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Adaptation Reduces Spike-Count Reliability, But Not
Spike-Timing Precision, of Auditory Nerve Responses
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Sensory systems use adaptive coding mechanisms to filter redundant information from the environment to efficiently represent the
external world. One such mechanism found in most sensory neurons is rate adaptation, defined as a reduction in firing rate in response
to a constant stimulus. In auditory nerve, this form of adaptation is likely mediated by exhaustion of release-ready synaptic vesicles in the
cochlear hair cell. To better understand how specific synaptic mechanisms limit neural coding strategies, we examined the trial-to-trial
variability of auditory nerve responses during short-term rate-adaptation by measuring spike-timing precision and spike-count reliabil-
ity. After adaptation, precision remained unchanged, whereas for all but the lowest-frequency fibers, reliability decreased. Modeling
statistical properties of the hair cell–afferent fiber synapse suggested that the ability of one or a few vesicles to elicit an action potential
reduces the inherent response variability expected from quantal neurotransmitter release, and thereby confers the observed count
reliability at sound onset. However, with adaptation, depletion of the readily releasable pool of vesicles diminishes quantal content and
antagonizes the postsynaptic enhancement of reliability. These findings imply that during the course of short-term adaptation, coding
strategies that employ a rate code are constrained by increased neural noise because of vesicle depletion, whereas those that employ a
temporal code are not.
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Introduction
All sensory systems face the challenge of encoding an efficient
representation of behaviorally relevant stimuli in the external
world (Barlow, 1961). Adaptation is a common feature of sensory
systems that yields an efficient sensory code by removing redun-
dant information inherent in environmental cues (Barlow, 1961;
Laughlin, 1989; Brenner et al., 2000; Fairhall et al., 2001). One
specific form of adaptation is a decrease in a neuron’s firing rate
in response to a constant stimulus (Adrian and Zotterman,
1926). Possible roles for this rate adaptation in auditory neurons
include enhancement of acoustic transients (Delgutte, 1980) and
input– output gain control (Dean et al., 2005).

Sensory neurons encode information by using the number of
spikes and/or the precise timing of these spikes, strategies referred
to as rate and temporal coding, respectively. The distinction be-
tween these two codes is mostly heuristic because when the
counting window is narrowed the two coding strategies converge.
However, trial-to-trial response variability in either spike count
or spike timing represents noise in the neural signal and can
constrain the ability of neurons to efficiently transmit informa-

tion (Rieke et al., 1997). Understanding the underlying cellular
mechanisms that determine response variability in different sen-
sory neurons promises insight into the limitations of neural
coding.

The limitations of rate and temporal coding can be studied
readily in the peripheral auditory system because both strategies
are used to convey information about the acoustic environment.
The tonotopic arrangement of hair cells and primary afferents
allows sound frequency to be encoded using the number of spikes
by a rate-place code. Alternatively, some sound frequencies can
be encoded using the precise timing of spikes by phase-locking to
the stimulus waveform (Kiang, 1965; Rose et al., 1967; Heinz et
al., 2001). Furthermore, firing rate, synchronization, and phase
cues can all encode changes in sound level (Kiang, 1965; Ander-
son et al., 1971; Johnson, 1980; Colburn et al., 2003). As in all
other sensory systems, trial-to-trial variability in spike count and
timing imposes limitations on discrimination performance
(Heinz et al., 2001).

We examined the impact of rate-adaptation on the response
variability of both spike timing (precision) and spike count (re-
liability) by comparing initial and adapted time epochs of single-
unit responses recorded in the auditory nerve. In response to a
constant stimulus, the firing rate of a cochlear neuron rapidly
decreases to a maintained firing rate over a time course of tens of
milliseconds (Kiang, 1965; Westerman and Smith, 1984; Crum-
ling and Saunders, 2007). This rapid form of adaptation is likely
mediated by exhaustion of release-ready synaptic vesicles in the
cochlear hair cell (Furukawa et al., 1978; Moser and Beutner,
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2000; Spassova et al., 2004). Furthermore, cochlear ganglion cells
are not subject to any intrinsic neural feedback circuitry and their
responses are statistically independent from each other (Johnson
and Kiang, 1976). Thus, short-term adaptation in the peripheral
auditory system provides the opportunity to study, independent
of circuit properties, how specific synaptic mechanisms limit
neural coding strategies.

Materials and Methods
Animal subjects
Hatchling white leghorn chickens (Gallus domesticus) were obtained
from a commercial breeder (CBT, Cumberland, MD) and studied be-
tween 3 and 24 d of age. The University of Pennsylvania Institutional
Animal Care and Use Committee approved the protocol for the treat-
ment and maintenance of animals.

Surgical preparation
The surgical preparation has been described previously in detail (Saun-
ders et al., 1996). Briefly, each animal was anesthetized with an intramus-
cular injection of a 25% solution of urethane at a dose of 0.01 ml/g of
body weight. A tracheotomy was performed to maintain an open airway,
and the left ear canal was excised to expose the tympanic membrane.
Tissue over the calvarium was removed to reveal the posterior-lateral and
superior surfaces. Application of dental cement secured the chick to a
head holder. A 5 mm hole was made through the left posterior-lateral
portion of the skull above the temporal bone to expose the inner bony
layer. Then, a 1.5 mm hole was opened in the inner bony layer to reveal
the endothelial lining of the lateral cochlear wall at the recessus tympani.
The lining was gently pierced with a microdissecting pin and carefully
retracted to reveal the medial wall of the cochlear duct. The cochlear
nerve appeared as a white band within the cartilaginous wall.

Acoustic stimulation
Animals were tested in a double-walled, acoustically shielded chamber.
The head holder was secured to a frame. A heating pad and direct current
halogen lamp maintained body temperature at 41°C. A closed-field
speaker [Beyer Dynamic (Hicksville, NY) earphone, model DT-48] stim-
ulated the ear through a sound tube (10 cm long, 5 cm diameter). The
sound tube was fitted with a 0.5 mm probe-tube microphone (Model
ER-7; Etyomotic Research, Elk Grove Village, IL), which was placed �2
mm in front of the tympanic membrane. The second harmonic of the
earphone was 60 –74 dB below the fundamental across all tested frequen-
cies. Output from the probe microphone was connected to the analyzer
module of a frequency synthesizer (System One; Audio Precision, Bev-
erton, OR) and converted to decibels relative to 20 �Pa [decibels sound
pressure level (dB SPL)]. The generator module of the synthesizer pro-
duced tonal and noise stimuli under computer control. An automatic
calibration procedure achieved a constant sound intensity level of 100 dB
SPL between 0.1 and 4.0 kHz. By adjusting the synthesizer output volt-
age, the earphone could present different sound intensity levels to the ear
(Saunders et al., 1996).

Cochlear nerve recording
A borosilicate glass microelectrode (15–30 M�) filled with 3 M KCl was
secured to a microdriver, inserted into scala tympani, and advanced in 1
�m steps. Electrical signals were amplified, fed to an oscilloscope, audio
monitor, and level detector. A broadband noise search stimulus was used
to detect isolated cochlear nerve units. The arrival times of action poten-
tials of well isolated units were stored on hard disk with 10 �s resolution.

Unit characterization
Using 40 ms tone bursts, a tuning curve was constructed for each unit by
recording the evoked discharge rate at different intensity-frequency
combinations between 0 and 100 dB SPL and 0.1 and 6.0 kHz. From the
tuning curve, the characteristic frequency (CF) and rate-level threshold
at CF (CF-Th) were determined visually.

Experimental stimulus protocol
Cochlear nerve units were stimulated with repeated phase-locked 40 ms
tone bursts (rise/fall time, 2.5 ms) at CF and �20 dB re CF-Th. A 400 ms
silent interval between tone bursts allowed recovery of the cell from
neural adaptation (Spassova et al., 2004). We defined the presentation of
each tone burst as one trial. At least 200 trials were presented to each cell
and the occurrence times of spikes on each trial were recorded.

Inclusion criteria for cells
The three inclusion criteria for this study are as follows.

Data sufficiency. The analysis only included cells with at least 200 trials
containing a total of at least 500 recorded action potentials. This ensured
that a sufficient amount of spike data were available to determine the
neural response variability of each cell.

Preparation health. Only cells with a CF-Th �80 dB SPL were in-
cluded. This ensured that the data set was not contaminated by record-
ings from damaged or unhealthy preparations. The cutoff of 80 dB SPL is
5 dB SPL higher than the highest threshold reported previously for
healthy chicks (Saunders et al., 1996).

Data stationarity. Successful interpretation of the analysis of response
variability required that the neural responses arose from a stationary
process (Rieke et al., 1997). Thus, only a subset of consecutive trials (data
epochs) in which the mean spike count (firing rate) of the cell remained
relatively stable were analyzed. The earliest 200 trial data epoch for which
the mean spike count of any 10 trial block deviated �40% from the mean
spike count of any other 10 trial block was selected. Cells that failed to
exhibit a “stationary” 200 trial epoch were discarded from the analysis.
This minimized confounding the analysis with possible changes in the
physiological state of the cell, fidelity of the recording electrode, or spike
detection. The first data epoch that met this criterion was selected rather
than the epoch that was most stable to avoid selecting epochs that over-
estimated the reliability of the cell’s response. However, even when data
epochs and cells were not selected for stationarity, the major findings
presented here remained the same.

Of the 145 cells for which 200 or more trials were recorded, only one
cell was excluded for having �500 recorded spikes. Of the remaining 144
cells, nine were excluded for having thresholds �80 dB SPL. Finally, 50
cells failed the stationarity test, leaving a total of 85 cells that met the three
inclusion criteria. These cells had a range of CFs from 0.12 to 3.25 kHz.

Selection of analysis window
Exclusion of the 5 ms associated with the rise and fall time of the stimulus
limited the window of analysis for each trial to 35 ms. We also corrected
for conduction time down the sound tube, which, based on its length,
was 0.269 ms. This adjusted the 35 ms window so that it included only the
time when the stimulus was present at the tympanic membrane at full
intensity. The “group delay” that encompasses latencies caused by mid-
dle ear conduction, cochlear mechanics, the hair cell transduction mech-
anism, synaptic transmission, and neural conduction (Köppl, 1997) was
not measured because it was beyond the scope of this study.

Event detection
The current analyses are event based, where one event was defined as the
neural response to a single cycle of the sinusoidal acoustic stimulus.
Therefore, the response was divided into a set of consecutive response
events that were each one stimulus period long. The beginning and end
points of these events were determined by calculating the mean phase
angle of the response, which yielded a set of preferred response times
(Goldberg and Brown, 1969). Each event was a cycle-long window cen-
tered on a preferred response time, as depicted by the large black circles in
Figure 1 A. Only events that fell fully within the 35 ms window were
included. Partial events at the beginning or end of the window were not
considered. In a small number of cells, the spike count during the initial
events was unstable, perhaps because of an unaccounted-for group delay
causing the analysis window to include events responding to the stimulus
ramp. To minimize contamination by the stimulus ramp, the “first
event” was defined as the first of the two earliest consecutive events for
which the spike count of the subsequent event did not increase by 50%.
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Analysis of spike-timing precision
To obtain a measure of spike-timing variability (temporal jitter) the
distribution of the first spike latency of each response event was exam-
ined (Berry et al., 1997; Uzzell and Chichilnisky, 2004). This temporal
jitter was quantified as the SD (�) of spike occurrence times in the event
where only the first spike in each trial was included in the analysis. Thus,
for each event, � was calculated using the following equation.

� � � 1

�n � 1��
i�1

i�n

�ti � t��2 , (1)

where n equals the number of events that contain at least one spike, ti a
first spike occurrence time, and t� is the mean first spike occurrence time
across all trials. Because spike data are discretely sampled in time, � can
be underestimated. For example, if all spikes occur in one bin, � would be
zero, when in fact some of those spikes may have occurred at different
times within the bin. A conservative estimate then is to add a correction
factor equal to half of the sampling bin size, which represents the case
where half the observations occur on one side of the bin whereas the rest
occur on the other (Rokem et al., 2006). Because the sampling bin was 10
�s, the correction factor was only 5 �s and was added to all estimates of
�. For each cell, the mean temporal jitter across all response events was
calculated. Furthermore, to compare initial and adapted states, the mean
temporal jitter of events that fell fully within the first 10 ms (initial) and
the last 10 ms (adapted) of the response was measured. The initial epoch
was the first 10 ms that started at the beginning of the first response event.
The adapted epoch was the latest 10 ms window that started at the same
phase as the initial one. In addition, the most central 10 ms window that
started at the same phase was analyzed. For the purposes of this study, a
decrease in spike-time precision was defined as an increase in temporal
jitter.

The temporal jitter of spike times was measured on a cycle-by-cycle
basis. Implicit in this calculation of spike-timing variability was the as-
sumption that temporal coding in the auditory nerve is characterized by
regular spike intervals corresponding to the stimulus period, and that the
regularity of these intervals is directly related to the ability to phase lock.
The measure of temporal jitter was based on the SD of spike times calcu-
lated directly from the neural response. Previous reports of the variability
in spike times in the auditory nerve have relied on temporal dispersion, a
measure that assumes a rectangular (Hill et al., 1989; Köppl, 1997) or
Gaussian (Paolini et al., 2001) distribution of spike times and that is
derived from the vector strength (synchronization index). We compared
temporal jitter to temporal dispersion based on a Gaussian distribution
(Paolini et al., 2001) and found a significant difference (paired t test, p �
1.93 	 10 
8). Temporal dispersion was on average 2% smaller and, thus,
tended to slightly overestimate precision (data not shown). Thus, tem-
poral jitter captures the variability in spike-timing without assumption in
a way that is comparable with other auditory nerve studies as well as
similar studies in other sensory systems (Berry et al., 1997; Uzzell and
Chichilnisky, 2004).

Analysis of spike-count reliability
The variability in spike count was defined as the variance of spike count
(�) divided by the mean spike count (�) over 200 trials for windows that
were T � 10 ms long. This yielded the Fano factor (FF) (Fano, 1947):

FF��/�. (2)

The window, T, was slid by �t � 10 �s increments (the sampling
resolution) across the 35 ms stimulus duration to obtain the FF for each
starting time, t. The mean FF for each neuron was calculated across all
values of t as well as the FF of the first 10 ms (initial) and the last 10 ms
(adapted) window. Starting with the initial and adapted windows at the
same phase controlled for possible periodic variations in the FF. In addi-
tion to the first and last 10 ms, the middle 10 ms window was analyzed.
All three time epochs were identical to those selected in the spike-timing
analysis. For the purposes of this study, a decrease in spike-count reli-
ability was defined as an increase in the FF.

We equate variability in spike count with neural noise that constrains
the ability of cochlear neurons to transmit information via a rate code.
However, variability can be measured on different time scales and the
time scale chosen imposes an experimenter’s assumption as to how mes-
sages are decoded in downstream areas. Furthermore, there is probably
more than one relevant time scale with which the CNS decodes auditory
information. In measuring the FF, a counting window of 10 ms was
chosen. This interval is not meant to suggest that 10 ms is the temporal
integration window of the CNS. Rather, it was selected because it was
larger than the stimulus cycle period of any pure tone generated in this
study, and therefore there was always at least one cycle of data on which
to base the FF calculation. It is also a time window that has been used in
a number of other studies (de Ruyter van Steveninck et al., 1997; Buracas
et al., 1998; Uzzell and Chichilnisky, 2004; Schaette et al., 2005) and
allows comparison of present results with those in other sensory systems.
We also calculated FF using different counting windows ranging from 1
to 35 ms (data not shown) and the resulting mean FF values were stable in
the 5–35 ms range. At shorter durations, the FF increased and ap-
proached one, consistent with previous findings that report Poisson sta-
tistics for very short counting windows (Teich et al., 1990).

Error estimation
In measuring the variability of spike counts and times, we are interested
in the variability of the true underlying response statistics. Because ex-
perimental data are finite, the current measures only estimate the true
variability. Therefore, bootstrap procedures were used to estimate the
errors in �, �, �, and FF. Synthetic data sets were generated from the
estimated spike-timing and -count probability distributions (Kass et al.,
2005; Schaette et al., 2005). For each estimate of � from the real data,
1000 synthetic data sets were generated with the same number of obser-
vations as the real data set. From these, the associated � values were
calculated. The SD of these 1000 synthetic � values was taken as the
estimation error for �. An analogous procedure was performed for error
estimates of �, �, and FF using spike-count distributions, also with 1000
samples.

Synchronization hypothesis testing
Temporal jitter was measured from the first spike times in analysis win-
dows that were the length of a stimulus cycle period. Thus, even for a
response event in which spike timing was random within a cycle (i.e., the
distribution of spike times is uniform), the temporal jitter would equal
�1⁄12 or �0.28 of the stimulus period. This can be derived by evaluating
the integral for the variance (Eq. 3) over a stimulus period and taking its
square root:

�2 � �
0

T

P�t��t � �t�
2dt, (3)

where for a uniform probability distribution over the time window, T,
P(t) � 1/T, and its mean, �t � T/2.

In a finite data set, a response event that has no synchronization or
phase preference could yield a � less than the derived theoretical one.
Thus, for each event, spike times from an unsynchronized, uniform dis-
tribution were simulated. The number of spikes was matched to the
number used to calculate the measured � for that event. Finally, the � of
the simulated spike times was calculated and the process repeated 1000
times. Thus, an estimate of the probability that a “non-phase-locked”
event would generate spike times with � equal to or less than the mea-
sured value was obtained. If p � 0.05, the event was considered signifi-
cantly phase locked and, therefore, the temporal jitter value was consid-
ered reflective of actual spike-timing precision and not just a result of
measurement noise.

Poisson hypothesis testing
The firing rate of cochlear neurons responding to constant pure tones is
time-varying such that it is higher at preferred stimulus phases and at the
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beginning of the stimulus because of phase locking and neural
adaptation, respectively. If the probability of a spike occurring at a given
time depended only on the instantaneous firing rate at that time and not
the occurrence of any other spikes, the neural response would be de-
scribed as a Poisson process (Rieke et al., 1997). This would be the most
random process possible for a given instantaneous firing rate function.
The FF of a Poisson process is always 1 regardless of the location or length
of the counting window, although the converse is not necessarily true: an
FF of 1 does not mean a process is Poisson. Because estimates of FF are
from finite data and may deviate from 1 even if the data were generated
by a Poisson process, we tested whether a Poisson process could have
generated an FF equal to or less than the measured FF. To test this null
hypothesis, spike data were simulated for each cell in which the proba-
bility of a spike occurrence was equal to the instantaneous firing rate as
derived from the cell’s peristimulus time histogram (DeWeese et al.,
2003). For each cell, 200 trials of data were generated and the FF calcu-
lated at each time point. The process was repeated 1000 times and used to
calculate the probability that the simulated FF value at each time point
equaled or fell below the measured value. The measured FF was consid-
ered to be significantly lower than that possible from a Poisson process if
the probability p was �0.05.

Statistical analysis of means
The � and FF were measured for cells with different CFs and at three
different 10 ms time windows during adaptation. To test the statistical
significance of changes in the dependent variables � and FF caused by
changes in CF or time window, the cells were divided into four logarith-
mically spaced frequency bins (123–278 Hz; 279 – 631 Hz; 632–1432 Hz;
1433–3247 Hz). A two-way repeated-measures (one repeated factor)
ANOVA was undertaken for each dependent variable with CF and time
window as factors. If effects were significant, paired comparison post hoc
Tukey tests were run. Because both ANOVAs revealed significant effects,
reported p values were taken from comparisons made with the post hoc
tests.

Modeling statistical properties of the hair cell-afferent
fiber synapse
The properties of a synapse adhering to binomial statistics are described
by the mean number of vesicles released or quantal content (Eq. 4), the
variance of the quantal content (Eq. 5), and, finally, the Fano factor (Eq.
6).

�vesicle � Npvesicle, (4)

�vesicle � �vesicle�1 � pvesicle�, (5)

FFvesicle � �vesicle/�vesicle � 1 � pvesicle , (6)

where N equals the number of releasable vesicles and pvesicle is the average
release probability. Furthermore, the probability of any given number of
vesicles being released is defined by Equation 7:

px � 
N!/��N � x�!x!�� pvesicle
x(1
pvesicle)

(N
x) , (7)

where x is the number of vesicles released.
In our preparation, we cannot measure directly quantal content be-

cause the single-unit recordings report only suprathreshold responses.
However, hair cell–afferent fiber synapses possess a unique attribute such
that a single vesicle is sufficient to elicit a postsynaptic action potential
(Siegel, 1992; Glowatzki and Fuchs, 2002). This so-called “uniquantal”
nature of the hair cell-afferent fiber synapse is presumably mediated by a
low-threshold afferent fiber. The postsynaptic fiber should, in theory,
report all synaptic responses with a spike except for the failures when no
vesicles are released (x � 0) or when the fiber is refractory. Thus, an
analogous set of statistical parameters can be derived to predict the ex-
pected spiking responses from the single-unit recordings. By evaluating
px when x � 0 for any hypothetical number of releasable vesicles, an
apparent spike probability of (1 
 px � 0) is obtained where all but the
failures lead to a spike. Substituting this apparent spike probability into
the basic binominal descriptors of Equations 4 – 6 yields the mean num-

ber of spikes (Eq. 8), the variance of the number of spikes (Eq. 9), and,
finally, the Fano factor (Eq. 10):

�spike � �1 � px�0) (8)

�spike � �spike�1 � �1 � px�0�� � �spikepx�0 (9)

FFspike � �spike/�spike � �1 � �1 � px�0�� � px�0. (10)

The simple binomial description of vesicle release suggests that
FFvesicle should be independent of N (Eq. 6). However, the statistics of
predicted spiking behavior suggest that FFspike does depend on N (Eqs. 7,
10). These relationships were considered for a brief counting window
such that only one spike or less was expected to occur. If longer windows,
such as the 10 ms window used in the data analysis, were modeled to
allow multiple independent release events, then FFvesicle and FFspike

would remain as defined by Equations 6 and 10. However, because the
model does not include refractoriness, it provides an upper bound to
FFspike as negative temporal correlations between spikes that arise from
refractoriness would reduce FFspike (Young and Barta, 1986; Berry and
Meister, 1998).

Results
Patterns of chick auditory nerve discharge
We recorded the spike discharge times in vivo from chick (Gallus
domesticus) auditory nerve units during repeated identical pure
tone stimulation at the CF of each neuron. Four representative
examples of spike firing patterns from cells with CFs of 151, 449,
951, and 2156 Hz are shown in Figure 1. The raster plots demon-
strate a clear temporal relationship between the sinusoidal acous-
tic stimulus and the discharge of the nerve cell. At low frequen-
cies, it is particularly obvious that spikes occur at a preferred
phase of the stimulus cycle, a phenomenon commonly referred to
as phase-locking (Rose et al., 1967). With increasing characteris-
tic frequency, the temporal structure of the response degrades
(Fig. 1, compare A, D) as the stimulus cycle shortens, a finding
that is consistent with previous studies in chickens and other
species (Kiang, 1965; Rose et al., 1967; Palmer and Russell, 1986;
Hillery and Narins, 1987; Köppl, 1997; Furman et al., 2006).
These temporal responses patterns are typical of the rest of the
units in this study.

The raster plots of the two higher-frequency cells (Fig. 1C,D)
exhibit a visually noticeable reduction in the number of spikes
occurring during the latter part of the stimulus duration. This
reduction in firing rate is indicative of a second well known phe-
nomenon, that of short-term adaptation (Kiang, 1965; Wester-
man and Smith, 1984). In chick auditory nerve, the average time
constant of adaptation is 19 ms, but is much more pronounced in
higher CF cells (Fig. 1, compare A,B with C,D), where the time
constants of adaptation can be four times faster (Crumling and
Saunders, 2007).

Spike-timing precision improves with increasing CF
An extraordinary feature of the peripheral auditory system is its
ability to generate precisely timed spikes that are phase locked to
the acoustic stimulus waveform (Kiang, 1965; Rose et al., 1967;
Köppl, 1997). The temporal precision of auditory nerve re-
sponses from trial to trial has usually been measured using tem-
poral dispersion, a quantity that is derived from the vector
strength of the response (Goldberg and Brown, 1969) by assum-
ing a rectangular or Gaussian distribution of spike occurrence
times on each stimulus cycle (Hill et al., 1989; Köppl, 1997; Pa-
olini et al., 2001). To avoid an assumption about the shape of the
distribution, we measured the variability in spike timing on each
stimulus cycle as the SD in spike times (temporal jitter; �) ob-
tained directly from the neural data.
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In the same four cells as in Figure 1, � of individual events
tended to be distributed around a fairly stable mean value for a
given CF (Fig. 2). Furthermore, temporal jitter decreased as CF
increased from a mean value of 429 �s at 151 Hz to 107 �s at 2156
Hz. This increase in temporal precision seemed counter-intuitive
to the observation that in this preparation, phase locking de-
grades with increased CF (Fukui et al., 2006; Furman et al., 2006).
However, classical measures of phase locking are with respect to
phase and can be misleading with respect to time. Because the
length of the stimulus period decreases with increasing CF, even a
poorly phase-locked response from a high-frequency cell can be
temporally precise.

It is possible, given a finite data sample, to measure a very
precise temporal jitter during the course of a brief stimulus cycle
period that arises from random non-phase-locked responses. We
used a Monte Carlo procedure, which generated simulated un-
synchronized data (see Materials and Methods) to test whether
the observed � of individual events deviated significantly from �
attributed to unsynchronized or random firing during a compa-
rable stimulus period. The open red circles in Figure 2D identify
response events with temporal jitters that are not different from
the temporal jitter of an unsynchronized or randomly firing neu-

ron (see Materials and Methods). Rather
than reflecting an absolute upper fre-
quency limit to phase-locking, these
marked events probably reflect an inability
to measure small deviations from unifor-
mity because of measurement noise in a
finite data sample.

We calculated a mean � for each neu-
ron by averaging across all individual ob-
served events. The mean temporal jitter as
a function of CF declines from low to high
frequencies and ranges from 576 �s down
to 79 �s (Fig. 3), and is consistent with a
previous study in chick that measured
temporal jitter across CF (Fukui et al.,
2006). The curved solid line on Figure 3
represents the temporal jitter that an un-
synchronized neuron yields from the
cycle-long window analysis. This corre-
sponds to the stimulus period multiplied
by �1⁄12 (for derivation, see Materials
and Methods). Note that all � values lie
below this line, suggesting that all neu-
rons fired with a temporal precision that
was better than unsynchronized. How-
ever, the red data points represent re-
sponses from which the mean � contains
�5% individual events that were not sig-
nificantly different from an unsynchro-
nized response as determined by the
Monte Carlo procedure. Nevertheless,
even in the cell with the smallest number
of synchronized events, 22% of the events
were significantly synchronized, demon-
strating that some phase locking was mea-
surable at all frequencies studied. Thus,
even at frequencies up to 3 kHz, chick au-
ditory nerve cells can track the acoustic
waveform. These data demonstrated an
increase in precision at higher frequencies.
However, the experiments do not address

whether this increase was caused by faster modulations in the
stimulus waveform, tonotopic specializations in the hair cell-
afferent fiber synapse, or an increase in the effect of refractoriness
caused by shortened interspike intervals.

Spike-timing precision does not degrade during
neural adaptation
The ability of a cochlear neuron to fire with temporal precision
could degrade with duration of stimulation, especially if presyn-
aptic mechanisms responsible for spike-rate adaptation also con-
tribute to the timing of neurotransmitter release. We tested the
effect of duration of stimulation on temporal precision of audi-
tory nerve responses by comparing the mean temporal jitter of
events that occurred in the initial 10 ms of the response with the
mean temporal jitter of those that occurred in the adapted or last
10 ms of the response. We also analyzed the middle 10 ms of the
response. Only events that fit completely in these 10 ms epochs
were included. When we compared initial and adapted � as a
function of CF (Fig. 4), there was no significant difference be-
tween the temporal jitter of the initial and adapted periods at any
frequency ( p � 0.16). Thus, on the time scale of short-term
adaptation, auditory nerve spike-timing precision remained un-

Figure 1. Examples of cochlear nerve responses to pure tones. A, Raster plot of the response of a single unit to multiple
presentations of a pure tone at CF. The small dark ticks represent occurrences of spikes. The solid wavy line represents the pressure
waveform of the pure tone stimulus at the tympanic membrane. The large black circles are the boundaries of the first event in the
response (see Materials and Methods). The number at the top left of each panel is the CF and stimulus frequency. B–D, Same as A
but for cells with progressively higher CFs.
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changed. This suggests that the critical sig-
naling steps leading to neurotransmission at
the hair cell-afferent fiber synapse are not
temporally degraded during adaptation.

Auditory nerve responses are reliable
Variability in the number of spikes occur-
ring in response to identical repeated stim-
uli is one indicator of the reliability of a
neural response. We calculated the mean
(�) and variance (�) of the spike count in a
10 ms window across 200 trials for each
cell. The window was moved across the 35
ms stimulus duration in 10 �s steps start-
ing at the beginning of the first event with
� and � calculated at each step. Figure 5
shows the relationship between the mean
spike count and its variance for the four
representative units from Figure 1. The au-
ditory nerve responses can approach the
theoretical minimum variance for any
given mean spike count. This minimum
variance is depicted by the solid scalloped
curves in Figures 5 and 6, and is described
by �min � f(1 
 f), where f is the fractional
difference between the mean spike count
and its nearest integer value (de Ruyter van
Steveninck et al., 1997). The low-
frequency cell with a CF of 151 Hz (Fig.
5A) as well as all 10 ms windows observed
for all cells with CFs of 278 Hz or less (Fig.
6, red dots) approach this maximal reli-
ability. Similar minimal variance is also
observed for cells in the frequency band
between 279 and 631 Hz, but to a some-
what lesser degree (Figs. 5B, 6, green dots).
At higher frequencies, the spike-count
variance continues to deviate from its theoretical minimum
(Figs. 5C,D, 6, yellow and blue dots).

Although the variability of the nerve responses varied greatly,
all cells examined (Fig. 5, 6) demonstrate a mean spike count that
is greater than its variance as all data points lie below the unity
line. A unity relationship exists between the mean spike count
and its variance if the probability of a spike occurring at one time
is independent of the occurrence of spikes at any other time, as
would be expected from a Poisson stochastic point process (Rieke
et al., 1997). Thus, the sub-Poisson relationship between the au-
ditory nerve’s mean spike count and its variance suggested that
these data are not consistent with a simple Poisson spike genera-
tion mechanism, even one with a time-varying firing rate. Instead
there must be temporal correlations between spikes, such as those
caused by refractoriness (Teich and Khanna, 1985; Young and
Barta, 1986; Berry and Meister, 1998). This sub-Poisson reliabil-
ity can be advantageous for neurons using a rate code. The tem-
poral correlations can reduce the variability of temporal patterns
and, hence, are also advantageous to neurons using a temporal
code.

Spike-count reliability decreases with increasing CF
Another useful metric of spike reliability in neural systems is the
Fano factor. The FF is defined as the ratio of the spike-count
variance over the mean spike count, and represents a normalized
variance indicating how reliably a spike count can be estimated

from a time window that contains several spikes on average
(Teich and Khanna, 1985; Zador, 1998). It provides a convenient
measure for comparing spike reliability between cells that have
different mean firing rates. We calculated a mean FF for each cell
by averaging the FFs calculated from successive 10 ms windows
covering the entire stimulus duration and found that FF in-
creased systematically from low- to high-CF cells ranging from
0.03 to 0.59 (Fig. 7A). The increase in FF with CF might be attrib-
utable to a decreased mean spike count (�), an increased spike-
count variance (�), or both. We examined mean � and � as a
function of CF (Fig. 7B,C). On average, � increases from 1.97
spikes (per 10 ms) at the lowest frequencies to 3.21 spikes, where
it remains constant or decreases slightly at frequencies higher
than 400 Hz. Thus, changes in � do not account for the increase
in FF. However, changes in � do, as � showed a systematic in-
crease across CF similar to that found for FF (Fig. 7A,C).

For a Poisson spike-generating process described solely by its
instantaneous firing rate, the mean spike count equals its variance
and, thus, FF � 1. All of our measured FF values fell below 1,
consistent with sub-Poisson behavior. Because the measured FF
values were only estimates of the true spike-count variability, we
were concerned that measured FF values could indeed be gener-
ated by a Poisson process with the same instantaneous firing rate
function as our cells (see Materials and Methods). In only one cell
could a Poisson process have generated any of our measured FFs
(with �5% probability) and this was only true for 7.54% of the 10

Figure 2. Temporal jitter in four cells during adaptation. A, Same raster plot as in Figure 1 A. Large filled red circles are the
temporal jitter of an event with a duration of one stimulus cycle period centered around the symbol. Error bars are SDs of
the temporal jitter estimates as determined by a bootstrap procedure (see Materials and Methods). B–D, Same as in A but for the
same cells as in Figure 1 B–D. Large open red circles are events whose temporal jitter does not vary significantly from the temporal
jitter generated by an unsynchronized response as tested by a Monte Carlo simulation (see Materials and Methods).
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ms windows analyzed in that cell (Fig. 7A, gray symbol). Thus,
essentially all cells examined were significantly more reliable in
their firing than what would be expected from a Poisson process.
However, as CF increased, cells became less reliable as they faced
increased neural noise in the form of a relative increase in spike-
count variance. This constrains their ability to transmit informa-
tion via both a rate code, because spike count was more variable,
and a temporal code, because responses were becoming more
Poisson-like.

Spike-count reliability decreases after neural adaptation
Does short-term rate adaptation influence the reliability of spike
counts? It is unknown whether the variability in spike counts
undergoes changes on a similar time scale as the mean spike
count. Thus, we compared the variability in spike counts between
the beginning and end of the stimulus. Figure 8 shows how FF, �,
and � vary with duration of stimulation for one representative
unit (CF, 2156 Hz; same unit as in Fig. 1D). The FF increases
gradually and is clearly higher by the last 10 ms window than the
first. For the particular cell in Figure 8, the change in FF is pre-
dominantly caused by the decrease in � because � stays relatively
constant. To quantify the impact of adaptation on spike reliabil-
ity, we compared for each cell the initial FF to the adapted FF.

The comparison of FFs between initial and adapted epochs is
plotted as a function of CF in Figure 9A. In addition, we also
analyzed the middle 10 ms window of the response. There was a
significant increase in FF after adaptation except in the lowest
frequency range, where there was no significant increase (initial
FF, 0.10 � 0.02; middle FF, 0.11 � 0.02; adapted FF, 0.14 � 0.02;

p � 0.105). In the highest frequency range, FF more than doubled
(initial FF, 0.26 � 0.01; middle FF, 0.43 � 0.02; adapted FF,
0.53 � 0.03; p � 0.001). To understand better the CF-dependent
effect on FF during adaptation, we examined whether the effect
was simply caused by a decrease in � associated with short-term
rate adaptation or caused by an increase in �, or both. We com-
pared the initial and adapted � and � as a function of CF (Fig.
9B,C). As CF increased, adaptation also increased, as measured
by a decrease in � with duration of stimulation. This was consis-
tent with previous findings (Crumling and Saunders, 2007). The
adapted spike-count variance, �, was only slightly higher than the
initial � and was not significantly different at the lowest frequency
range (Fig. 9C) ( p � 0.53). The increase in FF with duration of
stimulation seen at all but the lowest CFs was due, therefore, to a
decrease in � and not an increase in �. This suggested that the
mechanism responsible for short-term rate adaptation does not
decrease spike-count variance proportionally to the mean firing
rate, and results in decreased response reliability.

Possible mechanisms underlying changes in spike reliability
Adaptation in the peripheral auditory system has been attributed
to a depletion of the readily releasable pool of synaptic vesicles
(Moser and Beutner, 2000; Spassova et al., 2004). In terms of a
binomial statistical model, adaptation has been attributed to a
decrease in N, the number of releasable vesicles, rather than a
change in pvesicle, the average probability of vesicle release (Fu-
rukawa et al., 1978). For a binomial process, the FF is indepen-
dent of N and proportional to (1 
 pvesicle) (Eq. 6). Because it is
impossible to measure quantal transmitter release in the intact

Figure 3. Spike-timing precision improves with higher CF. The mean temporal jitter of all
events is plotted for each cell as a function of CF (circles). Error bars are the average SD of the
temporal jitter estimate as determined by a bootstrap procedure (see Materials and Methods).
Red circles represent units for which �5% of events had temporal jitters that could have been
generated by an unsynchronized event with 5% probability, as tested by a Monte Carlo simu-
lation (see Materials and Methods). Open squares represent averaged data for four logarithmi-
cally spaced frequency ranges. Error bars are the SEs of the mean. The solid curved line is the
temporal jitter expected for an unsynchronized event resulting from using an analysis window
that is one stimulus cycle long. It is equal to the square root of 1/12 divided by the CF (for
derivation, see Materials and Methods).

Figure 4. Temporal jitter is unaffected by short-term adaptation at all CFs studied. The mean
temporal jitter for the first (filled circles) and last (open circles) 10 ms of the response of each
unit is plotted against the CF. Error bars for single units are left out for the sake of clarity and are
on the same order as those for Figure 3. Red circles represent 10 ms windows for which �5% of
events had temporal jitters that could have been produced by an unsynchronized event with 5%
probability as tested by a Monte Carlo simulation (see Materials and Methods). Square symbols
are averaged data for four frequency ranges (same ranges as Fig. 3). The solid curved line is the
temporal jitter expected for an unsynchronized event resulting from using an analysis window
that is one stimulus cycle long. It is equal to the square root of 1/12 divided by the CF (for
derivation, see Materials and Methods).
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Figure 6. All cells have sub-Poisson spike-count variance. The spike-count variance is plot-
ted against the spike-count mean for all 10 ms windows of all 85 cells studied (colored symbols).
Each color represents a different frequency range (top right key). The solid scalloped line is the
minimum variance possible for a given spike-count mean. The solid straight line is the unity line
and represents the variance expected for a Poisson process at each mean. Square symbols are
plotted at the mean of the count mean and count variance for each frequency range.

Figure 7. Spike-count reliability decreases with higher CF. A, The mean Fano factor (spike-count
variance/mean) for each unit plotted against CF. Filled circles are the average FF for all 10 ms windows
in the cell’s response. The single gray circle is a unit for which �5% of the 10 ms windows had
measured FF values that did not vary significantly from an FF generated by a Poisson process with the
same instantaneous firing rate function. This was tested using a Monte Carlo simulation (see Materials
and Methods). B, Spike-count mean as a function of CF. C, Spike-count variance as a function of CF.
Error bars represent the average SD of the count mean, variance, and FF for all 10 ms windows in the
cell’s response as determined by a bootstrap procedure (see Materials and Methods). Large open
squares represent the data binned into four frequency ranges and averaged (same ranges as Fig. 6).
The SEM is smaller than the square symbol size in all cases.

Figure 5. Variance and mean of the spike count for four cells. A, The spike-count variance plotted
as a function of the spike-count mean for the same cell as in Figure 1 A. Each dot represents the
variance and mean for one 10 ms window of the response as the window slides in 10 �s steps across
the whole response window. The solid scalloped line is the minimum variance possible for a given
spike-count mean. The solid straight line is the unity line and represents the variance expected for a
Poissonprocessateachmean.Thenumberatthetopleftofthepanel istheCFandstimulusfrequency.
B–D, Same as in A, but for the same cells as in Figure 1 B–D.
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preparation, we used a binomial statistical model of the hair cell–
afferent fiber synapse to better interpret our single-unit data in
terms of the underlying properties of vesicle release. A unique
response property of this synapse allows us to make a simplifying
assumption about the relationship between vesicle release and
spike generation (see Materials and Methods).

We used Equations 6 –10 to examine the theoretical count,
variance, and FF of both vesicles released and spikes generated
during adaptation that result from a fixed probability of release
( pvesicle), and a progressive decrease in the available number of
vesicles (N). Both the model vesicle count and spike count decay
with N as expected during adaptation (Fig. 10B). However,
whereas the variance of the vesicle count decays proportionally
with the mean vesicle count, the spike-count variance is essen-
tially constant during adaptation (Fig. 10C) and results in the
increase in spike-count FF (Fig. 10A). This contrasts with the
vesicle-count FF, which remained constant across adaptation as
expected from a binomial process for which N, but not pvesicle, is
changing. This same basic relationship between modeled counts,
variances, and FFs was observed for both vesicles and spikes
across a whole range of release probabilities tested from 0.05 to
0.5 (data not shown).

It was also necessary to rule out the possibility that all of the
initial suppression of FF was caused by our choice of a brief
counting window, which limits the response to one spike or less,
rather than our assumption about the uniquantal nature of syn-
aptic transmission. Thus, given the same brief counting window,
we examined the impact on FF of increasing the number of ves-
icles required for spike generation, defined as x � 1 (Fig. 10D). In
all cases, as N diminished, FF increased toward (1 
 px). How-
ever, the most dramatic effects of spike-count “regularization”
were seen when only one vesicle was required to trigger an action
potential and support a role for the uniquantal nature of hair
cell–afferent fiber synaptic transmission.

The results of the spike output from this simple model reca-
pitulate the experimental observations reported here. The exper-
imental spike-count FF increased during adaptation because of a
failure of the spike-count variance to scale with the mean spike

Figure 8. FF increases during short-term adaptation. The Fano factor (black), spike-count
mean (blue), and spike-count variance (red) plotted as a function of duration of stimulation for
the same cell as in Figure 1 D. The thickness of each curve is the SD of the estimated parameter
at each time as determined by a bootstrap procedure (see Materials and Methods). The number
at the top left of the figure is the CF and stimulus frequency.

Figure 9. Spike-count reliability decreases during short-term adaptation for all but the lowest
frequencycells.A,Fanofactorforthefirst(filledcircles)andlast(opencircles)10mswindowofasingle
cell’s response as a function of CF. Error bars for single units are left out for the sake of clarity and are on
the same order as those for Figure 7. The single open gray circle represents a cell with an adapted FF
value that did not vary significantly from the FF generated by a Poisson process with the same instan-
taneous firing rate function as tested by a Monte Carlo simulation (see Materials and Methods). Large
square symbols are averages for four frequency ranges (same ranges as in Fig. 6). All SEs are smaller
than the symbol size. B, Spike-count mean of the first and last 10 ms as a function of CF. C, Spike-count
variance of the first and last 10 ms as a function of CF.
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count. We suggest that the ability of one or
a few quanta to trigger a postsynaptic ac-
tion potential forces reliability onto the af-
ferent fiber synapse at the onset of the
stimulus because all vesicle release events
are read out as single spike events.

Discussion
The response properties of a cochlear neu-
ron change during the course of a constant
stimulus presumably as an adaptive cod-
ing mechanism (Fig. 1). Therefore, to bet-
ter understand the noise constraints on
possible adaptive coding mechanisms, we
compared changes in the response vari-
ability of both the spike timing (�) and the
spike count (FF) during the course of
pure-tone stimulation. We found that the
reliability of spike counts decreased during
adaptation except at the lowest frequen-
cies, whereas the precision of spike timing
remained unchanged (Figs. 4, 9). A statis-
tical model of synaptic function suggested
that the ability of one or a few vesicles to
elicit an action potential reduces the inher-
ent response variability expected from
quantal neurotransmitter release to confer
count reliability at sound onset. However,
with adaptation, depletion of the readily re-
leasable pool of vesicles diminishes quantal
content and antagonizes the postsynaptic
enhancement of reliability (Fig. 10).

Spike-timing precision
The precision of spike timing was un-
changed during adaptation (Figs. 2, 4),
meaning that action potentials occurred
with the same level of synchronization to the stimulus waveform.
At conventional synapses, sustained repetitive stimulation can
cause an increase in asynchronous transmitter release and a de-
crease in synchronous transmitter release, most likely caused by
calcium accumulation (Cummings et al., 1996; Jensen et al.,
1999, 2000; Lu and Trussell, 2000; Hagler and Goda, 2001; David
and Barrett, 2003; Kirischuk and Grantyn, 2003). Calcium might
be expected to accumulate in the hair cell in response to a sus-
tained pure tone. However, the hair cell possesses several special-
izations that ensure rapid calcium entry and removal. These in-
clude rapidly activating and deactivating voltage-gated calcium
channels (Lewis and Hudspeth, 1983; Beutner and Moser, 2001;
Spassova et al., 2001), fast mobile calcium buffers (Roberts, 1993;
Edmonds et al., 2000; Heller et al., 2002), as well as potent cal-
cium pumps to extrude calcium from the cytoplasm (Dumont et
al., 2001). The current observation that cochlear neurons maintain
precise spike-timing during sustained stimulation is consistent with
the maintenance of a rapid and highly regulated calcium signal in the
hair cell.

Spike-count reliability
Stochastic processes are hypothesized to underlie the generation
of spike trains (Del Castillo and Katz, 1954; Perkel et al., 1967).
Discharge patterns recorded from a variety of sensory systems,
including auditory nerve, exhibit predominantly sub-Poisson
statistics manifest by FFs less than one for time windows on the

order of tens of milliseconds, suggesting reliable, nonrandom
spike discharges (Teich and Khanna, 1985; Young and Barta,
1986; Berry et al., 1997; de Ruyter van Steveninck et al., 1997;
DeWeese et al., 2003; Schaette et al., 2005). This is in contrast to
the predominantly supra-Poisson statistics observed with longer
counting windows (Teich et al., 1990; Lowen and Teich, 1992;
Kelly et al., 1996). Over the counting window analyzed in this
study, all auditory nerve fibers responded with sub-Poisson
spike-count reliability (Figs. 5, 6). However, the reliability de-
graded during adaptation.

The increase in the spike-count FF with adaptation results
from the failure of the spike-count variance to scale with the
mean spike count (Figs. 8, 9). Scaling would be expected if the
binomial statistics of synaptic vesicle release were solely respon-
sible for neuronal discharge patterns (Eq. 6). So what constrains
the variance and regularizes spike count? One source of spike-
count regularization at this synapse is the low threshold of the
postsynaptic afferent fiber. The uniquantal hypothesis (Geisler,
1981) states that a single quantum of neurotransmitter release is
sufficient to trigger a postsynaptic action potential at the hair cell-
afferent fiber synapse. Although the release of transmitter from the
hair cell is often multivesicular, direct recordings have demonstrated
that only one or two vesicles are sufficient to elicit a suprathreshold
response postsynaptically (Siegel, 1992; Glowatzki and Fuchs, 2002).
Such an easily saturated spiking mechanism has the potential to limit
spike count dramatically and decrease the variance of the synapse’s
output, even if a binomial process is underlying the release of synap-

Figure 10. Vesicle depletion reduces spike-count reliability. Vesicle- and spike-count statistics were predicted from a model.
Transmitter release was modeled as a binomial process with N available vesicles, each with release probability, pvesicle � 0.1.
Spike generation required �1 (uniquantal), �2 (biquantal), or �3 (triquantal) released vesicles. Parameters in all panels are
plotted as a function of adaptation, simulated by a decrease in N. A, Fano factor of vesicle and spike count for the uniquantal case.
B, Mean vesicle and spike count for the uniquantal case. C, Vesicle- and spike-count variance for the uniquantal case. D, Fano factor
of spike count for the uniquantal, biquantal, and triquantal cases.
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tic vesicles. This prediction is supported by our model, which pre-
dicted spiking behavior based on binomial release statistics and a
saturating spiking mechanism (Fig. 10).

Another possible source of spike-count regularization in our
experimental data is refractoriness, which can limit the number
of spikes that occur during a stimulus (Gray, 1967; Gaumond et
al., 1983; Johnson and Swami, 1983). Refractoriness regularizes
temporal patterns of spikes in retina (Berry and Meister, 1998)
and is also known to reduce the FF of auditory nerve responses
(Young and Barta, 1986). During adaptation, the spike rate declines
and results in a longer average interspike interval. In theory, this
leads to spikes that occur in a less refractory state. Unfortunately, the
current experiments do not allow us to assess the contribution of this
second postsynaptic mechanism on reliability.

Not all cells exhibited a decrease in reliability with adaptation.
FF undergoes smaller changes at lower frequencies (Fig. 9A). In-
terestingly, at progressively lower frequencies, the time course of
spike-rate adaptation slows (Crumling and Saunders, 2007).
Thus, over 35 ms, there is a smaller change in the mean spike
count (Fig. 9B). Because slower adaptation presumably reflects less
vesicle pool depletion, the smaller change in FF is consistent with the
model finding that postsynaptic enhancement of reliability domi-
nates when more vesicles are available (Fig. 10A). We would also
expect a smaller influence of refractoriness at low CFs, where many
interspike intervals are longer.

Possible consequences of adaptation on auditory coding
Different sensory systems have evolved different mechanisms to
help ensure that only the most relevant environmental informa-
tion is encoded. Rate adaptation improves the efficiency and re-
duces redundancy of neural coding by expending fewer spikes
when encoding a sustained stimulus, presumably because most of
the important stimulus features are rapidly encoded during the
onset (Barlow, 1961). Although the decreased firing rate reduces
the information capacity of the neuron (Rieke et al., 1997), it is
possible to minimize information loss if neural noise in the form
of spike-timing and -count trial-to-trial variability is minimized.
This is especially important in early sensory relays whose primary
function may be to provide relatively unfiltered information ef-
ficiently to the CNS. Here, however, we found that one form of
neural noise, spike-count variability, increased during adapta-
tion in the auditory nerve. This implies that rate coding becomes
noisier during adaptation and that it would therefore be a more
reliable strategy at stimulus onset.

The natural acoustic environment is made up of mostly tran-
sients, not constant stimuli. Therefore, what role does adaptation
play in a peripheral auditory system subjected to a dynamic
world? Rate adaptation has been proposed to enhance the encod-
ing of sound transients (Delgutte, 1980). Interestingly, adapta-
tion occurs on a fast time scale of tens of milliseconds, an interval
similar to that of behaviorally relevant sound components. For
example, maternal calls that are behaviorally relevant to the chick
include individual components as short as 10 –100 ms (Collias
and Joos, 1953). Thus, short-term rate adaptation may indeed be
effective in reducing the redundancy of behaviorally relevant
acoustic signals, but perhaps at the expense of rate code informa-
tion after the onset of sound components.

Rate adaptation also is proposed to play a role in adaptive
rescaling of the sensory input– output function in both the visual
system (Laughlin, 1989) and higher auditory centers (Dean et al.,
2005). By rescaling its output to match the stimulus statistics of
the immediate environment, an organism can use a limited set of
neuronal responses to encode a larger ensemble of sensory con-

ditions. In auditory nerve, rate-level functions to pure tones shift
to higher sound levels after the addition of a simultaneous back-
ground noise (Costalupes et al., 1984). Most of this shift has been
attributed to cochlear suppression from frequencies surrounding
the CF of a neuron. However, if a tone at CF precedes the pure
tone, a similar albeit smaller shift is observed, suggesting that
rate-adaptation can also contribute to rescaling of the rate-level
function (Gibson et al., 1985). This adaptation-induced shift re-
sults in a decrease in the maximum firing rate, which our findings
suggest would be coupled with a decrease in firing-rate reliability.
Therefore, although adaptation could in theory extend the range
of sound levels that are encoded by a single neuron, it would do so
at the cost of decreased discrimination performance when using a
rate code strategy.

In contrast to reliability, spike-timing precision, which helps
convey frequency, phase (Rose et al., 1967), and intensity (Ander-
son et al., 1971; Johnson, 1980; Colburn et al., 2003) information
remained intact during rate adaptation. The resilience of tempo-
ral precision in the face of a constant pure tone re-enforces the
importance of temporal fine structure coding by the avian audi-
tory system. We predict that this emphasis on maintenance of
spike timing during adaptation extends to more dynamic and
naturalistic sound environments. Although different species have
evolved to hear in different soundscapes, many exhibit rate ad-
aptation on the same time scale as the chick (Kiang, 1965; West-
erman and Smith, 1984), which is likely mediated by vesicle pool
depletion (Furukawa et al., 1978; Moser and Beutner, 2000). Our
data suggest that this vesicle depletion reduces spike-count reliabil-
ity, but not temporal precision. Thus, cellular mechanisms con-
served across species may impose common limitations on neural
coding.
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