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Brief Communications

Feedforward Inhibition Contributes to the Control of
Epileptiform Propagation Speed

Andrew J. Trevelyan,'2 David Sussillo,' and Rafael Yuste!
'Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York 10027, and 2School of Neurology,
Neurobiology, and Psychiatry, The Medical School, University of Newcastle, Newcastle NE2 4HH, United Kingdom

It is still poorly understood how epileptiform events can recruit cortical circuits. Moreover, the speed of propagation of epileptiform
discharges in vivo and in vitro can vary over several orders of magnitude (0.1-100 mm/s), a range difficult to explain by a single
mechanism. We previously showed how epileptiform spread in neocortical slices is opposed by a powerful feedforward inhibition ahead
of the ictal wave. When this feedforward inhibition is intact, epileptiform spreads very slowly (~100 wm/s). We now investigate whether
changes in this inhibitory restraint can also explain much faster propagation velocities. We made use of a very characteristic pattern of
evolution of ictal activity in the zero magnesium (0 Mg>*) model of epilepsy. With each successive ictal event, the number of preictal
inhibitory barrages dropped, and in parallel with this change, the propagation velocity increased. There was a highly significant corre-
lation ( p < 0.001) between the two measures over a 1000-fold range of velocities, indicating that feedforward inhibition was the prime
determinant of the speed of epileptiform propagation. We propose that the speed of propagation is set by the extent of the recruitment
steps, whichin turn is set by how successfully the feedforward inhibitory restraint contains the excitatory drive. Thus, a single mechanism

could account for the wide range of propagation velocities of epileptiform events observed in vitro and in vivo.
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Introduction

Welack a coherent view of epileptiform propagation. The various
in vitro models of epilepsy display a large range of propagation
speeds, extending over almost three orders of magnitude. Specif-
ically, disinhibition of neocortical slices provokes ictal events,
which propagate with great speed (20—100 mm/s) (Chervin et al.,
1988; Wadman and Gutnick, 1993; Albowitz and Kuhnt, 1995;
Pinto et al., 2005; Trevelyan et al., 2006). In contrast, in the zero
magnesium (0 Mg>") model, in which ictogenesis is presumed to
arise primarily from enhanced excitation (Anderson et al., 1986;
Walther et al., 1986), ictal propagation can be extremely slow
(~100-250 um/s) (Wong and Prince, 1990; Trevelyan et al.,
2006).

Different speeds of epileptiform spread are also seen in vivo.
Propagation can be very slow (Blume et al., 2001), as evident
during a Jacksonian march (Jasper, 1969), but in other cases,
focal events generalize extremely rapidly (Lemieux and Blume,
1986; Kobayashi et al., 1994). The range of latencies for activation
of adjacent subdural electrodes (10 mm separation) is reported to
vary from 1 to 45 s (Blume et al., 2001), suggesting a range of
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propagation speeds of <200 wm/s to >10 mm/s, taking cortical
foldings into account. Rapid generalization has been proposed to
occur through thalamic activation, although paired in vivo re-
cordings from cortex and thalamus are not consistent with this
view (Steriade and Contreras, 1995; Pinault et al., 1998), suggest-
ing a cortical explanation for both slow and fast propagation
(Timofeev and Steriade, 2004).

We have shown previously that powerful feedforward inhibi-
tion, manifest ahead of an ictal wavefront, opposes epileptiform
propagation (Trevelyan et al., 2006). We now show that feedfor-
ward inhibition becomes less effective after repeated ictal events.
Consequently, although early events propagate slowly in a step-
wise manner, late ictal events generalized rapidly, similar to the
rapid generalization seen with disinhibition models of epilepsy.
Thus, individual brain slices can display the complete range of
propagation velocities, from very slow to very rapid generaliza-
tion. We find that the speed of ictal propagation correlates highly
with the number of preictal barrages that pyramidal cells receive
before being recruited to the event. We conclude from this that
the feedforward inhibition is the prime determinant controlling
how rapidly epileptiform activity spreads.

Materials and Methods

Slice preparation. All animal handling and experimentation were done
according to National Institutes of Health guidelines. Recordings were
made from slices of occipital cortex prepared acutely from postnatal day
13-18 C57BL/6 mice. Animals were anesthetized with ketamine—xylazine
(10 mg/kg), and the brain was removed and submerged in ice-cold iso-
tonic sucrose solution (in mm: 222 sucrose, 26 NaHCOs;, 2 MgCl,, 2.6
KCl, 1.5 NaH,PO, ~, 0.05 ascorbic acid). Coronal slices, 350 wm thick,
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were cut using a Leica (Nussloch, Germany) vibratome, and the slices
were incubated in artificial CSF (ACSF) containing 1 mm Mg>* ions (in
mm: 125 NaCl, 26 NaHCO;, 10 dextrose, 3.5 KCI, 2 CaCl,, 1.26
NaH,PO, ~, 1 MgSO,).

Dye loading and imaging. Slices were bulk loaded with Oregon Green
488 Bapta 1 (OGB1)-AM ester as described previously (Trevelyan et al.,
2006). Astrocytes were identified using the astrocyte-specific marker sul-
forhodamine (SR101; Invitrogen, Carlsbad, CA) and excluded from the
analysis.

OGBI imaging was performed using a spinning disk confocal (So-
lamere Technology Group, Salt Lake City, UT) mounted on an upright
microscope (BX/50WI; Olympus, Tokyo, Japan). The tissue was illumi-
nated with a 488 nm laser (Coherent, Santa Clara, CA), controlled
through an acoustic-optical tunable filter. Images were collected at
7.5-60 Hz [Stanford Photonics (Palo Alto, CA) Mega camera; QED soft-
ware (Delta, British Columbia, Canada)]. Off-line analysis was per-
formed using ImageJ (NIH) and in-house software. Line scan analyses
were done on movies collected using 4 X or 10X objectives. A box (up to
1 mm long and ~40-50 wm width) was laid approximately over layer 5
and divided up into 4 um bins aligned to the cortical columns. The
average Ca ™ fluorescence signal for each bin was derived and plotted
against time, to give a line scan plot with time as the abscissa and cortical
horizontal distance as the ordinate. Cellular Ca*" signals were derived
from movies taken using 20X and 40X objectives. Somata were identi-
fied as described previously (Cossart et al., 2003; Tkegaya et al., 2004;
MacLean et al., 2005). The neuropil signal was subtracted from the so-
matic signal to derive the “center-surround” (CS) signal, which we found
to be a better indicator of the activity pattern of individual cells during
intense network activity (Trevelyan et al., 2006).

Electrophysiology. The chamber was mounted on a Scientifica movable
top plate fitted with a heater plate (Warner Instruments, Hampden, CT),
and the incoming solution (perfusion at 1-3 ml/min) was heated by a
sleeve heater element (Warner Instruments). All imaging and electro-
physiological recordings were done at 33—37°C. Whole-cell recordings
were made using 3-7 M() pipettes (borosilicate glass; Harvard Appara-
tus, Holliston, MA; MX130 hydraulic micromanipulators; San Diego
Instruments, San Diego, CA) containing the following (in mwm): 125 K
methyl-SO,, 10 K-HEPES, 2.5 Mg-ATP, 6 NaCl, 5 N-(2,6-
dimethylphenylcarbomoylmethyl) triethylammonium bromide (QX-
314; Tocris Bioscience, Ellisville, MO), 0.3 Na-GTP, 0.5% biocytin (w/v).
Slices were fixed and stained for biocytin; the location of the stained cells
allowed us to ascribe cortical laminar identities to the imaged areas. For
current clamp (I, recordings of action potential trains, the QX-314
was omitted. For cell-attached recordings, the patch electrode was filled
with ACSF. Electrophysiological data were collected using a Heka Elek-
tronik (Lambrecht/Pfalz, Germany) EPC10 amplifier with Patchmaster
software and analyzed off-line using Igor (WaveMetrics, Lake Oswego,
OR). There were no qualitative differences between the recordings from
OGBI-loaded versus unloaded slices.

Analysis of delays. Delays were measured from paired V,,,, record-
ings (at —30 mV) of cells separated by >300 wm. Most ictal events were
preceded by inhibitory barrages recorded in both cells, and the relative
timing of onset of these inhibitory barrages consistently indicated that
the event started to one or other side of the pair of cells, and not between
the cells, thus allowing for an appropriate measure of the propagation
velocity. This view was supported by our line-scan experiments. Time
delays were measured between the minima (peak inward current) for the
two Vj,my, recordings for two reasons: (1) the timing of the peak inward
current was consistent for a wide range of holding potentials and thus is
not affected by changes (or differences between the cells) in the series
resistance (and thus the effective somatic holding potential); (2) the peak
inward current consistently corresponded with the peak neuropil Ca**
signal, local to the electrode, in the line scans (see Fig. 3 A, B). From these
line scans, the peak inward current generally occurs simultaneous with,
or on the synaptic barrage subsequent to, the seizure invading the cortical
column of the recorded cell. Furthermore, estimates of the propagation
velocity derived from this analysis were consistent with estimates from
line scans for the slowest events (faster events usually traversed the field
of view in a single time frame and thus could not be used to determine
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propagation velocity). The time delays were then normalized to a cell
separation of 1 mm; thus, the delays represent the reciprocal of the
velocity.

Results

Progressive loss of preictal barrages

We combined whole-cell recordings from layer 5 pyramidal cells
with Ca** imaging of network activity (Badea et al., 2001) to
study the evolution of epileptiform activity in slices bathed in 0
Mg>" ACSE. We were particularly interested in changes in the
spread of activity, and this commonly used model of epilepsy
seemed well suited to this end: in 0 Mg>*, cortical slices show a
consistent and characteristic evolution of activity patterns
(Dreier and Heinemann, 1990; Pfeiffer et al., 1996) and, crucially,
display a range of propagation speeds (Wong and Prince, 1990).
Slices were incubated in a conventional, nonepileptogenic ACSF
until after the cells were patched and electrophysiology record-
ings had started. Only then was the Mg>* washed out, thus en-
abling an accurate assessment of the time course of the evolution
of epileptiform activity. Vg, recordings from pyramidal cells
showed two types of activity induced by the switch to 0 Mg>™"
ACSEF: predominantly inhibitory barrages and rhythmic excita-
tory full ictal events.

The inhibitory barrages were a transient pattern of activity
(Fig. 1A). In the earliest full ictal events, long runs of these inhib-
itory barrages preceded the first large excitatory volleys (Fig. 1 B).
In contrast, in slices having experienced many ictal events, the
late events show an almost immediate switch to excitation (Fig.
1C). In these late events, this first volley was overwhelmingly
excitatory, although it was often led by a short (10100 ms long)
flurry of IPSCs (Fig. 1C, open arrowhead). The late events lack
any preceding, predominantly inhibitory events.

To quantify this change, we counted the number of predom-
inantly inhibitory barrages after the switch to the regular
6-rhythm of barrages (0.5-2 Hz) that lead each successive ictal
events (Fig. 1B, arrows). There was a progressive drop in the
number of preceding inhibitory barrages with each successive
ictal event (Fig. 2A) (102 ictal events from 20 brain slices). These
changes were apparent in recordings in which the series resis-
tance was stable.

We previously showed that the inhibitory barrages immedi-
ately preceding an ictal event constitute a powerful feedforward
inhibition from already activated regions of cortex and that these
barrages serve to delay recruitment of pyramidal cells to the event
(Trevelyan et al., 2006). A loss of these inhibitory barrages then
should lead to faster neuronal recruitment and thus faster ictal
propagation. To test this hypothesis, we examined recordings
from pairs of pyramidal cells separated by >300 wm. These
paired recordings showed a progressive increase in propagation
velocity with each successive ictal event (Fig. 2B) (p < 0.05,
multigroup ANOVA). The mean propagation of the first two
events (pooled because they did not differ significantly) was
0.105 £ 0.015 mm/s (mean * SEM; n = 17; range, 0.019-0.219
mm/s). The mean speed of late ictal events (after more than six
events) was 9.52 = 3.80 mm/s (mean * SEM; n = 13; range
0.157—47 mm/s). Furthermore, the delay in activation of the later
recruited cell was highly correlated with the number of preictal
inhibitory events in that cell (Fig. 2C) [p < 0.001; 47 ictal events
from 11 brain slices; range of delays (normalized to 1 mm sepa-
ration of cells) was 36 ms to 53 s, a 1500-fold range].

Visualization of rapid propagation using calcium imaging
We confirmed this change in propagation velocity using low-
magnification imaging of slices bulk labeled with the Ca** dye
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Figure 1.  Progressive loss of preictal inhibitory barrages on to pyramidal cells coincides with progressive increase in epilepti-
form propagation velocity. 4, V,y,.,,, recording from a layer 5 pyramidal cell held at —30 mV, approximately half-way between the
GABA, and glutamate reversal potentials. Note the progressive disappearance of inhibitory synaptic volleys (upward deflections;
arrows) with successive ictal events (numbered 1 6). B, Expanded view of an early ictal event from another layer 5 pyramid, to
show how preictal inhibitory barrages were counted for the analysis shown in Figure 2, A and C. Counts were made between the
time of the switch to the regular 0.5-2 Hz frequency (i.e., delay of >2 s before the first arrow) and the time of the first predom-
inantly excitatory barrage (arrows underneath trace). €, Expanded view of a late seizure (the same cell as in B) showing the
absence of rhythmic preictal inhibitory barrages, although the event is preceded by a brief burst of IPSCs (arrowhead).
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Figure2. Correlation between loss of preictal barrages and propagation velocity. 4, Plot showing the reduction in the number

of preictal inhibitory barrages with successive ictal events. B, The increase in propagation velocity with successive ictal events. In
both A and B, asterisked data points indicate significant difference from event number 1 ( p << 0.05). Error bars show the SEM. n
is number of slices. €, Delay between recruitment of pairs of layer 5 pyramidal cells separated by =300 p.m plotted against the
number of preictal barrages. The delay is normalized to a separation of 1 mm. Thus, the velocity of the event s the reciprocal of this
“normalized” delay. There is a highly significant correlation between the delay and the number of inhibitory barrages (8 slices; 37
ictal events).

OGBI. Rather than attempt to derive signals from individual
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We next imaged at a higher magnifica-
tion to examine the change in the pattern
of recruitment of individual neurons.
These experiments showed two key differ-
ences between the early and late events:
first, in the number of steps it took an in-
dividual neuron to reach the maximal
Ca’" fluorescence, and second, in the syn-
chronization of recruitment of neurons in
the field of view. The typical pattern of
neuronal activation in early events was for
the firing rate of the cell to ratchet up over
several successive synaptic barrages (Fig.
4 Ai,Bi). This pattern was apparent in both
electrophysiological recordings and from
Ca** imaging data. It contrasted sharply
with late events, when cells tended to show
a single sudden step in the Ca** fluores-
cence change (seen as a single peak in the
derivative, or a single white band in the
derivative grayscale “raster” plots) corre-
sponding to a step change in firing rate
(Fig. 4 Aii). Furthermore, this single re-
cruitment event was synchronized in all
cells within the field of view, contrasting
with the staggered recruitment during
early events (Trevelyan et al., 2006). Thus,
late ictal events generalized extremely rap-
idly (Fig. 4C).

Discussion

Previous studies of epileptiform spread
have consistently reported extremely
rapid ictal propagation across cortical slice
preparations (20—100 mm/s) (Chervin et
al., 1988; Wadman and Gutnick, 1993;
Albowitz and Kuhnt, 1995; Pinto et al.,
2005; Trevelyan et al., 2006). The excep-
tion is the 0 Mg>" model in which epilep-
tiform activity can propagate up to three
orders of magnitude more slowly (~100—
250 pm/s) (Wong and Prince, 1990;
Trevelyan et al., 2006). Our recent work
showed that the slow propagation in this
model was caused by a powerful feedfor-
ward inhibition, ahead of the ictal front
(Trevelyan et al., 2006). This feedforward
inhibition coincides with the phasic exci-
tatory volleys from neurons already
recruited to the event and can veto this
excitatory drive, thereby causing the
wavefront to stall. Because the ictal event
does not progress between crisis times,
each crisis resisted constitutes a significant

cells, we instead took “line scans” through the neuropil of infra-
granular layers to chart the progression of ictal events, while si-
multaneously recording layer 5 pyramidal cells (eight slices).
Early events progress in a slow, stepwise manner (Fig. 3A). In
contrast, late events engulf the entire field of view within a single
time frame, when imaged at 60 Hz (i.e., in <17 ms) (Fig. 3B). In
this way, they strongly resemble ictal events induced by blockade
of GABA, receptors, which likewise progress across the entire
field of view almost instantaneously (Fig. 3C).

delay. In essence, the number of preictal barrages is a tally of the
crises that neuron resisted. We now show that there is a very high
correlation between the number of preictal barrages and the la-
tency of activation of downstream neurons, over a 1000-fold
range of propagation velocities. Thus, the entire range of propa-
gation speeds, from the very fast to the very slow, can be under-
stood in terms of how many network crises are resisted.

A previous study of epileptiform propagation using the 0
Mg>" model (Wong and Prince, 1990) reported that some slices
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Figure3.  Neuropil calcium imaging demonstrates the transition from slow to rapid propagation. 4, Line scan through layer 5 during an early 0 Mg ™ event, plotted with a Vjamp recording of a
layer 5 pyramid held at —30mV. The locations of the recorded cells within each line scan are indicated by the arrowheads. The line scan clearly shows the discontinuous progress, with a prominent
step just beyond the recorded cell. B, Linescan of a late 0 Mg 2" event together with Vtamp trace from a layer 5 pyramidal cell (—30mV; cell location indicated by the dotted line). The entire field
of view is incorporated into the ictal event simultaneously. The corresponding V,, ,, recording shows the loss of the preceding inhibitory barrages and the first excitatory barrage temporally aligned
with the Ca** signal. €, Linescan view of an ictal event induced by disinhibition, together with a current-clamp recording of a layer 5 pyramidal. These recordings show the extreme rapidity with
which individual neurons, and indeed whole tracts of cortex, are recruited to an event when inhibition is compromised.
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Figure4.  Somatic calciumimaging demonstrates a change in the recruitment patter of neurons from early tolate 0Mg > events. 4, Electrophysiological recordings showing the typical patterns
of recruitment of layer 5 pyramidal cells to early (4f) and late (Ai) ictal events. Note the progressive increase in the numbers of action potentials with each ictal crisis in the early event, contrasting
with the instantaneous step change in firing at the start of the late event. B, The somatic Ca®" signals (somatic signal with surround subtracted (center-surround signal), and normalized to the
maxima), from the same three neurons at the onset of an early and a late event. Bif, The temporal derivative of the Ca signals for the same three neurons during the early and late events. To the right
of the trace of cell 3 is a grayscale showing how the derivative plots for individual neurons are converted to the grayscale plotimmediately below the trace. C, Grayscale plots for all of the neurons
showinga clear Ca2* signal within a 340 X 340 um field of view. The data from two separate slices are shown, illustrating the staggered recruitment pattern during an early event (Ci), as evident
when the maximal d(AF)/dt is marked (Ci, right plot), and a late event (Cif) in which virtually every neuron is recruited in a single step, simultaneously across the entire field of view.

showed rapid generalization from the start of the recordings.
Crucially, these slices had been preincubated for a prolonged
period in 0 Mg>*. We never detected rapid generalization in the
earliest recorded events, suggesting that the slices in Wong and
Prince’s study that did show such rapid generalization had actu-
ally experienced many ictal events before the start of the record-
ings. Notably, this previous study used slices from adult guinea
pig and reported the same range of velocities as we report here in
slices taken from juvenile mice (postnatal day 13-18).

The rapid propagation in all disinhibition models (Chervin et
al., 1988; Wadman and Gutnick, 1993; Albowitz et al., 1998; Pinto

etal., 2005; Trevelyan et al., 2006), and also of late 0 Mg>™ events,
is simply explained by neurons succumbing to the first paroxys-
mal excitatory volley they experience. Pinto et al. (2005) showed
that this rapid propagation is slowed by the glutamatergic antag-
onist DNQX, but appears not to be sensitive to additional sup-
pression of inhibition. The modulation of propagation speed by
DNQX is relatively small (<10-fold change) (Pinto et al. 2005)
compared with the delays caused by the feedforward inhibition.
We conclude therefore that this inhibitory restraint is the prime
determinant of the rate at which in vitro epileptiform activity
propagates. Given that interneuronal circuitry, being predomi-
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nantly local, is relatively preserved by slicing, we believe that the
presence or absence of this critical inhibitory restraint may also
explain the different rates at which seizures generalize in vivo
(Jasper, 1969; Lemieux and Blume, 1986; Kobayashi et al., 1994;
Blume et al., 2001; Timofeev and Steriade, 2004).

It should be noted that 4-aminopyridine (Weissinger et al.,
2005) or 0 Ca®* ACSF (Konnerth et al., 1984) can also induce
slowly propagating seizure-like events. The slow speed of propa-
gation in this latter model has been attributed to nonsynaptic
mechanisms, involving gap junctions, or diffusion of K™ ions
from the ictal wavefront, and thus appears unrelated to the inhib-
itory restraint that we propose.

Why would feedforward inhibition fail with successive ictal
events? Studies using slices from entorhinal cortex bathed in 0
Mg>" suggest that failure of feedforward inhibition coincides
with an increased resistance to common antiepileptics; thus, it is
crucial to understand the mechanisms behind this failure (Dreier
and Heinemann, 1990; Pfeiffer et al., 1996; Dreier et al., 1998).
This will require additional study because there are several rea-
sons why the feedforward inhibition in late 0 Mg>" ictal events
might fail. It could result either from reduced inhibition or from
enhanced excitation. Possible causes for the former include pre-
synaptic depletion (Bekkers and Stevens, 1990), a reduction in
GABA , conductance (Thompson and Gahwiler, 1989; Whitting-
ton et al., 1995), increased threshold for activation of interneu-
rons, changes in the metabolic processing of GABA after intense
neuronal activation (Pfeiffer et al., 1996), internalization of
GABA, receptors (Naylor et al., 2005), or even interneuronal
death induced by the extreme activity during ictal events (Dino-
court et al., 2003). Enhanced excitation may result from potenti-
ation during ictal events (Bernard and Wheal, 1996; Khalilov et
al., 2005), because the combination of synchronous firing and
freely conducting NMDA receptors should be a very powerful
drive for synaptic modification. Some of these mechanisms may
be specific to this particular in vitro model, whereas others, such
as the ictal-induced modification of the network (synaptic or cell
death) could also apply in vivo. Thus, as the inhibitory restraint
fails, the recruitment of pyramids during each ictal crisis will
increase, and the resultant increase in the local excitatory drive
will enhance recruitment still further. For this reason, epilepti-
form activity will tend to evolve quickly from a slow propagation
to a pattern of rapid generalization.
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