunoreactive (GnRH-1-ir)
neurons and if the connection between the nasal compartment and the
brain appeared intact.

Data analysis. Quantitative analysis of GnRH-1 neurons was per-
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Figure 1.  Nasal regions express HGF and its receptor Met during embryonic development. Schematic of an E11.5-E12.5 head
[fb, OF, presumptive VNO, tongue (t), and third ventricle (Ill) are depicted]. The dashed line indicates the boundary between nose
and brain and represents the region taken for nasal RNA isolation in B. B, Gel documentation of products produced by RT-PCR
amplification using specific primers for c-met and HGF. Total RNA was isolated from nose and whole head at E11.5. Adult brain was
used as positive control tissue. Transcripts for both c-met and HGF were detected in all samples but water. Western blot analysis
showed that HGF is expressed in its active form in protein extracts of E12 noses as well in whole heads of E16, used as positive
control tissue. Western blot was run under reducing conditions. Met expression was also detected in the same samples. C, D,
Photographs of E14.5 sagittal sections after LCM. Representative pictures show examples of microdissected OE (€) and VNO (D). No
other tissue was removed from the nasal section, and the remaining tissue was intact after the capture procedure. E, Total RNA
isolated from dissected regions was subjected to RT-PCR. A fragment of the expected size (519 bp) was detected for c-met in the
OEandin VNO. Expression of the olfactory marker EBF-2 (165 bp) confirmed the morphology of the dissected tissue. PCR using HGF
primers showed the expected amplicon (314 bp) in the positive control lane (CNTR; E17.5 whole-embryo extracts) but not in O or
VNO. No PCR product was observed in reactions that omitted either reverse transcriptase or starting material (water). F, G, Sagittal
section of an E14.5 mouse nose double stained for NCAM (expressed by olfactory/vomeronasal axons; F) and Met (G). Met
immunoreactivity is distributed in the developing O and VNO structures and along the olfactory/vomeronasal fibers. G, Inset,
Colocalization between the two antigens. MW, Molecular weight; OB, olfactory bulb. Scale bars: (in €) €, D, 30 wm; (in F) F, G, 100
um; G, inset, 22 m. Asterisks indicate laser-captured areas.
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LSD test were performed to further clarify sig-
nificant differences between individual treat-
ment groups ( p < 0.05).

Quantitative anal}/sis of GnRH-1 neurons
in tPA~/":uPA ™'~ mutant animals

Serial sagittal sections (30 wm; four series) from
tPA~/7:uPA '~ and WT mice (n = 3 for each
group) were cut and labeled for GnRH-1 as de-
scribed above (GnRH-1 immunoreactivity vi-
sualized using DAB substrate). Total numbers
of GnRH-1 cells were calculated in each brain
and combined to give group means * SEM.
Data for GnRH-1 cell number between WT and
knock-out animals were compared by one-way
ANOVA followed by a Fisher’s LSD post hoc
test. ANOVA data were considered significantly
different if p < 0.05.

Results

HGF/Met expression in the developing
nasal regions

To identify whether Met and HGF were
expressed prenatally in nasal regions, nose
tissue was removed at E11.5, when
GnRH-1 neurons are in the presumptive
VNO, and RT-PCR experiments were per-
formed (Fig. 1A, B). Both c-met and HGF
transcripts were detected in all samples
(E11.5 head, E11.5 nose, and adult brain)
but water. Western blot analysis was used
to document protein expression in embry-
onic nose tissues (Fig. 1B, right). HGF is
initially biosynthesized and secreted in a
biologically inactive single-chain form
(pro-HGF; ~100 kDa) and is subse-
quently activated by specific serine pro-
teases into an a-chain (69 kDa) and a
B-chain (34 kDa) form containing a total
of five glycosylation sites (Nakamura et al.,
1989). E12 nose tissues and E16 head ex-
tracts (positive control) showed distinct
bands corresponding to the a-chain (Fig.
1B, right). Protein bands of a-chain were
not single, showing that these proteins
were glycosylated heterogeneously. The
top band corresponds to the glycosylated
form (69 kDa), whereas the bottom band
represents the nonglycosylated a-chain
(53 kDa). E12 nose protein extracts con-
tained a barely detectable band of inactive
single-chain HGF (100 kDa), indicating
that most HGF in these tissues is the
activated form. A 145 kDa Met-
immunoreactive band was also evident in
the same protein extracts (Fig. 1B, right).
These results indicate that at E12, both ac-
tive HGF and its receptor are expressed in

formed as a function of location with GnRH-1 cells assigned to one of
two regions (nasal region and CNS). Total number of cells was calculated
for each slice and combined to give group means = SEM. Given that the
total number of GnRH-1 neurons per slice did not change between treat-
ment groups (see Results), GnRH-1 cell distribution is presented as the
average percentage of labeled cells located in the nose or in the CNS
under different treatment conditions. Where a significant overall one-
way ANOVA was found ( p < 0.05), post hoc comparisons using Fisher’s

the nasal compartment.

To determine the expression of HGF and c-met transcripts in
more defined regions of the nasal compartment, LCM was used.
Single punches from olfactory epithelium (OE) and VNO were
removed at E14.5, and RT-PCR experiments were performed
(Fig. 1C-E). This embryonic age corresponds to a stage of robust
axonal outgrowth from the OE to the developing olfactory bulb.
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After reverse transcription of the mRNA,
PCR with specific primers for B-tubulin
(positive control) and the olfactory
marker OIf/EBF-2 was performed (Fig.
1E). A 158 bp band corresponding to
B-tubulin (data not shown) and a 165 bp
band corresponding to EBF-2 product
were detected in both OE and VNO, sup-
porting the olfactory nature of the laser-
captured tissues (Wang et al., 1997). Prod-
ucts for c-met were found in the OE as well
as in the VNO section, with a stronger ex-
pression in the latter tissue (Fig. 1 E). HGF
transcript was not detected in the OF and
VNO regions, whereas a specific band of
correct size was found in the control lane
(E17.5 whole-embryo extracts) (Fig. 1E).
These LCM RT-PCR data are in agreement
with previous in situ hybridization studies
showing c-met and HGF mRNAs in the
developing murine OE and in the sur-
rounding nasal mesenchyme, respectively
(Thewke and Seeds, 1996).

To determine whether Met protein was
expressed by the developing olfactory ax-
ons, double-label immunofluorescence
was performed for Met and NCAM, a
marker of the olfactory/vomeronasal sys-
tem (Calof and Chikaraishi, 1989; Miragall
et al., 1989). Met and NCAM expressions
overlapped on fibers emerging from the
VNO at E14.5, as shown by single confocal
planes (Fig. 1 F,G, inset), and were coex-
pressed in olfactory/vomeronasal axon
bundles from the nasal tract to the medial
surface of the forebrain throughout the
analyzed stages (E12.5-E17.5). Because of
low signal-to-noise levels in brain, we were
unable to detect specific immunoreactivity for Met along the
caudal nerve that GnRH-1 cells follow into the ventral forebrain
(Yoshida et al., 1995).

Figure 2.

Migrating GnRH-1 neurons express Met

Immunohistochemistry indicated Met protein expression in the
presumptive VNO epithelium as well as in cells migrating out of
this structure into the nasal mesenchyme (Fig. 2A, arrows) and
along vomeronasal fibers of E12.5 embryos (Fig. 2A, arrow-
heads). To establish whether Met-positive cells were GnRH-1-
migrating neurons, double immunohistochemical stainings were
performed. Double-labeling experiments for GnRH-1 and Met
indicated that, at E12.5 (Fig. 2B, C) and E14.5 (data not shown),
the majority of GnRH-1 neurons were Met immunopositive (Fig.
2B, C, arrows), as revealed by merged single confocal planes (Fig.
2C, inset, arrows). Once within the brain, it was difficult to de-
termine whether GnRH-1 neurons maintained Met expression,
because of the high level of expression of this receptor in other
CNS cells (data not shown). However, at postnatal day 10, Met
expression was broadly downregulated throughout the brain, al-
though there was evidence of discrete Met staining within the
hypothalamus (Fig. 2 D, arrowheads). This corresponds to a stage
when the GnRH-1 migratory process is over. Double labeling for
GnRH-1 (Fig. 2D-F, arrows) and Met (arrowheads) at PN10
revealed no coexpression between the two antigens, as shown by
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Met receptor expression in GnRH-1 neurons correlates with migration. A-C, Sagittal sections of E12.5 mouse immu-
nostained with indicated antibodies. 4, Met-immunoreactive cells emerged from the developing VNO and migrated through the
olfactory mesenchyme (arrows) toward the forebrain. Met staining is also evident along the vomeronasal fibers coming out of the
VNO. Arrowheads indicate Met-ir vomeronasal fibers. B, C, Double-labelimmunofluorescence for Met (red; B) and GnRH-1 (green;
() indicates that migrating GnRH-1 neurons spanning across the nasal regions coexpress Met (C, inset, arrows). D—F, Coronal
section of hypothalamic area of a PN10 mouse double labeled for GnRH-1 (red; arrows) and Met (green; arrowheads). E, F,
High-power confocal analysis showed that GnRH-T-immunoreactive cells and fibers do not colocalize with Met-
immunopositive elements at this stage. lll, Third ventricle. Scale bars: 4, 30 wm; (in B) B, C, 10 wwm; (in B) D, 15 wm; ,
inset, 10 wm; (in E) E, F, 8 wm.

single confocal planes (Fig. 2 E, F). Thus, Met immunoreactivity
is associated with migrating GnRH-1 neurons, being downregu-
lated once these cells complete their migration.

HGF/Met expression in nasal explants
The HGF/Met expression pattern observed in nasal regions dur-
ing development together with results from previous studies
(Sonnenberg et al., 1993; Thewke and Seeds, 1996; Powell et al.,
2001) suggest that HGF may have a role in regulating the GnRH- 1
migratory process. In this context, nasal explants represent a
valuable tool to separate spatial from temporal cues and focus on
the properties of GnRH-1 neurons by controlling extracellular
influences (Fueshko and Wray, 1994; Giacobini et al., 2004). It
has been shown previously that the migrational pattern of
GnRH-1 neurons observed in vivo reproducibly occurs in nasal
explants in vitro; with a shift in location of the GnRH-1 cell pop-
ulation from the olfactory pit epithelia (OPEs) to the edge of the
main tissue mass occurring from 1 to 3 div and continuing to
more distant sites from 3 to 7 div (Fueshko and Wray, 1994).
To use nasal explants for functional studies, we first verified
that this system retained expression of HGF and its receptor sim-
ilar to the in vivo expression pattern. At 3 div, the majority of
GnRH-1 neurons are located in the inner tissue mass of the ex-
plant, but some have started to migrate out into the periphery of
the explant (Fig. 3B, arrows). At this stage, HGF immunoreactiv-
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Figure3. HGFandMetexpressionin nasal explants mimics expression in vivo. A, Schematic of a nasal explant removed from an
E11.5 mouse and maintained in serum-free media for 7 d. Ovals represent OPEs; in the center is the nasal midline cartilage (NMC)
and surrounding mesenchyme (M). GnRH-1 neurons (dots) migrate from OPE following olfactory axons to the midline and off the
explant into the periphery. B, €, Double immunofluorescence was performed using antibodies to GnRH-1 (green; B, €) and HGF
(red; €) at 3 div. Note that GnRH-1 neurons at this stage migrate off the OPE through the nasal mesenchyme and emerge into the
periphery of the explant. Dashed lines indicate the border between the inner tissue mass and the periphery (B). C, HGF is expressed
inthe submucosa lining the OPE structures, in the nasal midline cartilage, and in the n/fb J mesenchyme (asterisks). D, OPEin inner
tissue mass of a 3 div nasal explant stained for GnRH-1 (green) and Met (red). Met was robustly expressed in the olfactory
epithelium. In addition, a GnRH-1 neuron migrating out of the OPE clearly expressed Met (arrowhead). E, At 7 div, a large
population of GnRH-1 neurons is located in the periphery of the explant. The majority of GnRH-1 neurons coexpressed Met
receptor (bottom inset, arrowheads). Few GnRH-1-positive/Met-negative cells were also detected (top inset, arrow), as well as
migrating cells, which were positive for Met but not for GnRH-1 (bottom inset, arrow). Met immunoreactivity was also evident
along the olfactory axon network. F, Nasal explant at 7 div triple stained for the amidated form of GnRH-1 (antibody SMI41; green),
Met (red), and DAPI (nuclear dye; blue). Three-dimensionally reconstructed GnRH-1-positive cells colabeled with Met are shown.
Reconstructed orthogonal projections are presented as viewed in the x—z (bottom) and y—z (right) planes. Scale bars: (in B) B, C,
100 pem; D, 20 um; E, 30 um; E, insets, 10 wm; F, 4 pum.

ity was robustly expressed in the submucosa adjacent to the OPE,
in the midline cartilage, and in mesenchymal cells located at the
border between the inner tissue mass and the periphery, coincid-
ing with the site at which GnRH-1 neurons and olfactory axons
exit (Fig. 3C, asterisks). This latter region corresponds to the
frontonasal mesenchyme, also known as nasal/forebrain junction

Functional analyses
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(n/fb J) in vivo. The expression pattern of
Met receptor was then examined at the
same in vitro stage. Met coexpressed with
migrating GnRH-1 neurons as well as with
the olfactory neurons in the OPE (Fig. 3D,
arrowhead). At 7 div, GnRH-1 neurons are
located in the periphery of nasal explants
in close association with the olfactory fi-
bers. At this stage, the majority of GnRH-1
neurons expressed Met (Fig. 3E, F, arrow-
heads), although some Met-positive/
GnRH-1-negative cells were detected as
well (Fig. 3E, arrows). In addition, olfactory
axons, along which GnRH-1 neurons mi-
grated, exhibited Met staining (Fig. 3E).
Hence, consistent with in vivo results, Met
receptor demarcated the olfactory system
and the migrating GnRH-1 cell population.

tPA is expressed in migrating GnRH-1
neurons in vitro

tPA and uPA are serine proteases that, in
addition to other proteases related to
blood coagulation factor XII, have been
shown to cleave and activate pro-HGF
(Mars et al., 1993). Moreover, PAs expres-
sion is most pronounced during cell mi-
gration and axonal outgrowth processes in
the developing nervous system (Seeds et
al., 1997). Thus, tPA and uPA expression
by GnRH-1 neurons was evaluated in
vitro.

Single GnRH-1 cells were removed
from nasal explants at 4.5 and 28 div (Fig.
4A-C, arrows), two in vitro stages repre-
sentative of GnRH-1 cells during migra-
tory and postmigratory phases, respec-
tively (Fueshko and Wray, 1994). cDNA
pools were examined for tPA and uPA
transcripts by single-cell RT-PCR. At 4.5
div, the majority of GnRH-1 cells (four of
five) expressed tPA but not uPA tran-
scripts. By 28 div, all GnRH-1 neurons
(n = 5) were negative for both transcripts
(Fig. 4D). Double immunofluorescence
for GnRH-1 and tPA was performed in na-
sal explants at 4.5 div (Fig. 4E). These ex-
periments revealed coexpression of the an-
tigens (Fig. 4E, arrows, inset) as well as
expression of tPA along olfactory axons,
confirming previous in situ hybridization
studies (Thewke and Seeds, 1996). Thus,
immunocytochemical experiments con-
firmed single-cell PCR results showing
that tPA is expressed in GnRH-1 cells in a
temporal window limited to the neuronal
migratory process.

Nasal explants release bioactive HGF in the culture medium
The expression analyses demonstrate that HGF protein is present
in nasal regions both in vivo and in vitro with a temporal and
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spatial pattern to impact GnRH-1/olfac-
tory system development. The form of
HGF observed in E12 noses by Western
blots is indicative of a biologically active
protein. To test whether the embryonic
nasal region is able to release functional
HGEF, nasal explant CM was collected, and
a typical scatter assay was performed, tak-
ing advantage of the Met-expressing
MDCK cell line. In the absence of HGF,
these cells grow in compact colonies (Fig.
5A, inset, arrows). The addition of 10
ng/ml HGF for 48 h to MDCK cultures
induced a typical change in morphology of
MDCK cells and a scatter response result-
ing in cell dispersion (Fig. 5B, inset, ar-
rows). CM from 3 div nasal explants also
enhanced migration capacity (Fig. 5C),
which was blocked by the addition of
HGF-neutralizing antibody (5 wug/ml)
(Fig. 5D). The scatter response was quan-
tified by measuring the number of MDCK
cells contained within each counting
frame (see Materials and Methods) (Fig.
5E, arrows). This number decreases as a
function of cell dispersion after increased
migratory activity. Quantification of the
scatter response showed more than a 50%
reduction in the cell number contained
within each counting frame in HGF- and
CM-treated groups compared with con-
trol conditions (Fig. 5E).

Anti-HGF disrupts GnRH-1 neuronal
migration and olfactory

axon outgrowth

To determine the role of endogenous HGF
on GnRH-1/olfactory system develop-
ment, the explants were treated with anti-
HGF (5 pg/ml). The same concentration
of this antibody has been used in previous
studies to neutralize the activity of HGF
(Powell et al., 2001; Giacobini et al., 2002).
Nasal explants were treated from 3 to 6 div,
a temporal window characterized by mas-
sive olfactory axonal growth and GnRH-1
neuronal migration from the inner tissue
mass to the periphery of the explant
(Fueshko and Wray, 1994). Nasal explants
were fixed at 7 div and stained for GnRH-1
and peripherin, which stains the olfactory
system (Fig. 6A). No significant differ-
ences were found in total number of
GnRH-1 cells inside the inner tissue mass
(control, 64 = 9; n = 18; anti-HGF treat-
ment, 74 = 9; n = 20) or in the periphery
of the explant (control, 176 * 22; n = 20;
anti-HGF treatment, 150 * 18; n = 21).
No changes in GnRH-1 cell number after
treatment suggests that mitogenic and sur-
vival effects of HGF on GnRH-1 neurons
are unlikely. However, application of anti-
HGF severely stunted the migration of

Giacobini et al. ® HGF Regulates GnRH-1 Neuronal Migration

4.5 div 28 div

3 4 5 | 2 3 4 5 B W

& _________D->

YE‘E% —----- - L

GnRH-1

PA

uPA

Figure4.  Primary GnRH-1 neurons express tPA during their migration. A, Photomicrograph of a nasal explant maintained for
4.5 div. Numerous GnRH-1-like neurons (phase-bright cells) can be seen in the periphery of the explant. The dashed line delineates
the main nasal tissue from the periphery of the explant. Bipolar GnRH-1-like cells in the periphery of the explant are identified in
situ (B, arrow) and removed (C, arrow) with a microcapillary pipette. D, Representative gel of PCR products from single-cell RT-PCR
performed on GnRH-1 cells (4.5 and 28 div) extracted from the explant periphery. Products produced by PCR amplification using
L19-, GnRH-1-, tPA-, and uPA-specific primers. tPA transcript was detected in primary GnRH-1 neurons at 4.5 div (80%) but not at
28 div. uPA transcript was not detected in GnRH-1 neurons at either 4.5 or 28 div. No specific band was detected in water
(W). B, E17.5 brain, positive control. E, Nasal explant at 4.5 div double stained for GnRH-1 (red; arrows) and tPA (green).
Inset, A single confocal plane showing a GnRH-1-positive cell colabeled with tPA. Scale bars: 4, 100 wm; (in B) B, C, 10
um; E, 50 wm; E, inset, 5 um.
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Figure 5.  Nasal explants release functional HGF. A-D, Images show MDCK cells that were plated at identical densities and
stained with nuclear dye DAPI (white). A, In SFM conditions, MDCK cells organized in typical colonies (inset; DAPI and bright field;
arrows point to individual cells in a cluster). B, In the presence of 10 ng/ml HGF, MDCK cells dispersed (scatter) and moved away
from each other (inset). Conditioned medium from 3 div nasal explants induced scatter response of MDCK cells (C), which was
prevented by the addition of HGF-neutralizing antibody (D). E, Quantitative analysis of the scatter response was performed on
digitized images that were overlaid on circles (counting frames) with a diameter of 80 wm (see Materials and Methods). The
number (No) of cells within the counting frames decreases as a function of cell-scatter response [n = 4 wells counted for SFM-and
HGF-treated group; n = 3 wells counted for (M and CM plus antibody (CM -+ Ab) groups; asterisks indicate statistical differences
versus SFM and CM+Ab conditions; p << 0.001]. Scale bars: (in A) A-D, 80 wm; (in A, inset) 4, B, insets, 24 m.
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Figure 6.  Neutralization of endogenous HGF alters GnRH-1 cell motility and olfactory axon outgrowth. 4, Photomicrograph of
nasal explant immunocytochemically labeled for GnRH-1 (brown) and peripherin (blue) at 7 div. Images were digitized and
overlaid on a calibration meter composed of concentric arcs. B, Quantitative analysis of GnRH-1 cell distribution in the periphery
of the explant after anti-HGF treatment. Fewer GnRH-1 neurons were located in the farthest zones of the anti-HGF-treated
explants compared with controls (0.6 —1 mm away from the border of the explant; *p << 0.001; n = 20 and 21 for control and
anti-HGF-treated groups, respectively), whereas there was a concomitant accumulation of GnRH-1 cells closer to the explant
tissue mass. €, D, Photomicrograph of nasal explants immunocytochemically labeled for GnRH-1 (arrowheads) and peripherin
(arrows) at 7 div in control conditions (C) and after anti-HGF treatment (D). Anti-HGF treatment prevented GnRH-1 cells and
olfactory fibers from moving into the periphery but stayed closer to the border of the explant tissue mass. After treatment, GnRH-1
cells displayed an atypical migratory behavior, losing the proximal (P)-to-distal (D) orientation detected in control explants, and
the olfactory fiber network also appeared highly disorganized (€ and D, insets and schematics). The dashed lines indicate the
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ented in a proximal-to-distal direction
(Fig. 6C, inset), whereas in the presence of
HGF antibody, such polarized direction
was lost, and GnRH-1 neurons orientation
appeared more random (Fig. 6D, inset).
Although “randomly” oriented, the mi-
grating neurons maintained contact with
peripherin-positive fibers, which also ap-
peared more entwined and less direction-
ally oriented after anti-HGF treatment
(Fig. 6C,D). Thus, we were unable to de-
termine whether the loss of orientation of
GnRH-1 neurons was attributable to cell-
autonomous mechanisms or instead di-
rectly dependent on altered outgrowth of
olfactory axons.

Exogenous HGF increases GnRH-1 cell
migration in nasal explants

We next evaluated the effect of exogenous
HGF on GnRH-1 cell migration and/or on
olfactory axon outgrowth. HGF treatment
did not affect the total number of GnRH-1
neurons compared with controls (control,
221 * 46; n = 11; HGF-treated, 204 = 19;
n = 10). However, a significant shift in the
location of GnRH-1 neurons was noted in
HGF-treated cultures (Fig. 7) ( p < 0.001).
In this group, 21% of GnRH-1 neurons in
the periphery of the explant migrated be-
yond zone 5 (> 800 um from the edge of
the main tissue mass), compared with con-
trols, which displayed only 8% of the
GnRH-1 population in this same com-
partment. To determine whether HGF had

border of the explant tissue mass. Scale bar (in A): 4, ¢, D, 200 um; C, D, insets, 20 pm.

GnRH-1 cells (Fig. 6B-D, arrowheads, insets) and the
peripherin-fiber network in the periphery of the explant (Fig.
6C,D, arrows, insets). Quantitative assessment of olfactory fiber
outgrowth revealed a significant reduction in the maximum dis-
tance from the border of the explant after treatment with anti-
HGF (p < 0.001; control, 1188 * 47 um; n = 17; anti-HGF
treatment, 996 = 95 wm; n = 16). The complex nature of the fiber
network prevented quantification of individual fiber lengths.
Therefore, the observed reduced distance of the peripherin-
positive fiber bundles could be the result of a defect in olfactory
axon elongation or of an altered orientation of the olfactory
axons.

For GnRH-1 cell migrational measurements, a caliber with a
series of concentric arcs separated by a uniform distance (200
pm) was overlaid on the digitized image, and the number of cells
in each zone was counted (Fig. 6A). In addition to changes in
olfactory axons, GnRH-1 neurons were closer to the border of the
explant in the anti-HGF treated group compared with controls
(Fig. 6 B-D) ( p < 0.005). In control explants, 14% of the entire
GnRH-1 cell population was dispersed beyond zone 4 (>600 um
from the border of the explant tissue mass), whereas when ex-
plants received anti-HGF, only 6% of GnRH-1 neurons migrated
>600 pwm into the periphery. In treated explants, GaRH-1 neu-
rons also displayed an abnormal migratory behavior. In control
conditions, the majority of migrating cells were uniformly ori-

an effect on olfactory axon outgrowth as

well, the mean maximum network out-

growth of peripherin fibers was analyzed.
Quantitative analysis revealed that the extent of fiber outgrowth
was similar among HGF-treated and control explants (control,
olfactory axon outgrowth: 1215 % 57 um; n = 11; HGF-treated,
olfactory axon outgrowth: 1292 = 48; n = 10), and directionality
was maintained in all explant groups (data not shown).

HGF is a guidance signal for migrating GnRH-1 neurons

The HGF expression pattern suggests that GnRH-1 neurons may
follow this diffusible molecule as they move from the VNO to-
ward the nasal/forebrain junction. If this were the case, then ad-
dition of an exogenous source of HGF in a direction opposite to
the normal migratory pathway (i.e., the rostral tip of the nose)
should disrupt or delay GnRH-1 neuronal migration. To test this
hypothesis, functional experiments were performed by cocultur-
ing for 24 h cell aggregates of HGF-transfected cells, together with
parasagittal slices of whole heads of E12.5 mice. This embryonic
age corresponds to a stage in which GnRH-1 neurons span from
the VNO to the nasal/forebrain junction, on their way into the
CNS (Wray, 2002).

MDCK EGFP-HGEF stable transfectants were generated using
the Tet-Off expression system (Gossen and Bujard, 1992). Clones
were screened through EGFP imaging (Fig. 8 A, top left). When
cells were cultured in the presence of 1 ug/ml Dox, EGFP and
HGEF expressions were turned off (Fig. 8 A, top right).

To verify HGF biosynthesis in these cells, total extracts were
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run under nonreducing conditions and immunoblotted with
anti-VSVG (Fig. 8 B). Tet-Off MDCK cells expressing EGFP and
HGF were grown in the absence (lane 1) or presence (lane 2) of
Dox. Tet-Off MDCK cells expressing only EGFP were used as
negative control (lane 3). Transfected HGF was identified as pro-
HGF inside the cells and was expressed only in the absence of
Dox. In addition, the ability to produce and release active HGF in
the culture medium was tested by using the scatter assay. CM was
collected from Tet-Off cells grown with or without Dox for sev-
eral days, diluted 1:1 with fresh culture medium, and applied
onto MDCK cells (Fig. 8A, bottom).

HGF-releasing cell aggregates were placed at the tip of the
nose (Fig. 9C,D). The mean numbers of cells that were GnRH-1
immunoreactive per slice (= SEM) were 273 = 21 (control, 0 div;
n = 6), 301 * 16 (control, 1 div, with Dox; n = 6), 285 = 19
(HGF, 1 div, without Dox; n = 4), with no significant difference
among groups ( p > 0.05) (Fig. 9B). The changing positions of
GnRH-1-ir neurons from nasal compartment to the CNS be-
tween day 0 and day 1 control slices provided evidence of migra-
tion in vitro (Fig. 9B). Slices grown for 1 div in the presence of
EGFP-HGF cell aggregates silenced with Dox showed a broad
distribution of GnRH-1 cells from the nasal compartment (Fig.
9E, arrowheads) to the basal forebrain (Fig. 9E, arrows). GnRH-1
neurons migrating through the nasal mesenchyme displayed a
bipolar morphology and were visible as streams of neurons di-
rected toward the cribriform plate (Fig. 9E, inset). At this stage,
32% of the total GnRH-1 neurons entered the brain (Fig. 9B, E,
arrows). In contrast, GnRH-1 cells displayed an atypical migra-
tory behavior when embryonic slices were
cocultured with EGFP-HGF-expressing A
cell aggregates cultured in the absence of
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Figure7.  Exogenous HGFincreases GnRH-1 cell motility in nasal explants. Quantitative anal-

ysis of GnRH-1 cell migration after exogenous application of HGF. The same analysis described in
Figure 4 was used in these experiments. HGF (25 ng/ml) applied from 3 to 6 div significantly
increased, at 7 div, the number of GnRH-1 cells reaching the farthest zones compared with
controls (n = 11 control; n = 10 HGF-treated group; *p << 0.001).
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Dox (Fig. 9D,F). The vast majority of [ MDCK EGFP-HGF | [MDCK EGFP-HGF + DOX] HGF EGFP
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forebrain (Fig. 9 B, F, arrowheads), as a re- ’
sult of accumulation in the nasal compart-
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and projected into the forebrain in cul-
tures both with and without Dox (Fig.
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9G,H ). The olfactory fiber network in the
nose as well as in the forebrain did not ap-
pear to be disrupted when HGF-releasing
cell aggregates were cocultured with em-
bryonic slice cultures (Fig. 9G,H).

Figure8.

Characterization of the Tet-0ff MDCK cell line. A, Photomicrograph of the Tet-0ff MDCK cell line expressing EGFP and
HGF. Note that EGFP is highly expressed by 70— 80% of cells (top left). Cells were cultured in the absence or presence of 1 ug/ml
Dox. When cells are shifted to Dox-containing medium, EGFP expression is turned off within 24 h after the shift (top right). Bottom
left, MDCK scatter after a 24 h incubation with (M collected from Tet-Off MDCK EGFP—HGF stable clone, grown in the absence of
Dox. Bottom right, MDCK cells are organized in discrete, compact colonies after exposure of CM collected from with Dox Tet-Off

cells. B, Western blot analysis for HGF in total extracts of MDCK cells expressing tagged HGF. Total extracts were run under

Fewer GnRH-1 neurons are present in
the tPA/uPA deficient mice

Early embryonic lethality of met mutants
has prevented in vivo studies on these mice
to determine the functional role of HGF in
GnRH-1 neuron development (Bladt et al., 1995; Schmidt et al.,
1995; Uehara et al., 1995). Therefore, we investigated the effect of
deletion of tPA and uPA genes on the number of GnRH-1 neu-
rons in adult brains. These serine proteases have been shown to
activate the progrowth factor HGF (Mars et al., 1993). Moreover,
previous studies showed that mice with combined deficiencies of
tPA and uPA are subfertile and display reduced gonadotropin-

nonreducing conditions and immunoblotted with anti-VSVG antibody. Tet-0ff MDCK cells expressing EGFP and HGF were grown
inthe absence (lane 1) or presence (lane 2) of Dox. Tet-0ff MDCK cells expressing only EGFP were used as a negative control (lane
3). Transfected HGF was identified as pro-HGF inside the cells (100 kDa) and was expressed only in the absence of Dox. Scale bars:
A, top, 5 um; A, bottom, 20 um.

induced ovulation efficiency (Carmeliet et al., 1994; Leonardsson
et al., 1995). The total number of GnRH-1 neurons was com-
pared in 60- to 90-d-old WT male mice (n = 3) and age and
sex-matched double-KO mice for tPA and uPA genes (n = 3).
Analysis revealed a significant reduction in GnRH-1 cell number
in the brains of mutants compared with WT (WT, 642 *= 16;
tPA ~/T:uPA /7,422 + 24;p <0.001). A reduction of ~35% was
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HGF acts as a guidance signal for GnRH-1 neuronal migration during embryogenesis. 4, Schematic of an E12.5 head

slice culture [fb, presumptive VNO, and tongue (t) are depicted]. A dashed line indicates the boundary between nose and brain.

Aggregates of Tet-Off cells (black oval), cultured in the presence or absence of Dox, were placed at the rostral tip of the nose of

E12.5 slice cultures. B, Quantitative analysis of GnRH-1 cell distribution in the nasal compartment and in the CNS of E12.5 slice
cultures at 0 div [control (cntr); n = 6] and grown in vitro for 24 h with EGFP—HGF cell aggregates (with Dox, n = 6; without Dox,
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found in the KO animals. Figure 10, A and
B, shows representative stainings for
GnRH-1 neurons (arrows, single GnRH-1
cells; arrowhead, cluster of GnRH-1 cells)
in the diagonal band of Broca (dbb) of the
hypothalamus of WT and double-KO
mice. At this level, numerous GnRH-1
neurons are normally detected (Fig. 10A).
In contrast, few GnRH-1 neurons are de-
tected at this level in KO mice (Fig. 10B).
The median eminence of tPA ~/~:uPA ~/~
brains was also sparsely innervated by
GnRH-1-immunoreactive terminals (Fig.
10D, arrowhead, inset) compared with
WT (Fig. 10C, arrowhead, inset).

Discussion

Development of the olfactory and
GnRH-1 neuroendocrine systems is inti-
mately entwined in early embryogenesis
(Wray, 2002). The mechanisms directing
the initiation of cell migration and olfac-
tory axon extension from nose to fore-
brain are unclear but likely require specific
motogenic and guidance cues. In this re-
port, we show that HGF and Met are
expressed in a spatiotemporal pattern to
impact GnRH-1/olfactory system devel-
opment. Functional analysis supports the
notion that HGF plays an important role
in regulating GnRH-1 neuronal migration
across nasal regions toward the CNS dur-
ing embryogenesis.

Previous studies have shown that c-met
and tPA mRNAs are expressed in olfactory
epithelium, whereas HGF transcript local-
ized to the surrounding nasal mesenchyme
starting at E11 in mouse (Sonnenberg et
al., 1993; Thewke and Seeds, 1996), when

<«

n = 4). Analysis of GnRH-1 neurons location revealed an ac-
cumulation of cells in the nasal region when organotypic
slices were cocultured with HGF-releasing cell aggregates. €,
E, Normal migrating GnRH-1 neurons in slices cocultured with
Tet-Off EGFP—HGF cell line in the presence of Dox. Note that
EGFP is turned off in the cell aggregate. GnRH-1-positive cells
migrate in chains through the nasal compartment (arrow-
heads) and enter the brain (arrows). E, Inset, A high-power
view of typical migratory GnRH-1 neurons crossing the nasal
mesenchyme characterized by a bipolar morphology and by a
chain-like organization. D, When cocultures were performed
with transfected cells shifted to a medium without Dox,
GnRH-1 neurons accumulate in the nasal region and fail to
enter the brain (B, D, F). The inset in F shows the abnormal
phenotype of GnRH-1 neurons in these cultures. Many cells
appear round and lack a leading and a trailing process, typical
of migrating cells. G, H, Antibodies to peripherin react with
vomeronasal and olfactory axons that extend along the nasal
mesenchyme to the forebrain. No difference in the organiza-
tion of the fiber network was evident among the treatment
conditions (G, with Dox; H, without Dox). bfb, Basal forebrain.
Scale bars: (in €) C, D, 300 wm; (in E) E-H, 150 wm; (in E,
inset) E, F, insets, 20 m.
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the GnRH-1/olfactory systems are in their
initial stages of development. Here, bio-
logically active HGF and Met protein ex-
pression was documented in nasal regions
as early as E12. The majority of GnRH-1
neurons located in the nasal compartment
were found to be Met immunopositive

with expression correlated with migration.
Using RT-PCR, c-met mRNA was de-
tected in laser-captured tissues of OE and
VNO at E14.5, confirming previous in situ
hybridization studies (Sonnenberg et al., a:
1993; Thewke and Seeds, 1996). More- B
over, immunohistochemistry coupled .{ .

with confocal microscopy revealed that
Met protein is expressed along NCAM-

positive olfactory fibers during embryonic - . &

development. Thus, the spatiotemporal
expression of HGF and Met receptor in
nasal regions correlates with migration of
GnRH-1 neurons toward the CNS and de-
velopment of the olfactory sensory system.

To determine the functional role of
HGF in the development of the GnRH-1
system, we took advantage of an in vitro
model, nasal explants, which has been suc-
cessfully used for other functional studies me
(Fueshko et al., 1998; Kramer and Wray, '
2000; Giacobini et al., 2004). These ex-

plants maintain large numbers of GnRH-1 ~ WT
neurons, migrating in a manner similarto
that observed in vivo, as well as directed ~ Figure 10.

olfactory axon outgrowth (Fueshko and
Wray, 1994). Expression of Met in the ol-
factory system and in primary GnRH-1
neurons in nasal explants was similar to
that observed in vivo. HGF was expressed
as early as 3 div, a stage of active cell mi-
gration and olfactory axon outgrowth, and the expression paral-
leled HGF transcript distribution described previously in vivo
(Sonnenberg et al., 1993; Thewke and Seeds, 1996). HGF immu-
noreactivity was observed in the olfactory mucosa surrounding
the OE, in the nasal midline cartilage, and in the frontonasal
mesenchyme, which is the region apposed to the ventromedial
forebrain before dissection. Olfactory pathway development de-
pends on induction between the frontonasal mesenchyme and
adjacent olfactory epithelia (LaMantia et al., 2000). Interestingly,
HGF mRNA has been shown to be unevenly distributed in the
nasal mesenchyme during embryonic development, being ex-
pressed in a gradient with higher levels toward the forebrain
(Sonnenberg et al., 1993). A similar expression pattern has been
shown for SDF-1 in these regions (Schwarting et al., 2006). This
transcript is expressed in a steep gradient in the developing nasal
mesenchyme, being lower proximal to the VNO and greater at
the nasal/forebrain junction. SDF-1 was shown to be important
for the migration of GnRH-1 neurons (Toba et al., 2004;
Schwarting et al., 2006). Other studies demonstrated that SDF-1
and HGF regulate recruitment of mesenchymal stem cells toward
damaged tissues (Ji et al., 2004; Urbanek et al., 2005) and that
HGF chemotactic response could be potentiated by SDF-1 (Son
et al., 2006). Similarly, muscle progenitor cells migrate toward
SDE-1-expressing targets with CXCR4 (CXC receptor 4), the
SDEF-1 receptor, and Gab1 [Grb2 (growth factor receptor-bound
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GnRH-1 neuronal population is reduced in tPA ~/~:uPA ~/~ mice. A, GnRH-T-immunoreactive cell bodies are
located principally within the preopticarea and dbb of the WT mouse brain (arrows, single GnRH-1 neurons; arrowhead, cluster of
GnRH-1 neuronsin the dbb). B, Amajor loss of GnRH-1 neurons was found in the brain of adult double-KO mice (arrows and inset).
Note that the level of the section represented in Bis comparable with A. The principal fiber projections of GnRH-1 neurons are to
the median eminence (me; C, arrowhead), and this region showed a dramatic loss of GnRH- 1 fibers in mutant mice (D, arrowhead).
Insets, High-power views of the median eminence in WT and KO brains. Scale bars: (in 4) A-D, 100 um; (in 4, inset) insets, 20 pm.

protein 2)-associated binding protein 1], the adaptor molecule
that transmits Met signaling, cooperating to control this process
(Vasyutina et al., 2005). Thus, we cannot rule out cross talk be-
tween the HGF and SDF-1 signaling pathways in regulating di-
rected migration of GnRH-1 neurons from the VNO to the brain.

In addition to Met, primary GnRH-1 neurons express tPA.
Interestingly, this expression pattern correlated with migration of
these cells, being downregulated in postmigratory GnRH-1 neu-
rons. Previous studies showed that tPA transcript is expressed in
migrating neurons crossing the nasal mesenchyme during early
stages of embryonic development (Friedman and Seeds, 1994).
Here, we suggest that at least part of these cells are GnRH-1
neurons and that these cells display the molecular machinery to
activate HGF in the immediate vicinity of its c-met receptor, thus
initiating a cell signaling cascade that influences cell movement.

Our in vitro experiments demonstrated that biologically active
HGEF was released into the medium of nasal explants. In the mo-
togenic assay, this medium induced a scatter response in MDCK
cells, which was blocked by HGF-neutralizing antibody. HGF was
released into the nasal explant medium in the initial period of
GnRH-1 neuronal migration and olfactory axon elongation.
Anti-HGF treatment significantly stunted GnRH-1 migratory
behavior and olfactory axon outgrowth (elongation or orienta-
tion), supporting endogenous HGF acting as a motogen on
GnRH-1 neurons and a growth promoter for olfactory axons.
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When GnRH-1 cells were subject to exogenous uniform HGF
concentrations, the cells did migrate farther and kept their spatial
orientation. No effect was observed in terms of olfactory axon
growth, in contrast with olfactory axon changes detected in the
blocking-function experiments. This apparent discrepancy may
result because olfactory axon extension cannot be stimulated
above an intrinsic limit or a limit imposed by general fibroblast
outgrowth. Therefore, exogenous HGF might be insufficient to
promote additional elongation of olfactory axons.

After HGF exposure, parallel changes were not detected in the
GnRH-1 and olfactory system. Thus, the changes observed in
GnRH-1 cell migration do not appear to be an effect dependent
on alterations in olfactory axon outgrowth and suggest that the
HGEF effect on the motility of GnRH-1 neurons is in fact cell
autonomous. It is important to note that, although anti-HGF
treatment induced a striking accumulation of cells and olfactory
fibers closer to the nasal explant tissue mass, it did not prevent
GnRH-1 cells and peripherin-positive fibers from moving/ex-
tending into the periphery of the explant. Likely, residual HGF
and perhaps other factors present in the nasal explants contribute
to the initiation of cell movement and olfactory axon outgrowth.

We showed previously that HGF acts as a chemoattractant for
immortalized GnRH-1 cells (Giacobini et al., 2002). Organotypic
slices have been shown previously to contain the conditions nec-
essary to allow GnRH-1 migration from the developing olfactory
system to the basal forebrain while keeping intact their migratory
route (Tobet et al., 1996). Thus, retained in these slices are the
guidance cues for GnRH-1/olfactory system development that
are clearly lacking in immortalized cells. In addition, some phe-
notypic/behavioral traits of the cell lines could be a consequence
of the immortalization procedure which may alter the expression
pattern and the activity of such cells (Martinez de la Escalera and
Clapp, 2001). Thus, to evaluate whether HGF acts as a guidance
cue during the migration of primary GnRH-1 neurons, we used
tissue slices prepared from mouse embryos (Tobet et al., 1996;
Bless et al., 2000). Tissue slices that maintain connection between
forebrain and nasal compartment were generated from E12.5
whole heads. Embryonic slices were cocultured with aggregates of
EGFP-HGF-transfected cells. In these experiments, after 1 d in
vitro, GnRH-1 neurons accumulated in the nasal region when
slices were cocultured with HGF-releasing transfected cell aggre-
gates placed in an opposite direction with respect to the normal
GnRH-1 migratory pathway.

The disruption of GnRH-1 cell motility observed in these ex-
periments may result from their exposure to two attractive HGF
gradients (one endogenous and one exogenous) acting from two
opposite sites or from threshold concentrations of exogenous
HGF, which fail to generate a motogenic response. In these in
vitro coculture experiments, no alterations were observed in
peripherin-positive olfactory/vomeronasal nerve axons among
treatment groups, suggesting that the observed HGF-induced
GnRH-1 neuronal migration defect is cell autonomous. How-
ever, it should also be noted that, at E12.5, olfactory fibers could
no longer be sensitive to HGF stimulation, as they have started to
contact their tissue target (i.e., the presumptive olfactory bulbs).
In fact, itis known that at E11 in the mouse, axons begin to extend
from the OE, forming small fascicles which pierce the basal lam-
ina (Marin-Padilla and Amieva, 1989).

HGF-induced activity requires proteolytic processing, which
is, at least in part, operated through enzymatic cleavage by PAs
(Naldini et al., 1992; Mars et al., 1993). Mice carrying combined
deficiencies for tPA and uPA genes are subfertile (Carmeliet et al.,
1994), consistent with the hypothesis that the lack of tPA and uPA
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genes prevents active HGF from promoting GnRH-1 neuronal
migration into the forebrain. To examine this possibility, the
number of GnRH-1 neurons in adult brains of tPA ~/:uPA '~
mice was compared with those of WT animals. The lack of tPA
and uPA clearly affected the size of the GnRH-1 neuronal popu-
lation, decreasing the number of GnRH-1 cells detected in brain.
Whether this effect is directly related to loss of active HGF on
GnRH-1 neurons or to additional mechanisms affecting GnRH-1
differentiation or cell survival will require additional investigations.
Very little is known about early interactions between migrat-
ing GnRH-1 neurons and the nasal mesenchyme, which lead to
proper initial movement from the presumptive VNO toward the
rostral forebrain. Our results are consistent with a role for HGF as
amotogen as well as a chemotactic signal for developing GnRH-1
neurons, acting to positively modulate cell-cell and cell-ECM
interactions during the early aspects of their migratory process.
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