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Cell-Autonomous TrkB Signaling in Presynaptic Retinal
Ganglion Cells Mediates Axon Arbor Growth and Synapse
Maturation during the Establishment of Retinotectal

Synaptic Connectivity
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Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, The Netherlands

BDNF contributes to the activity-dependent establishment and refinement of visual connectivity. In Xenopus, BDNF applications in the
optic tectum influence retinal ganglion cell (RGC) axon branching and promote synapse formation and stabilization. The expression
patterns of BDNF and TrkB suggest that BDNF specifically regulates the maturation of RGC axons at the target. Itis possible, however, that
BDNF modulates retinotectal synaptic connectivity by differentially influencing presynaptic RGC axons and postsynaptic tectal cells.
Here, we combined single-cell expression of a dominant-negative TrkB- enhanced green fluorescent protein (GFP) fusion protein with
confocal microscopy imaging in live Xenopus tadpoles to differentiate between presynaptic and postsynaptic actions of BDNF. Disruption
of TrkB signaling in individual RGCs influenced the branching and synaptic maturation of presynaptic axon arbors. Specifically, GFP-
TrkB.T1 overexpression increased the proportion of axons with immature, growth cone-like morphology, decreased axon branch stabil-
ity, and increased axon arbor degeneration. In addition, GFP-TrkB.T1 overexpression reduced the number of red fluorescent protein-
synaptobrevin-labeled presynaptic specializations per axon terminal. In contrast, overexpression of GFP-TrkB.T1 in tectal neurons did
not alter synaptic number or the morphology or dynamic behavior of their dendritic arbors. Electron microscopy analysis revealed a
significant decrease in the number of mature synaptic profiles and in the number of docked synaptic vesicles at retinotectal synapses
made by RGC axons expressing GFP-TrkB.T1. Together, our results demonstrate that presynaptic TrkB signaling in RGCs is a key
determinant in the establishment of visual connectivity and indicate that changes in tectal neuron synaptic connectivity are secondary to

the BDNF-elicited enhanced stability and growth of presynaptic RGCs.
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Introduction

Neuronal connectivity is established through a series of develop-
mental events that involve close communication between presyn-
aptic and postsynaptic neurons. In the developing visual system,
neurotrophins have been shown to exert various influences, from
guiding the morphological differentiation of neurons to control-
ling the functional plasticity of visual circuits. BDNF contributes
to the establishment and refinement of visual connectivity by
acting at multiple levels in the visual pathway, from the retina to
the visual cortex (von Bartheld, 1998; Hanover et al., 1999;
Huang et al., 1999; Berardi et al., 2003; Cohen-Cory and Lom,
2004; Mandolesi et al., 2005). The spatial and temporal patterns
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of expression of BDNF and its high-affinity receptor TrkB are
consistent with a role for BDNF in modulating visual circuit de-
velopment. In mammals, BDNF and TrkB are expressed in devel-
oping retinal ganglion cells (RGCs), in the lateral geniculate nu-
cleus and superior colliculus, the two retinal axon target areas, as
well as in the primary visual cortex (von Bartheld, 1998; Lein and
Shatz, 2000; Silver and Stryker, 2001; Vizuete et al., 2001). In
nonmammalian vertebrates, both BDNF and TrkB are expressed
at peak levels in RGCs and at their target optic tectum at the time
of active formation of the retinotectal projection (Cohen-Cory et
al., 1996; Garner et al., 1996; Hallbook et al., 1996; Herzog and
von Bartheld, 1998).

Evidence suggests that BDNF can act as an anterograde factor
to influence postsynaptic neurons or as a target-derived retro-
grade factor, affecting presynaptic RGCs (Spalding et al., 2002;
Menna et al., 2003; Butowt and von Bartheld, 2005). Work in
Xenopus has demonstrated that BDNF shapes the morphological
differentiation of RGCs and their synaptic connectivity (Lom and
Cohen-Cory, 1999; Alsina et al., 2001; Cohen-Cory and Lom,
2004; Du and Poo, 2004; Hu et al., 2005) and to a lesser extent
affects the morphological and synaptic differentiation of postsyn-
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aptic tectal cells (Du and Poo, 2004; Sanchez et al., 2006). It
remained to be determined, however, whether BDNF acts di-
rectly on RGCs or whether it influences both presynaptic and
postsynaptic neurons to shape their synaptic connectivity. To
directly distinguish between presynaptic and postsynaptic ac-
tions of BDNF, we expressed a dominant-negative TrkB—green
fluorescent protein (GFP) fusion protein (GFP-TrkB.T1) in in-
dividual RGCs or tectal neurons of young Xenopus tadpoles and
visualized their dynamic growth and differentiation in vivo.
TrkB.T1 is a truncated, alternatively spliced receptor isoform that
lacks the intracellular kinase domain of TrkB and inhibits full-
length TrkB receptor signaling by forming nonfunctional het-
erodimers and/or by sequestering BDNF ligand (Biffo et al., 1995;
Eide et al., 1996; Ninkina et al., 1996; Haapasalo et al., 2001;
Offenhauser et al., 2002). Because TrkB.T1 does not induce inde-
pendent signaling, overexpression of TrkB.T1 has proven useful
to inhibit BDNF signaling and to demonstrate both presynaptic
and postsynaptic BDNF functions (Li et al., 1998; Gonzalez et al.,
1999; Haapasalo et al., 2001; Offenhauser et al., 2002; Elmariah et
al., 2004). Here, we combined in vivo time-lapse imaging of fluo-
rescently tagged synaptic specializations with overexpression of
GFP-TrkB.T1 in individual RGCs to examine the influence of
TrkB signaling on targeting, branching, and synaptic maturation
of presynaptic RGC axons. Similarly, expression and in vivo im-
aging of GFP-TrkB.T1 in tectal neurons was used to determine
whether postsynaptic TrkB signaling modulates the morpholog-
ical and synaptic differentiation of tectal neurons. Electron mi-
croscopy analysis of GFP-TrkB.T1-expressing RGC axons pro-
vided a direct correlate between changes in synaptic
ultrastructure and the dynamic behavior of the axon arbors and
synaptic specializations observed in vivo. Together, our results
demonstrate that cell-autonomous TrkB signaling in presynaptic
RGCs is necessary for the normal development of Xenopus visual
connectivity and indicate that the growth and enhanced stability
of presynaptic RGC axons affects both structural and functional
aspects of retinotectal synaptic connectivity. These in vivo stud-
ies, therefore, provide the first direct demonstration of a presyn-
aptic mechanism of BDNF action during visual system
development.

Materials and Methods

Xenopus laevis tadpoles were obtained by in vitro fertilization of oocytes
from adult females primed with human chorionic gonadotropin. Tad-
poles were raised in rearing solution [60 mm NaCl, 0.67 mm KCl, 0.34 mm
Ca(NO3)2,0.83 mm MgSO, 10 mm HEPES, pH 7.4, and 40 mg/L genta-
mycin] plus 0.001% phenylthiocarbamide to prevent melanocyte pig-
mentation. Tadpoles were anesthetized during experimental manipula-
tions with 0.05% tricane methanesulfonate (Finquel; Argent
Laboratories, Redmond, WA). Staging was done according to Nieuwk-
oop and Faber (1956). Animal procedures were approved by the Univer-
sity of California, Irvine.

Plasmid constructs. A cDNA coding for GFP-TrkB.T1 fusion protein
was kindly provided by Dr. E. Castren (University of Helsinki, Helsinki,
Finland). A t-dimer—red fluorescent protein (RFP)—synaptobrevin plas-
mid was prepared in our laboratory: a cDNA fragment coding for t-
dimer—RFP (kindly provided by Dr. Tsien, University of California, San
Diego, La Jolla, CA) (Campbell et al., 2002) was fused in frame to the
Xenopus synaptobrevin IT cDNA (gift of Dr. Poo, University of Califor-
nia, Berkeley, Berkeley, CA) and cloned under control of cytomegalovi-
rus (CMV) promoter using the pCS2+ expression vector. A pARICG—
signal peptide (SP)-GFP-TrkB.T1 plasmid was prepared and used for
generation of transgenic Xenopus embryos. This plasmid encodes the
nicotinic acetylcholine receptor 3-3 promoter (nARB3), driving expres-
sion of a fusion protein consisting of SP-GFP and rat TrkB.T1. The
PARICG-SP-GFP parent vector was generated as follows. The nARSB3
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gene upstream region was PCR amplified from pAR-GFP (Tokuoka et
al., 2002) using sense primer 5'-AGCTGTCGACGAGTTGCTGACAT-
GTGATTGGC-3" and antisense primer 5'-AGCTAAGCTTTTCAGG-
AGGGAGTATTAAAAATTGAC-3', cut with Sall and HindIII, and used
to replace the CMV promoter of the Xenopus vector pCS2+ (Turner and
Weintraub, 1994), yielding pAR2+. The nARB3 gene downstream re-
gion was amplified from pAR-GFP using sense primer 5'- AGC-
TCTCGAGCCTCTAGAGACTCTATTAACACTCATCCACC-3"  and
antisense primer 5'-AGCTGCGGCCGCACAATTCACTCATTCTT-
CCTGCTG-3', cut with Xhol and Notl, and used to replace the Simian
virus 40 polyadenylation signal of pAR2 +, resulting in pAR2+ARpA. To
increase the expression efficiency, the chimeric intron of the phosphor-
ylated form of internal ribosomal entry site (Clontech, Palo Alto, CA)
was cloned into the BamHI site of pAR2+ARpA, yielding pARi2+. To
facilitate identification of transgenic tadpoles, a Cac-GFP—tkpoly(A) cas-
sette, driving expression of the GFP reporter protein from the muscle-
specific cardiac actin promoter (Mohun et al., 1986), was cloned into the
Notl site of pARi2+, resulting in pARICG2+. Finally, the SP-GFP cas-
sette (Collin and Martens, 2006) was inserted into the BamHI and EcoRI
sites of pARICG2+, yielding pARiCG-SP—GFP. All constructs were val-
idated by DNA sequence analysis.

Generation of transgenic embryos. A transgenesis DNA fragment was
prepared by digesting pARICG—-SP-GFP-TrkB.T1 plasmid with Sall and
Notl restriction enzymes, separating the fragment on 0.8% agarose gel
and purifying with QIAquick Gel Extraction kit (Qiagen, Valencia, CA).
Ovulation of mature Xenopus females was induced by injection of 800 U
of human chorionic gonadotropin (Sigma, St. Louis MO) 1 d before
transgenesis. The eggs were dejellied in 2.5% cysteine hydrochloride in
IX MMR (12 mm NaCl, 0.13 mm KCl, 7 um CaCl,, 0.17 mm MgSO,, 1 mm
HEPES, and 4 ug/ml gentamycin, pH 8.0) and transferred to a 0.4X
MMR, 6% Ficoll solution. The transgenesis DNA fragment (200 ng) was
mixed with 1 ul of sperm nuclei (~150,000 nuclei) and incubated for 5
min at room temperature, and 0.5 pl of egg extract was added as de-
scribed by Amaya and Kroll (1999). The mixture was diluted with sperm
dilution buffer (250 mm sucrose, 75 mm KCl, 0.5 mum spermidine trihy-
drochloride, and 0.2 mm spermine tetrahydrochloride, pH 7.4) to a con-
centration of one nucleus per 4.6 nl, and eggs were injected with 4.6 nl of
solution per egg using a Drummond Scientific (Broomall, PA) injector.
Normally cleaving embryos were selected after 4 h and transferred to
0.1X MMR, 6% Ficoll, and 50 mg/L gentamycin until gastrulation. Em-
bryos that completed gastrulation were transferred to regular rearing
solution and handled as described above.

Transfection of RGCs and tectal neurons. Lipofection of RGC and tectal
neurons was performed by pressure injection of 0.1-0.2 nl of DNA (1
g/ ul) mixed with DOTAP liposomal transfection reagent (Roche Diag-
nostics, Indianapolis, IN) into the eye (for RGCs) or tectal (for tectal
neurons) primordium of stage 20—22 tadpoles. In some cases, electropo-
ration of the GFP-TrkB.T1 construct was used to achieve better trans-
fection efficiency in RGCs. Equimolar amounts of GFP-TrkB.T1 and
t-dimer—RFP—synaptobrevin (from here on referred to as RFP—synapto-
brevin) plasmids were mixed together to the final concentration of 2
g/ ul. The DNA mixture was pressure injected into the eye primordium
of stage 20—22 anesthetized tadpoles. Tungsten electrodes (Protech In-
ternational, San Antonio, TX) were positioned across the injected eye,
and a train of 10 40-ms square pulses of 45 V was applied to the animals
using a CUY 21 (BEX, Tokyo, Japan) electroporator. After transfection,
tadpoles were reared under filtered illumination, in 12 h dark/light cy-
cles, until stage 43—45 when used for experimentation and imaging. Tad-
poles with individually labeled RGCs or tectal neurons were selected for
imaging.

In vivo time-lapse imaging. The behavior of individual, fluorescently
labeled RGC axons was followed with confocal microscopy in stage 45
tadpoles. Only tadpoles with individual labeled RGC axons that showed
specific, punctate RFP—synaptobrevin labeling in their terminals were
selected. Tadpoles containing one or two clearly distinguishable double-
labeled axons were imaged every 2 h for 6 h and then again at 24 h. Image
acquisition was performed as described previously (Hu et al., 2005).
Confocal imaging of individually labeled GFP control and GFP-TrkB.T1
tectal neurons was performed similar to the imaging of RGCs. Tectal
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neurons were imaged at 0, 4, 24, and 48 h as described previously
(Sanchez et al., 2006).

Data analysis. All analysis was performed from raw confocal images
without any post-acquisition manipulation or thresholding. Digital
three-dimensional reconstructions of GFP (GFP-TrkB.T1)-labeled ax-
onal and dendritic arbors were obtained from individual optical sections
through the entire extent of the arbor with the aid of the MetaMorph
software (Universal Imaging Corporation, West Chester, PA). To char-
acterize the distribution of RFP—synaptobrevin puncta to particular RGC
axonal regions, pixel-by-pixel overlaps from individual optical sections
obtained at the two wavelengths were analyzed as described previously
(Hu et al., 2005). Only discrete RFP—synaptobrevin puncta with median
pixel values 2.0-3.0 times greater than the median pixel values of back-
ground nonpunctate RFP within the same axon arbor were counted and
included in the analysis. During data analysis, we ensured that similar
ratios were maintained for every axon arbor analyzed throughout the
entire observation period. Several morphological parameters were mea-
sured for the quantitative analysis of axon and dendritic branching: total
branch number, the number of first-, second-, and third-order branches,
the number of individual branches added, and the number of branches
remaining from one observation time point to the next (stable branches).
Total arbor length was measured from binarized images of the digitally
reconstructed axons or dendritic arbors. A relative measure of cumula-
tive length of all branches per axon terminal or dendritic arbor was
obtained by counting total pixel number from the first branch point.
Axon or dendrite branch turnover rate was measured as the relative
change in branch length within each observation interval and was ex-
pressed as percentage of the length in the previous time point. Simple
axon projections containing only first-order branches and a motile
growth cone structure at the axon tip were defined as growth cone-like
axon arbors. The axon complexity index (ACI) of growth cone-like axon
arbors was <1.0. Presynaptic specialization density was calculated by
dividing the number of RFP-synaptobrevin puncta by the total axon
arbor length and is expressed as the number of puncta per 10 wm. A total
of 10—17 axonal and dendritic arbors per condition were analyzed, with
one RGC axon arbor or one tectal neuron analyzed per tadpole. One- and
two-way ANOVA tests (time and treatment) were used for the statistical
analysis of data. Results were considered significant as follows: *p < 0.05,
tp < 0.005, ***p < 0.0005.

Immunocytochemistry. For endogenous synaptosome-associated pro-
tein of 25 kDa (SNAP-25) colocalization, tadpoles with individual tectal
neurons overexpressing GFP control or GFP-TrkB.T1 plasmids were
anesthetized and fixed for 2 h by immersion in 2% paraformaldehyde in
0.1 M phosphate buffer (PB), pH 7.4; the brains were removed and post-
fixed with the same fixative for 1 h. Free-floating brains were preincu-
bated for 1 h in blocking solution (1.5% goat normal serum and 0.1%
Triton X-100 in 0.1 M PB) and incubated overnight with rabbit poly-
clonal anti-SNAP-25 antibody (1:1000 dilution; Stressgen Biotechnolo-
gies, Victoria, British Columbia, Canada). Tissues were then rinsed and
incubated with Alexa 568 anti-rabbit antibodies (1:200 dilution 0.1 M PB;
Invitrogen, Carlsbad, CA). All images were collected with a LSM 5 Pascal
confocal microscope using a 63X/1.4 numerical aperture oil immersion
objective and 2X electronic zoom. To determine colocalization of fluo-
rescent labels, optical sections were collected at 0.5 wm intervals through
the full extent of the GFP-labeled tectal arbor.

Electron microscopy. Unilateral electroporation of GFP or GFP-
TrkB.T1 plasmids into the eye primordium (right eye) of stage 22 tad-
poles was used for the ultrastructural analysis. Stage 45 tadpoles with only
a few RGCs expressing GFP or GFP-TrkB.T1 in their axon terminals
were selected and processed for preembedding immunoelectron micros-
copy. Tadpoles were anesthetized and fixed in 2% paraformaldehyde and
3.75% acrolein in 0.1 M PB, pH 7.4. Brains were removed, postfixed, and
embedded in 1% agarose. Fifty micrometer vibratome sections were col-
lected, incubated in 1% sodium borohydride in PB, cryoprotected,
quickly permeabilized in liquid nitrogen, and blocked in 0.5% bovine
serum albumin (BSA), 0.1 m Tris-buffered saline (TBS), pH 7.5. Sections
were then coded, and all subsequent procedures were performed blind to
treatment. Sections were incubated overnight in a primary mouse mono-
clonal antibody against GFP (1:10 dilution in 0.1% BSA in TBS; Invitro-
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gen), followed by 2 h in a secondary goat anti-mouse IgG coupled to 0.6
nm gold particles (1:50 dilution in 0.5% v/v 0f 20% fish gelatin, 0.8% BSA
in 0.01 M PBS, pH 7.4) (Aurion-EMS, Hatfield, PA). Sections were incu-
bated in 2% glutaraldehyde, and gold particles were enlarged using a
British BioCell silver intensification kit (Ted Pella, Redding, CA). Sec-
tions were postfixed in 2% osmium tetroxide, dehydrated, and flat em-
bedded in 100% Epon between Aclar sheets. Seventy nanometer thin
sections were obtained on copper mesh grids using a Reichert ultramic-
rotome with a diamond knife (Diatome, Biel, Switzerland) and counter-
stained with 2% uranyl acetate and Reynolds lead citrate. Ultrastructural
analysis was performed using a Philips (Aachen, Germany) CM10 trans-
mission electron microscope. Specificity of the immunostaining was de-
termined by comparing the density of silver-enhanced gold particles
within the immunopositive synaptic profile with that of the surrounding
neuropil. In addition, to control for specificity, we confirmed that silver-
enhanced gold particles would be discretely localized to a few terminals in
the unilaterally transfected tadpoles and that it would be absent from the
contralateral optic tectum. For the quantitative analysis, the number of
synaptic vesicles within the presynaptic terminal area at mature synapses
(synapses presenting at least three of the following characteristics: pre-
synaptic and postsynaptic densities, synaptic vesicles, synaptic cleft, and
parallel membranes) and the number of docked vesicles per terminal
(attached to the presynaptic density at a distance <50 nm) were mea-
sured. The length of the presynaptic specialization and the size of the area
of the axon terminal were measured using the Image J software (Scion,
Frederick, MD). Two-sample unpaired Student’s ¢ test was used for the
statistical analysis of data. Significance was p < 0.05.

Results

TrkB.T1 overexpression leads to a high proportion of growth
cone-like axons among transfected RGC arbors and increases
axon degeneration

Overexpression of a GFP-TrkB.T1 fusion protein was used to
inhibit TrkB signaling in individual RGCs during the early devel-
opment of the Xenopus retinotectal projection. Expression of GF-
P-TrkB.T1 was clearly observed inside the tadpoles’ retinas at
stage 32, 24 h after transfection. By stage 43, GFP-labeled RGC
axons with simple morphology (less than five branches) were
observed to project to the optic tectum in both GFP controls and
GFP-TrkB.T1-expressing tadpoles. Disruption of TrkB signaling
did not appear to cause any errors in RGC targeting because no
GFP-labeled RGC axons were observed in any other area of the
brain. To further confirm that TrkB signaling is not essential for
RGC pathfinding, we created transgenic tadpoles that overex-
pressed GFP-TrkB.T1 under the control of the nicotinic acetyl-
choline receptor-3 (nAChR-3) gene promoter. This promoter
has been effectively used to drive GFP expression in most RGC
axons in zebrafish embryos (Tokuoka et al., 2002). As observed
for the single-transfected neurons, RGCs in transgenic tadpoles
began to express GFP-TrkB.T1 by stage 32 (data not shown), and
the entire population of GFP-TrkB.T1-expressing RGC axons
projected appropriately to the optic tectum (Fig. 1A, B). Thus,
our data demonstrate that alterations in TrkB signaling do not
impact RGC axon pathfinding or targeting to the tectum.

To investigate the role of TrkB signaling in RGC axon ar-
borization and formation of retinotectal connectivity, we exam-
ined the morphology and dynamic behavior of individual GFP—
TrkB.T1-expressing RGC axons by in vivo time-lapse confocal
microscopy. A significant difference was observed between GFP
control and GFP-TrkB.T1-overexpressing axons at stage 45,
when most RGC axons have reached the optic tectum and begin
to arborize. The majority of GFP-TrkB.T1-expressing RGC ax-
ons at this stage possessed an immature, growth cone-like mor-
phology (55%; n = 38), whereas only a few of the GFP control
axons were growth cones (11%; n = 28) (Fig. 1C). In addition,
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Figure 1. TrkB signaling influences RGC axon growth cone morphology and axon branch initiation. A, B, GFP—TrkB.T1-
expressing RGC axons project correctly to the optic tectum. A, Low-magnification confocal image of the brain (outlined by the
white tracing) of a stage 45 transgenic tadpole expressing GFP—TrkB.T1 under the control of the nAChR promoter. Fluorescently
labeled RGC projections are correctly targeted to the optic tectum (OT). No “mistargeted” RGC axons were observed in other areas
of the brain, including forebrain (FB) and hindbrain (HB). B, High-magnification confocal image of the tectal neuropil (right
hemisphere of tadpole brain shown in A) better illustrates the GFP—TrkB.T1-expressing RGC axon terminals. Scale bar, 10 wm.
C-F, Expression of TrkB.T1inindividual RGCincreases the proportion of growth cone-like axon arbors and alters axon morphology.
C, Pie charts represent the proportion of GFP control and GFP—TrkB.T1-expressing RGC axons with growth cone-like (red) and
branched (blue) morphologies. The broken lines within the pie charts represent the proportion of axons that degenerated within
24 h after the initial imaging session. Note that similar proportions of growth cones and branched arbors degenerated in the
GFP-TrkB.T1-expressing RGCs. D-F, Representative RGC axons with terminal growth cone-like structures expressing GFP control
(D) or GFP—TrkB.T1 (E, F). Note that TrkB.T1-expressing growth cones possess uncharacteristically long filopodia (arrows) and
multiple large lamellipodia (arrowheads). In E, alarge, interstitial growth cone-like structure remodeled and persisted throughout
atleast 4 h of imaging (asterisks). Scale bars, 10 m.
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the GFP-TrkB.T1 growth cones had an al-
tered morphology, exhibiting uncharac-
teristically long filopodia, and often pos-
sessed multiple large lamellipodia that
persisted over the course of axon growth
and were never observed in GFP control
growth cones (Fig. 1D-F). Multiple
growth cone-like structures were also ob-
served on branch tips of GFP-TrkB.T1 ax-
ons that were branched. Interestingly,
more than one-third (34%; n = 38) of the
GFP-TrkB.T1-overexpressing axons de-
generated during the 24 h observation pe-
riod. The number of degenerated GFP—
TrkB.T1 axons was approximately five
times higher than that of controls (7%;

= 28) (Fig. 1C). Degeneration was ob-
served as a gradual clustering of the GFP
label that progressed until discontinuous
strings of bright GFP fluorescence formed,
indicating disassembly of the entire axon
arbor. Axon degeneration was unlikely to
be a consequence of potential detrimental
effects of accumulated laser irradiation,
because degeneration occurred indepen-
dently of the number of preceding laser
exposures and was different between GFP
controls and GFP-TrkB.T1 axons imaged
in the same manner. Similar proportions
of both growth cone-like and branched
GFP-TrkB.T1 axon arbors degenerated
over time (29% for growth cones and 41%
for branched axons) (Fig. 1C).

RGCs expressing GFP-TrkB.T1 have
simpler axon arbors and fail to increase
their complexity

Qualitative analysis demonstrates that the
majority of the TrkB.T1-expressing RGC
axons had immature growth cone-like
morphologies. Quantification of total
axon branch number in tadpoles at stage
45 showed that the GFP-TrkB.T1 RGC
axons had significantly fewer axon
branches compared with GFP controls
(10.68 = 1.15 for TrkB.T1; 14.25 *+ 1.28
for control; p = 0.0432). After 24 h, the
GFP control axons significantly increased
their total branch number (18.60 * 1.66;
p = 0.0403), whereas the number of
branches in the GFP-TrkB.T1 axons re-
mained unchanged (11.39 = 1.78; p =
0.7276) (Fig. 2A). To directly evaluate
whether inhibition of TrkB signaling in-
fluences RGC axon branch dynamics and
axon maturation, we selected for addi-
tional analysis only RGC axons that had, at
the initial observation time point (0 h),
between 10 and 25 branches and an arbor
length of at least 120 um. Based on this
selection criteria, both GFP-TrkB.T1 ax-
ons (n = 16) and their age-matched GFP
controls (n = 17) had similar complexities
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Figure2. TrkB.T1 overexpression in RGC decreases axon arborization. A, Quantitative anal-
ysis of total axon branch number in GFP-TrkB.T1 and GFP control RGCs demonstrates that
interfering with TrkB signaling results in axons with significantly fewer branches at stage 45 (0
h) and 24 h later. B, When only axons with similar branch numbers were included in the analysis
(axons with 10—25 branches), only control GFP-expressing axons significantly increased their
branch number, whereas the GFP—TrkB.T1 axons remained unchanged 24 h after initial imag-
ing. C~E, Branch order analysis and ACl were used for the quantitative analysis of axon arbor
morphology of axons with 1025 initial branches. C, Each branch tip was assigned a number (N,
branch order; see schematic diagram) that equals the number of times a primary axon branched
to produce that branch tip. D, GFP—TrkB.T1-expressing RGC axons have a lower ACl compared
with age-matched controls and fail to significantly increase their complexity over time. E,
Branch order distribution shows a significantly higher proportion of first-order branches and
lower proportion of third-order branches in GFP—TrkB.T1-expressing RGC axons when com-
pared with age-matched controls. *p << 0.05, **p << 0.005.

Axon complexity index, ACI
% of total branch number

Oh 24h

at the first observation time point (15.94 * 1.45and 16.53 = 1.16
total branches, respectively). We observed that, by 24 h, total
branch number in control RGC axons increased by 40% (22.86 =
1.84; p = 0.0022), but it did not change significantly in the GFP—
TrkB.T1 axons (18.45 *+ 1.38; p = 0.1544) (Fig. 2 B). Thus, GFP—
TrkB.T1-expressing RGCs had a slower axon arborization rate. In
addition, we observed that overall axon arbor morphology dif-
fered between controls and GFP-TrkB.T1 axons. To evaluate
axon arbor complexity, we assigned a topological order to each
branch in the individual RGC arbors and calculated ACI as illus-
trated in Figure 2C. At 0 h, the ACI value for the GFP-TrkB.T1
axons (1.19 = 0.05) was significantly lower than that of controls
(1.42 = 0.06; p = 0.0124). Over the 24 h observation period,
control GFP-expressing RGCs significantly increased their arbor
complexity (ACI, 1.70 = 0.09; p = 0.0036), whereas GFP—
TrkB.T1 axons remained simple and their complexity was not
significantly different from that at the 0 h time point (ACI, 1.34 =
0.07; p = 0.1388) (Fig. 2D). The branch order distribution anal-
ysis revealed that GFP-TrkB.T1 axons had a significantly higher
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number of first-order branches and significantly lower number
of third-order branches than GFP controls at both the 0 and 24 h
time points (Fig. 2E). Consequently, our data demonstrates that
interfering with TrkB signaling inhibits the ability of RGC axons
to become more complex over time.

Inhibition of TrkB signaling increases RGC axon

arbor remodeling

To determine whether the slow growth of TrkB.T1-
overexpressing axons was caused by a decreased ability of the
neurons to form and maintain branches, we followed branch
dynamics of RGC axons by in vivo time-lapse imaging. Analysis of
arbor morphology of individual axons at 2 h intervals for a total
of 6 h revealed an increased rate of branch remodeling in GFP—
TrkB.T1 axons relative to GFP controls (Fig. 3A). New branch
extension in the GFP-TrkB.T1 axons was 1.7 times higher than in
control RGCs (50.64 * 3.81 vs 28.88 = 2.30% branches added;
p < 0.0001) (Fig. 3B). Similarly, branch elimination was in-
creased in the GFP-TrkB.T1 axons, resulting in only approxi-
mately half of the branches (54.25 * 2.69%) remaining stable
over a 2 h time period, a significantly lower number of stable
branches than in controls (78.90 = 1.54%; p < 0.0001) (Fig. 3B).
To obtain a second measure of axon arbor remodeling, we quan-
tified the relative change in length of the axonal arbor withina 2 h
period. The GFP-TrkB.T1 axons showed a dramatic increase in
turnover rate; the change in GFP-TrkB.T1 axon length was al-
most twice that of control RGCs (15.87 % 2.22% per 2 h for
GFP-TrkB.T1 vs 8.25 &= 1.21% for controls; p = 0.0029) (Fig.
3B). Thus, our data demonstrate that GFP-TrkB.T1-
overexpressing RGC axons have an increased branch turnover
rate and are more motile than their age-matched controls.

It is possible that TrkB.T1 overexpression delays axon matu-
ration and that the simpler morphology and more dynamic be-
havior of the GFP-TrkB.T1-expressing RGC axon arbors reflect
the behavior of more immature RGC axons in tadpoles at stages
younger than stage 45. Thus, to test whether immature, simple
axons exhibit a more dynamic behavior than arborized RGCs, we
performed time-lapse imaging of GFP control RGC axons in
stage 43 tadpoles, when most RGCs begin to branch and have a
simpler arbor complexity. For our analysis, we selected GFP con-
trol axons with a similar ACI value to that of GFP-TrkB.T1 RGCs
imaged in stage 45 tadpoles. We found that the rates of branch
formation and stabilization of simple GFP control axons in stage
43 tadpoles were similar to those of more mature, GFP control
branched arbors in stage 45 tadpoles (Fig. 3B). Thus, these obser-
vations indicate that the effect of GFP-TrkB.T1 overexpression
on axon branch dynamics is specific and is not caused by a time
delay in RGC axon maturation.

Developing axon arbors have transient short filopodia and
more stable longer branches. Both types of processes undergo
dynamic remodeling during axon arborization (Cohen-Cory and
Fraser, 1995; Witte et al., 1996). To determine whether the high
rate of branch turnover in GFP-TrkB.T1 RGC axon arbors was
attributable to increased filopodial-like dynamics rather than in-
creased turnover of more established branches, we reexamined
RGC axon branch dynamics but excluded processes shorter than
5 um (filopodial-like processes) from the analysis. We found that
branch addition and stabilization rates in GFP-TrkB.T1 RGC
axons remained significantly different from those in controls
(new branches: 18.73 * 3.71 for control, 43.65 = 4.50 for GFP—
TrkB.T1, p < 0.0001; stable branches: 86.90 = 1.79 for control,
65.22 = 2.55 for GFP-TrkB.T1, p < 0.0001) (Fig. 3C), demon-
strating that inhibition of BDNF signaling affects the dynamic
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and GFP-TrkB.T1-expressing RGC axons. Reconstructions of three-dimensional arbors (top) and line tracings (bottom) illustrate
the effects of GFP—TrkB.T1 expression on the dynamic remodeling of RGC axonal arbors. Branches that were added are shown in

bors may signify a decreased ability of
these axons to form or maintain synapses.

blue, those that were eliminated are in red, and those that were added at one time point and then eliminated in the next are

labeled green. Note that, for the GFP—TrkB.T1-expressing RGC axon, a larger portion of the arbor is color coded. Scale bar, 10 m.
B, Quantification of the effects of TrkB.T1 expression on the number of added and stabilized axonal branches and relative length
change. Values for added and stable branches are expressed as percentage change from the previous time point. Axon turnover
rate represents the relative change in total arbor length within every 2 h observation period (in axons imaged for a total of 6 h) and
is expressed as percentage change. Branch addition and stabilization rates of GFP—TrkB.T1-expressing axons were significantly
different from age-matched controls (stage 45; white bars) and from GFP controls imaged at younger stages (stage 43 tadpoles;
gray bars). ¢, Branch addition and stabilization rates remain significantly different in GFP—TrkB.T1-expressing arbors even after
excluding motile filopodial-like processes (<5 pm) from the analysis. **p << 0.005, ***p << 0.0005.

behavior of the entire axonal arbor. Furthermore, we found that
the proportion of filopodial-like processes (relative to total
branch number) remained unaffected by TrkB.T1 overexpres-
sion (data not shown).

Intact TrkB signaling is required for presynaptic site
formation in developing RGC axons

Our results demonstrate that cell-autonomous TrkB signaling is
important for normal arborization of presynaptic RGC axons.
Our previous work has shown that BDNF influences both axon
branching and synapse formation and that these two processes
are related (Alsina et al., 2001; Hu et al., 2005). To investigate
whether inhibition of TrkB signaling interferes with RGC synap-
tic connectivity, we visualized RGC presynaptic specializations by
expressing an RFP—synaptobrevin fusion protein together with
the GFP control or GFP-TrkB.T1 construct in individual RGCs.
The advantage of the t-dimer—RFP fluorophore is that, unlike

Altering TrkB signaling in tectal
neurons does not alter dendritic arbor
branching or synaptogenesis

Our previous studies demonstrated that
manipulations that increase BDNF tectal
levels exert significant effects on tectal
neuron synaptic connectivity, increasing
postsynaptic specialization number but
not dendritic branching (Sanchez et al,,
2006). Only when BDNF levels were decreased by injection of
neutralizing antibodies was dendritic arbor growth prevented. To
directly differentiate between cell-autonomous and secondary ef-
fects of BDNF on postsynaptic tectal neurons, we overexpressed
GFP-TrkB.T1 in tectal neurons of young tadpoles and analyzed
dendritic arbor morphology at stage 45. Time-lapse confocal mi-
croscopy revealed that GFP-TrkB.T1 expression in individual
tectal neurons does not influence dendritic arbor morphology or
the rate of dendritic arbor growth (Fig. 5A). Both GFP-TrkB.T1
and age-matched control tectal neurons had comparable total
branch numbers at all observation time points (total branches,
13.55 = 1.50 for control at 0 h, 20.00 £ 2.32 for control at 48 h,
p = 0.0088; total branches, 11.75 * 0.75 for TrkB.T1 at 0 h,
15.56 * 1.58 for TrkB.T1 at48 h, p = 0.0292) (Fig. 5B). Dendritic
complexity index (DCI) of tectal neurons, calculated similarly to
the ACI used for analysis of RGC axon complexity, showed that
control and GFP-TrkB.T1 tectal neurons possessed similar com-
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Figure4. GFP-TrkB.T1-overexpressing axons have a decreased density of presynaptic spe-
cializations. A-H, Three-dimensional reconstructions of RGC axon arbors expressing GFP control
(A-D) or GFP—TrkB.T1 (E-H) together with RFP—synaptobrevin. Representative examples of
relatively simple (4, F) and complex (C, G) axon arbors are shown. Areas of the axon arbor
containing isolated single branches are demarcated by the boxes in 4, C, E, G and magnified in
B, D, F, H, respectively. Note the punctate distribution of the RFP—synaptobrevin presynaptic
marker in the GFP controls (arrows in B, D) and the more evenly distributed RFP fluorescence in
the GFP—TrkB.T1-expressing axons (arrowheads in F). The branched GFP—TrkB.T1-expressing
axons (E, G) have more growth cone-like structures (asterisks) with diffuse RFP fluorescence
labeling (arrowheads). The density of RFP—synaptobrevin puncta in the GFP-TrkB.T1-
expressing arbors (E-H ) is also lower than in GFP controls (A-D). I, Quantification of the effect
of GFP—TrkB.T1 expression on the density of presynaptic specializations per axon arbor, ex-
pressed as the number of RFP—synaptobrevin puncta per 10 pum. RFP—synaptobrevin puncta
(arrows) with diameter of less or equal to T wm and fluorescence intensity at least 2.5 times
greater than that of background RFP were included in the analysis. *p << 0.05, **p << 0.005,
**¥p < 0.0005. Scale bars, 10 wm.

plexities (DCI values) and significantly increased dendritic arbor
complexity within 48 h of observation (DCI for GFP controls:
1.30 = 0.07 at 0 h, 1.71 = 0.14 at 48 h, p = 0.0013; DCI for
GFP-TrkB.T1 tectal cells: 1.33 = 0.06 at 0 h, 1.58 = 0.08 at 48 h,
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Figure 5. Inhibition of TrkB signaling in postsynaptic tectal neurons does not affect matu-

ration of tectal neuron dendritic arbor. A, Image reconstructions of representative GFP control
and GFP—TrkB.T1-labeled tectal neurons. Scale bar, 10 um. B—E, Quantification of the effects of
TrkB.T1 overexpression in postsynaptic tectal neurons on dendritic branch number, dendritic
arbor complexity, branch dynamics, and total dendritic arbor length. DCl was calculated simi-
larly to ACl (see Fig. 2(). Values for new and stable branches are expressed as the percentage
change from the previous time point. Total dendritic arbor length is presented as a percentage
of total length of the arbor at 0 h time point. *p << 0.05, **p < 0.005, ***p < 0.0005; ns,
nonsignificantly different.

p = 0.0138) (Fig. 5C). Furthermore, inhibition of TrkB signaling
in tectal neurons did not affect the dynamic behavior of the tectal
neuron dendritic branches or their growth rate. The rates of den-
dritic branch addition and stabilization (Fig. 5D), as well as
branch turnover rates were similar in GFP-TrkB.T1 and GFP
control tectal neurons (branch turnover rate: 13.88 = 3.12% for
controls, 14.27 = 4.77% for GFP-TrkB.T1, p = 0.9498; not
shown graphically). Moreover, both GFP control and GFP-
TrkB.T1 tectal neurons similarly increased their total dendritic
length over a 48 h observation period (increase in total arbor
length compared with 0 h was, for GFP controls: 108.30 = 5.49%
at 4 h, 132.00 = 8.94% at 24 h, 172.80 = 13.23% at 48 h; for
GFP-TrkB.T1: 111.60 * 6.85% at 4 h, 129.00 = 8.27% at 24 h,
156.20 = 13.02% at 48 h) (Fig. 5E). Together, our data demon-
strates that inhibition of TrkB signaling in postsynaptic tectal
neurons does not alter dendritic arbor morphology or dynamics,
further supporting the idea that the effect of neutralizing BDNF
on tectal neurons we reported previously is indirect and mediated
by the altered growth and maturation of presynaptic RGC axons.

Although our previous studies showed that manipulations
that increased or decreased tectal BDNF levels had no significant
effects on dendritic arbor morphology, these manipulations in-
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fluenced synapse number in tectal neurons. Specifically, BDNF
increased, whereas anti-BDNF decreased, the number of
postsynaptic density-95-GFP-labeled postsynaptic specializa-
tions present on the tectal neuron dendritic arbors (Sanchezetal.,
2006). To determine whether these effects of altered BDNF levels
reflect a direct or indirect effect on tectal neuron synaptic con-
nectivity, we performed a quantitative analysis of synaptic sites in
tectal neurons overexpressing GFP or GFP-TrkB.T1 in stage 45
tadpoles. Because expression of RFP-tagged postsynaptic pro-
teins interferes with TrkB.T1 expression, for this analysis, we
immunostained tadpole brains with antibodies to the presynaptic
plasma membrane protein SNAP-25 to identify sites of contact
between presynaptic axons and tectal neuron dendritic arbors
(Fig. 6 A, B). Confocal z-stacks were collected at a high resolution
to resolve individual SNAP-25-immunopositive puncta apposed
to the GFP-labeled dendritic branches (Fig. 6C,D). Our results
show that the number of SNAP-25 puncta per unit dendritic
arbor length is similar in the GFP-TrkB.T1- and GFP-expressing
tectal neurons (2.21 = 0.31 SNAP-25 puncta per 10 um for GFP—
TrkB.T1 and 2.29 % 0.25 for GFP control; not shown graphi-
cally). Consequently, these results demonstrate that direct alter-
ations in TrkB signaling in tectal neurons do not alter their
synaptic connectivity, supporting the idea that BDNF influences
the development of retinotectal synaptic connectivity by acting
primarily on presynaptic RGCs.

Inhibition of TrkB signaling in RGCs influences synaptic
vesicle docking at retinotectal synapses

Collectively, our in vivo imaging experiments indicate that cell-
autonomous TrkB signaling directly in RGCs mediates the effects

Altering TrkB signaling in postsynaptic tectal neurons does not influence retinotectal synaptic connectivity. 4, B,
Control (4) and TrkB.T1 (B) overexpressing tectal neurons and the discrete distribution of endogenous SNAP-25 in the tectal
neuropil. Tadpole brains with individual tectal neurons expressing GFP or GFP—TrkB.T1 were fixed and immunostained with an
antibody to the presynaptic protein SNAP-25 to reveal presynaptic sites apposed to the dendritic arbors. Scale bar, 10 wm. C, D,
High-magnification images (projections of 5 sequential confocal planes) show colocalization of single SNAP-25 puncta (arrows)
with selected segments of GFP control (€) and GFP—TrkB.T1 (D) dendritic arbor. No significant difference in the number or density
of SNAP-25 puncta apposed to GFP—TrkB.T1-expressing tectal neurons versus GFP controls was observed. Scale bar, 2 um.

J. Neurosci., March 7, 2007 - 27(10):2444 -2456 + 2451

of BDNF on axon arborization and pre-
synaptic differentiation. To further evalu-
ate whether TrkB signaling in RGCs is di-
rectly involved in synaptic maturation and
to correlate in vivo imaging observations
with ultrastructural changes at retinotec-
tal synapses, we analyzed brains of stage 45
tadpoles expressing GFP-TrkB.T1 or GFP
exclusively in RGCs. Synapses made by the
GFP-TrkB.T1- or GFP-expressing RGC
axons were specifically identified by
preembedding immunoelectron micros-
copy using an antibody to GFP. Mature
and immature retinotectal synapses were
observed in both GFP-TrkB.T1- and
GFP-expressing tadpoles. Presynaptic
profiles analyzed included terminals with
synaptic vesicle aggregates but no thicken-
ing of presynaptic and postsynaptic mem-
branes (immature synapses), as well as
mature synaptic profiles with clearly iden-
tifiable presynaptic active zones and
postsynaptic densities (Fig. 7A-C). Al-
most half of all of the immunopositive
profiles with synaptic vesicle aggregates
analyzed from RGC terminals expressing
GFP in control tadpoles represented ma-
ture synapses (46.5 = 4.46%; n = 154 pro-
files analyzed from 11 tadpoles expressing
GFP in RGCs) (Table 1). In contrast, in
the GFP-TrkB.T1-expressing RGC axons,
only 21.68 * 6.6% of profiles with synap-
tic vesicle aggregates were associated with
mature presynaptic and postsynaptic structures ( p = 0.0044; n =
188 profiles analyzed from seven tadpoles expressing GFP—
TrkB.T1 in RGCs). The significant difference in the number of
fully differentiated synaptic profiles in control versus GFP—
TrkB.T1-expressing RGC axons suggests that synapse matura-
tion may be affected by the altered TrkB signaling in RGCs. This
interpretation is in agreement with our observations that GFP—
TrkB.T1-expressing RGC axons have significantly fewer presyn-
aptic specializations than controls, as defined by the RFP—synap-
tobrevin punctate labeling. Consistent with our observations in
single axons imaged in vivo, we also observed that, in addition to
mature and immature presynaptic profiles, enlarged growth
cone-like presynaptic profiles (data not shown) were prevalent in
the GFP-TrkB.T1-expressing RGC axons.

Detailed morphometric analysis of the tectal neuropil of GFP—
TrkB.T1 and GFP-expressing control tadpoles revealed a signifi-
cant decrease in the number of synaptic vesicles per mature pre-
synaptic profile at synapses made by GFP-TrkB.T1-expressing
axons when compared with GFP-expressing controls (Fig. 7A, B;
Table 1). In addition, the number of docked synaptic vesicles,
defined as those located up to one-vesicle-diameter distance
(~50 nm) from the active zone, was significantly lower in the
GFP-TrkB.T1-immunopositive presynaptic profiles than in GFP
controls (6.46 = 0.47 in GFP-TrkB.T1 vs 3.93 = 0.59 in GFP-
expressing axons; p = 0.015) (Fig. 7B). Presynaptic bouton area
in the GFP-TrkB.T1-positive profiles was not significantly differ-
ent from controls (Table 1). Thus, our ultrastructural analysis
demonstrates that interfering with TrkB signaling selectively in
RGCs influences not only synapse number but also structural
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aspects that influence synaptic function at
retinotectal synapses (i.e., docked synaptic
vesicle pool).

Discussion

Studies in diverse animal species have es-
tablished that afferent and efferent neu-
rons as well as interneurons are subject to
neurotrophic modulation during their
morphological differentiation. The ques-
tion of where in a specific circuit BDNF
acts has been difficult to address because
methods that use pharmacologic, trans-
genic, or knock-out manipulations have
not been able to distinguish between pre-
synaptic and postsynaptic events. Our
studies directly explored presynaptic and
postsynaptic mechanisms that influence
the establishment of retinotectal connec-
tivity by specifically interfering with TrkB
signaling in presynaptic RGCs or postsyn-
aptic tectal neurons. Real-time, in vivo
imaging of individual neurons overex-
pressing GFP-TrkB.T1 allowed us to
demonstrate that cell-autonomous TrkB
signaling in presynaptic RGCs is respon-
sible for multiple aspects of retinotectal
development that include axon growth
cone morphology, axon branch initia-
tion and stabilization, axon arbor matu-
ration and maintenance, synaptogen-
esis, and synaptic ultrastructure.

Figure7.
A-D, Representative electron photomicrographs of mature synaptic profilesimmunopositive for GFP. The silver-enhanced immu-
nogold labeling (open arrows) identifies presynaptic profiles in GFP control (4, B), and GFP—TrkB.T1-expressing RGC terminals (C,
D). The lower-magnification micrograph (A) illustrates the specific localization of silver-enhanced gold particles to individual
presynaptic terminals and the absence of immunoreactivity in the surrounding neuropil. The number of synaptic vesicles docked
at the active zone (black arrows) is higher in GFP control (A, B) than in GFP—TrkB.T1-expressing presynaptic terminals (C, D). v,
Synaptic vesicles; m, mitochondria. Scale bars, 0.2 m.

TrkB signaling is not required for RGC
axon pathfinding

The ability of growth cones to respond to
local gradients of neurotrophins in in vitro
assays has suggested that BDNF may act as
a guidance factor during axon pathfinding
or targeting. RGC growth cones in partic-
ular are attracted to BDNF gradients when presented during early
development in culture (Ming et al., 2001; Zweifel et al., 2005;
Chen et al., 2006). Our experiments that interfered with TrkB
signaling in RGCs demonstrate, however, that BDNF signaling
does not influence RGC axon pathfinding or targeting to the
optic tectum, because both individual neurons overexpressing
GFP-TrkB.T1 and cohorts of GFP-TrkB.T1 transgenic RGCs
projected to their correct targets and no misdirected axons were
found. Thus, these results are consistent with previous observa-
tions in TrkB and BDNF knock-out mice showing normal eye-
specific patterning in the retinorecipient target areas (Rohrer et
al., 2001; Lyckman et al., 2005). It is important to note that TrkB
signaling, although found to be important for the formation of
synaptic connectivity, it is not involved in the guidance of major
afferent projections in either the hippocampus or the cerebellum
(Martinez et al., 1998; Rico et al., 2002), similar to our observa-
tions in developing visual system.

Cell-autonomous TrkB signaling is important for the growth
and stabilization of RGC axons

Disruption of intracellular TrkB signaling in presynaptic RGCs
caused multiple abnormalities in the growth and maturation of
RGC axons that projected to the optic tectum. The TrkB.T1-
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Synapse ultrastructure in the tectal neuropil of stage 45 tadpoles expressing GFP or GFP—TrkB.T1 exclusively in RGCs.

Table 1. Ultrastructural analysis of retinotectal synapses with overexpression of
GFP or GFP-TrkB.T1 at individual presynaptic RGC terminals

GFP control GFP-TrkB.T1
Mature synaptic profiles (percentage) 46.5 = 4.46 21.68 * 6.6**
Synapticarea (um?) 6.2+ 0.58 53+ 0.85
Synaptic vesicle number 70.8 = 6.16 483 *+ 5.01*
Number of docked vesicles 6.4+ 0.46 3.9 + 0.59*
Docked vesicle density (per rm) 39.1 = 3.67 26.9 =+ 3.98*
Length of active zone (M) 0.2 = 0.013 0.165 = 0.013

Atotal of 188 GFP-immunopositive profiles were analyzed for GFP—TrkB.T1-expressing RGC axons (n = 45 mature
synaptic profiles analyzed) and 154 for GFP controls (n = 90 mature synaptic profiles). Two-sample Student’s ¢ test
were used for the statistical analysis of data. *p = 0.05; **p = 0.005.

overexpressing RGCs had much simpler axon arbors than con-
trols, ranging from growth cone-like to relatively complex. The
wide variability in arbor complexities may be caused by a differ-
ence in the overall ratio of full-length to truncated TrkB isoforms
present in the transfected neurons. Indeed, developing RGCs ex-
press both full-length and truncated TrkB isoforms endog-
enously, and the expression level of the different isoforms per
RGC may be variable, depending on their maturational state and
phenotype (Cohen-Cory and Fraser, 1994; Martin et al., 1995;
Cohen-Cory etal., 1996; Garner et al., 1996; Llamosas et al., 1997;
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Suzuki et al., 1998; Spalding et al., 2005). Consistent with this
idea, the responsiveness of Xenopus oocytes to BDNF was found
to depend on the ratio of full-length/truncated TrkB on the oo-
cyte membrane (Eide et al., 1996).

Overexpression of TrkB.T1 in RGCs influenced not only the
proportion of axons that remained in an immature state but also
growth cone morphology. One possible explanation for this ef-
fect is that interfering with TrkB signaling delays the outgrowth of
RGC axons and therefore the timing at which RGCs reach their
final destination, because neurotrophins have been shown to
influence axon growth in culture (Zweifel et al., 2005). An
alternative, non-exclusive possibility is that interfering with
TrkB signaling impairs the ability of RGC axons to branch
once they reach the optic tectum by affecting growth cone and
axon branch dynamics. Our observations that the first RGC
axons in GFP-TrkB.T1 transgenic tadpoles arrive at the optic
tectum at the same developmental stage of RGC axons in GFP
transgenic tadpoles favor the second possibility. It is possible
that altered TrkB signaling impacts RGC growth cone mor-
phology and therefore axon branch initiation by directly in-
fluencing signaling mechanisms that regulate microtubule
and the actin cytoskeletal dynamics (Gibney and Zheng, 2003;
Gehler et al., 2004), because those signaling mechanisms are
downstream of TrkB-mediated RhoA and cell division cycle 42
(Cdc42) signaling (Ruchhoeft et al., 1999; Chen et al., 2006).
Indeed, the growth cone morphologies observed in TrkB.T1-
expressing RGCs are reminiscent of those of Xenopus retinal
neurons in vivo with altered Cdc42 signaling (Ruchhoeft et al.,
1999).

Our single-cell manipulations and in vivo observations also
demonstrated that interfering with TrkB signaling influenced not
only axon maturation but also induced an approximately fivefold
increase in the number of RGC axons that degenerated after pro-
jecting to the optic tectum. Our study did not specifically evaluate
whether selective cell death accompanied RGC axon arbor degen-
eration in RGCs with altered TrkB signaling, because it proved
technically difficult to experimentally correlate these two events.
The timing of the effect of interfering with TrkB signaling, how-
ever, supports the interpretation that BDNF may serve as a target-
derived cue that selectively maintains RGC axons that have suc-
cessfully reached the optic tectum (Isenmann et al., 1999; Menna
et al., 2003). It is well known that BDNF can promote neuronal
survival of multiple neuronal populations through activation of
TrkB receptors (for review, see Kaplan and Miller, 2000). How-
ever, it remains controversial whether, and how, BDNF modu-
lates RGC survival in vivo and whether this would be a target-
mediated or local effect. BDNF promotes RGC survival in vitro
(Rodriguez-Tebar et al., 1989; Cohen-Cory and Fraser, 1994;
Meyer-Franke et al., 1995) and in vivo (Ma et al., 1998), but mice
lacking all isoforms of the TrkB receptor show no apoptotic RGC
death (Rohrer et al., 2001). Interestingly, recent evidence in
mammals indicates that BDNF, signaling through the full-length
TrkB receptor, influences developmental death dynamics by con-
trolling the timing of programmed cell death but not the final
number of RGCs (Pollock et al., 2003). It remains possible, how-
ever, that, in the absence of TrkB signaling, BDNF could induce
RGC axon degeneration through a p75 receptor-dependent
mechanism, similar to the mechanisms described for sympa-
thetic and hippocampal neurons (Kohn et al., 1999; Woo et al.,
2005).
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TrkB signaling in presynaptic RGCs modulates
synaptogenesis and normal maturation of

retinotectal synapses

BDNF can influence the development of multiple neuronal pop-
ulations and neuronal circuits, and, within individual circuits,
the effects can occur presynaptically, postsynaptically, or both. In
the mammalian visual system, for example, BDNF can act
postsynaptically to induce pyramidal cortical neuron dendritic
arbor growth and spine maintenance (Horch et al., 1999; Horch
and Katz, 2002; Chakravarthy et al., 2006) and can also enhance
inhibitory cortical interneuron dendritic maturation (Huang et
al., 1999; Jin et al., 2003; Kohara et al., 2003). A postsynaptic
mechanism of BDNF action during the development of excita-
tory and inhibitory circuits has also been favored by studies using
hippocampal cultures and knock-out mice as model systems (El-
mariah et al., 2004; Elmariah et al., 2005; Luikart et al., 2005;
Ohba et al., 2005; Chakravarthy et al., 2006). That BDNF acts
presynaptically, however, has only been demonstrated for hip-
pocampal neurons in studies that analyzed changes in synapse
number and synaptic function in culture and in conditional TrkB
knock-out mice (Li et al., 1998; Luikart et al., 2005; Magby et al.,
2006). By directly altering TrkB signaling in single neurons in the
living animal, we now demonstrate that presynaptic TrkB signal-
ing is necessary for RGC axon arbor maturation and for the es-
tablishment of retinotectal synaptic connectivity because the
overexpression of TrkB.T1 exclusively in presynaptic RGCs in-
terfered with both processes.

In previous studies, we used targeted, acute alterations in
BDNEF levels within the tadpole optic tectum to demonstrate that
BDNF influences the establishment of synaptic connectivity be-
tween RGC axons and tectal neurons, primarily by influencing
RGCs (Alsina et al., 2001; Hu et al., 2005; Sanchez et al., 2006).
The present analysis of axon branching and remodeling in RGCs
with altered TrkB signaling validates our previous findings and
reveals that GFP-TrkB.T1-expressing axons are significantly less
stable and have a higher branch turnover rate than control RGC
axons expressing GFP. The decreased stability of RGC axons with
altered TrkB signaling is in agreement with our recent demon-
stration that acute neutralization of endogenous tectal BDNF
with function-blocking antibodies interferes with RGC axon
branch stability (Hu et al., 2005). Longer-term alterations in
TrkB signaling, however, influenced RGCs axon branch behavior
in a manner that differed from the effect of reducing tectal BDNF
levels acutely at the target. TrkB.T1-expressing RGCs possessed
higher branch addition and elimination rates, whereas a single
treatment with anti-BDNF elicited rapid axon branch elimina-
tion without altering branch addition rates (Hu et al., 2005).
Thus, the higher axon branch turnover rate in the TrkB.T1-
expressing RGCs may reflect an increase in the exploratory be-
havior of the axon arbors and could represent a mechanism by
which RGCs with altered TrkB signaling try to compensate for
the impaired ability to stabilize new branches, which interferes
with normal growth and maturation of the axonal arbor.

Our in vivo single-cell analysis of tectal neurons also supports
the notion that BDNF influences tectal neuron morphology and
synaptic connectivity only indirectly, through its effects on pre-
synaptic RGCs. The number and density of presynaptic contact
sites per dendritic arbor in the GFP-TrkB.T1-expressing tectal
neurons was the same as that of tectal neurons in tadpoles with
intact TrkB signaling. Our previous studies demonstrate, how-
ever, that presynaptic changes at retinotectal synapses elicited by
acute alterations in BDNF levels are paralleled, with a time delay,
by synaptic changes in postsynaptic tectal neurons (Sanchez et al.,
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2006). Thus, presynaptic changes that influence RGC axon arbor
shape and synaptic function are then manifested as postsynaptic
structural changes at retinotectal synapses.

In addition to influencing axonal architecture and synapse
number, presynaptic changes in TrkB signaling impact both the
structure and function of retinotectal synapses. Our electron mi-
croscopy analysis revealed that a major consequence of inter-
fering with presynaptic TrkB signaling is that synapses estab-
lished by TrkB.T1-expressing RGC axons are less mature than
those made by RGCs with intact TrkB signaling, with
TrkB.T1-positive synapses showing significant decreases in
the total number of synaptic vesicles and of synaptic vesicles
docked at active zones. Because neurotransmitter release
probability is proportional to the number of docked synaptic
vesicles (Pozzo-Miller et al., 1999; Schikorski and Stevens,
2001; Tyler and Pozzo-Miller, 2001), these structural changes
at the level of individual synapses reflect a significant decrease
in synaptic function, consistent with electrophysiological
studies performed in tadpoles with altered BDNF tectal levels
(Du and Poo, 2004).

How does TrkB signaling regulate synaptic structure and
function? Most studies have analyzed how BDNF, through its
receptor TrkB, modulates the ultrastructural composition of syn-
apses collectively within a circuit, but the specific effects observed
can vary slightly among vertebrate species and synapse type. In
the hippocampus, deficits in TrkB signaling result in decreased
expression of both synaptic vesicle and membrane proteins re-
sponsible for synaptic vesicle docking and fusion, a decrease in
the number of docked vesicles, and downregulation of neuro-
transmitter release at synaptic sites (Martinez et al., 1998; Lin and
Scheller, 2000; Otal et al., 2005). Cerebellar inhibitory synapses
are also modulated by BDNF, in which alterations in TrkB sig-
naling in knock-out mice reduce the numbers of GABAergic bou-
tons and synaptic specializations (Rico et al., 2002), and targeted
deletion of the BDNF gene decreases the number of vesicles that
are docked (Carter et al., 2002). In the chick visual system, alter-
ations in BDNF levels within the target optic tectum also affect
synaptic vesicle pool (Wang et al., 2003). Thus, a commonality
between circuits and species is that synaptic vesicle numbers and
densities are increased and synapses strengthened by enhanced
BDNEF signaling, and, conversely, synaptic vesicle numbers are
reduced and synapses are weakened if BDNF signaling is im-
paired (Vicario-Abejon et al., 2002; Shen et al., 2006). Our studies
are in agreement with these previous findings and directly dem-
onstrate that alterations in TrkB signaling in individual RGC
within an otherwise intact developing visual system are suffi-
cient to affect the synaptic connectivity of its axon terminal in
a cell-autonomous way. The decreased number of mature syn-
apses and the decrease in synaptic vesicle release on those
mature synapses present in axons with altered TrkB signaling
would therefore impact the firing strength of the axons, put-
ting them at a disadvantage compared with other active inputs
with intact TrkB signaling. A consequence of that deficit is that
the axon terminals destabilize and degenerate, two morpho-
logical observations revealed by our imaging studies. Collec-
tively, our in vivo studies demonstrate that cell-autonomous
TrkB signaling in presynaptic RGCs is necessary for multiple
aspects of RGC differentiation and indicate that the BDNE-
mediated growth and enhanced stability of presynaptic RGC
axons impacts both structural and functional aspects of reti-
notectal synaptic connectivity.
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