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Metastability of Active CA3 Networks

Takuya Sasaki,1 Norio Matsuki,1 and Yuji Ikegaya1,2

1Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan, and 2Precursory
Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan

The brain is spontaneously active even in the absence of external input. This ongoing background activity impacts neural information
processing. We used functional multineuron calcium imaging (fMCI) to analyze the net structure of spontaneous CA3 network activity in
hippocampal slice cultures loaded with Oregon Green 488 BAPTA-1 using a spinning disk confocal microscope (10 –30 frames/s).
Principal component analysis revealed that network states, defined by active cell ensembles, were stable but heterogenous and discrete.
These states were stabilized through synaptic activity and maintained against external perturbations. A few discrete states emerged
during our observation period of up to 30 min. Networks tended to stay in a single state for tens of seconds and then suddenly jump to a
new state. After a state transition, the old state was rarely, if ever, revisited by the network during our observation period. This temporal
profile of state transitions could not be simulated by a hidden Markov model, indicating that the state dynamics is nonrandomly
organized. Within each state, the pattern of network activity tended to stabilize in a specific configuration. Neither maintenance nor
transition of the network states required NMDA receptor activity. These findings suggest that the network states are metastable, rather
than multistable, and might be governed by local attractor-like dynamics. The fMCI data analyzed here are available at
http://hippocampus.jp/data/
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Introduction
Most neuronal activity is internally generated and not directly
linked to environmental input (Fiser et al., 2004). The spontane-
ous activity actively contributes to network development (Penn
and Shatz, 1999; Zhang and Poo, 2001), representation of sensory
stimuli (Kenet et al., 2003; MacLean et al., 2005), information
processing (Pare et al., 1998; Anderson et al., 2000; Petersen et al.,
2003; Shu et al., 2003), and trial-to-trial variability of neural (Ari-
eli et al., 1996; Azouz and Gray, 1999; Kisley and Gerstein, 1999;
Fox et al., 2005; Sasaki et al., 2006) and behavioral responses
(Briggman et al., 2005; Otten et al., 2006). Spontaneous activity in
brain slice preparations purely reflects the intrinsic properties of
local circuits and individual neurons and hence allows for the
investigation of the internal dynamics of neuronal networks
(Sanchez-Vives and McCormick, 2000; Beggs and Plenz, 2003,
2004; Shu et al., 2003; Stewart and Plenz, 2006). Previous studies
using functional multineuron Ca 2� imaging (fMCI) to probe
action potentials with single-cell resolution revealed that sponta-

neous network activity is nonrandomly structured (Mao et al.,
2001; Cossart et al., 2003; Ikegaya et al., 2004; MacLean et al.,
2005). In these studies, however, activity was monitored for only
a few minutes, and thus, little is known about long-term
dynamics.

There are �300,000 pyramidal cells in the rat CA3 pyramidal
cell layer in vivo, which constitutes a huge autoassociative net-
work. On average, each pyramidal cell projects to �6000 other
pyramidal cells, a significant portion of which are located within
a radius of only a few millimeters (Amaral et al., 1990). Thus, the
probability that two CA3 pyramidal cells located within 500 �m
of each other are synaptically connected is �10 –25% (Gomez-Di
Cesare et al., 1997). This probability, however, is extremely low in
acute slice preparations because the slicing procedure cuts CA3
associational fibers extending into the longitudinal axis of the
hippocampus. Our previous study demonstrated that, when
slices are organotypically cultured, �20% of the cell pairs within
300 �m have monosynaptic connections, suggesting that axonal
reorganization restores the complexity of a CA3 recurrent net-
work to a realistic extent (Fujisawa et al., 2006). In the present
study, therefore, we used hippocampal slice cultures to investi-
gate spontaneous activity generated by a recurrent neural circuit.
Hippocampal slice cultures were bulk loaded with Ca 2� fluoro-
phores, and spontaneous activity was recorded from individual
CA3 neurons for up to 30 min. Our simple method for taming the
entity of large-scale network activity revealed that the global pat-
tern of spontaneous activity jumps between discrete states over
time.

Materials and Methods
Materials. Oregon Green 488 BAPTA 1-AM (OGB-1) and Pluronic F-127
were obtained from Invitrogen (Carlsbad, CA). Cremophor EL, D,L-2-
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amino-5-phosphonopentanoic acid (AP-5), 6-
cyano-7-nitroquinoxoxaline-2,3-dione (CNQX),
picrotoxin, and sulfinpyrazone were purchased
from Sigma (St. Louis, MO). The antagonists
were dissolved in double-distilled water to
make 1000� stock solutions. The stock solu-
tions were stored at �20°C and diluted imme-
diately before use. Drugs were bath applied.

Slice preparations. Hippocampal slice cul-
tures were prepared from postnatal day 7
Wistar/ST rats (SLC, Shizuoka, Japan) as de-
scribed previously (Yamamoto et al., 1989;
Stoppini et al., 1991), according to the National
Institutes of Health guidelines for laboratory
animal care and safety. Briefly, rat pups were
chilled, and the brains were removed and hor-
izontally cut into 300-�m-thick slices using a
DTK-1500 vibratome (Dosaka, Kyoto, Japan)
in aerated, ice-cold Gey’s balanced salt solution
(Invitrogen, Gaithersburg, MD) supplemented
with 25 mM glucose. Entorhino-hippocampal
stumps were cultivated on Millicell-CM mem-
branes (Millipore, Bedford, MA). Cultures
were fed 1 ml of 50% minimal essential me-
dium, 25% HBSS (Invitrogen), 25% horse se-
rum (Cell Culture Laboratory, Cleveland, OH),
and antibiotics in a humidified incubator at
37°C in 5% CO2. The medium was changed
every 3.5 d.

Functional multineuron Ca2� imaging. On
days 7–14 in vitro, slices were washed three
times with oxygenated artificial CSF (ACSF)
consisting of the following (in mM): 127 NaCl,
26 NaHCO3, 1.5 KCl, 1.24 KH2PO4, 1.4
MgSO4, 2.4 CaCl2, and 10 glucose. Slices were
transferred into a 35 mm dish filled with 2 ml of
dye solution and incubated for 1 h in a humid-
ified incubator at 37°C in 5% CO2 (Sasaki et al.,
2006). The dye solution was ACSF containing
10 �l of 0.1% OGB-1/DMSO, 2 �l of 10% Plu-
ronic F-127/DMSO, 2 �l of 5% Cremophor EL/
DMSO, and 2 �l of 100 mM sulfinpyrazone/
DMSO. After being washed, slices were
incubated at room temperature for at least 30
min, mounted in a recording chamber, and
perfused with modified ACSF at 32°C to facili-
tate spontaneous activity. The modified ACSF
consisted of the following (in mM): 127 NaCl,
26 NaHCO3, 3.3 KCl, 1.24 KH2PO4, 1.0
MgSO4, 1.0 CaCl2, and 10 glucose (Sanchez-
Vives and McCormick, 2000). In some experi-
ments, slices were perfused with culture me-
dium (67% minimal essential medium and
33% HBSS) to achieve a more physiologic cul-
ture environment. After 10 min, we began to
image Ca 2� signals evoked by spontaneous
hippocampal CA3 neuron activity. Images
(653 � 492 pixels � 383 � 289 �m, 16-bit
intensity) were captured at 10 –30 frames/s
with Nipkow disk confocal microscopes (CSU10; Yokogawa Electric,
Tokyo, Japan), cooled CCD cameras [iXon DV885 (Andor, Belfast, UK);
Cascade 512B/F (Roper Scientific, Tucson, AZ)], upright microscopes
[ECLIPSE FN1 (Nikon, Tokyo, Japan); AxioSkop2 (Zeiss, Oberkochen,
Germany)], water-immersion objectives [16�, 0.80 numerical aperture
(NA), CFI75LWD16�W (Nikon); 20�, 0.5 NA, Achroplan (Zeiss)], and
MetaMorph software (Molecular Devices, Union City, CA). Fluoro-
phores were excited at 488 nm with an argon– krypton laser (5–10 mW,
641-YB-A01; Melles Griot, Carlsbad, CA) and visualized with a 507 nm
long-pass emission filter. Slices with epilepsy-like (or ripple-like) spon-

taneous synchronized activity were not used in the following analysis. In
some experiments, glass pipettes were filled with ACSF and placed in the
stratum granulosum to activate the mossy fiber pathway. The stimula-
tion intensity was adjusted to induce �20% of the CA3 neurons to fire
(50 �s, 40 –120 �A).

Event onset times were reconstructed from the onsets of Ca 2� tran-
sients with custom-written software in Microsoft (Seattle, WA) Visual
Basic (Ikegaya et al., 2004). For each cell, the fluorescence change �F/F
was calculated as (F1 � F0)/F0, where F1 is fluorescence intensity at any
time point, and F0 is the average baseline across 10 s before and after the

Figure 1. Optical long-time recording of neuronal action potentials with OGB-1. A, An fMCI photograph obtained from the CA3
pyramidal cell layer of a hippocampal slice culture bulk-loaded with OGB-1 (left) and post hoc immunostaining against NeuN
(middle) in the same field. Non-neuronal cells are marked by arrows in the merged image (right). B, Distribution of the soma size
and baseline fluorescence intensity of OGB-1-loaded cells. Neurons and non-neuronal cells are separable by the blue line that was
determined using linear discriminant analysis. The failure rate was �3%. C, Simultaneous loose patch-clamp recording and Ca 2�

imaging. The monitored cell is shown by arrows in the confocal image (left). The timing of �80% of spikes could be reconstructed
from the onsets of individual Ca 2� transients (right). This movie is published in part as supplemental movie 1 (available at
www.jneurosci.org as supplemental material). D, Time course of photobleaching. The laser shutter was kept open for 20 min, and
the mean fluorescence intensity of the whole imaged field was measured to determine how fast the OGB-1 signal decreased during
imaging. The photobleaching rate was �0.5%/min, and this rate did not differ among movies. Means and SD are shown as a thick
line and shaded area, respectively (n � 6). The inset indicates that the Ca 2� transients of a cell were clearly separable from basal
noise immediately (left) and 20 min (right) after the beginning of imaging. E, The number of spikes reconstructed by fMCI was
almost invariant during the 20 min period, indicating that detection of spike activity was stable for at least this period. F, MTT
reduction of intact (Control) or OGB-1-loaded (OGB-1) slices exposed to laser for 30 min (�Laser exposure). No significant
photodamage was observed. As a positive control, some slices were maintained in the absence of oxygen and glucose for 4 h
[O2/glucose(�)]. **p � 0.01, Tukey’s test after ANOVA. Data are means � SD of four to six slices.
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time point. Spike-triggered Ca 2� signals were semiautomatically de-
tected with the criteria being a Ca 2� transient with a 	3% amplitude,
	3.5%/s maximal first derivative (�t � 0.7 s), and a 1-to-2-frame peak
latency after the onset. The signals were then inspected manually to re-
move noise detected in error.

Electrophysiological recordings. Loose patch-clamp recordings were ob-
tained from CA1 pyramidal cells with an Axopatch 700B amplifier (Mo-
lecular Devices). Borosilicate glass pipettes (4 –9 M
) were filled with
ACSF. Signals were low-pass filtered at 1–2 kHz, digitized at 20 kHz, and
analyzed with pClamp 9.2 software (Molecular Devices).

Immunohistochemistry. After Ca 2� imaging, the cultures were fixed in
4% paraformaldehyde in 0.1 M PBS and permeabilized with 0.3% Triton
X-100 for 60 min. Nonspecific antibody binding was blocked by 60 min
incubation with 2% goat serum at 4°C. The slices were stained with a

primary mouse monoclonal antibody against
neuronal-specific nuclear protein (NeuN) (1:
500, MAB377; Chemicon, Temecula, CA)
overnight at 4°C and with secondary anti-
mouse IgG Alexa-594 (1:500) (A-11032; In-
vitrogen) for 3 h at room temperature and im-
aged with a Nipkow disk confocal microscope.

Multineuronal activity analysis. Raster plots
were binned every 1–50 s, and spike activity
onsets of individual neurons were counted in
each bin to construct a set of the N-dimension
vectors g�1, g�2, . . . , g�T, where N and T denote the
total numbers of neurons and bins, respectively
(e.g., T � 120 for a 20 min period with a 10 s bin
size). This vector series represents a time
change in the spatiotemporal pattern (i.e., ac-
tive cell sets and activity levels) of network ac-
tivity. We defined the similarity si,j between g�i

and g�j as their normalized dot product:

Si, j �
g� i � g� j

� g� i� � � g� j�
,

which is equivalent to the cosine of the angle
between g�i and g�j, having a value between 0 and
1 (Schreiber et al., 2003; Sasaki et al., 2006).

We also inspected the vector series in a di-
mensional space reduced by principal compo-
nent analysis (PCA) (Joliffe, 1986). Based on
the locations of data points in a principal com-
ponent (PC) coordinate system, g� was catego-
rized into one of the clusters defined by the
fuzzy K-means algorithm, in which a cluster
validity measure, the Dunn index, was used to
find the most appropriate number of clusters
(Bezdek et al., 1997).

The cluster that g�i belongs to is referred to
here as the network state at time i. The stability
of the state is reflected in the density of data
points in the PC coordinate. Based on statistical
physics, the normalized density (or probability
P) is ideally described by the Fokker–Planck
equation as a function of space x� and time t:

�P� x� ,t�

�t
�

�

� x���U� x� ,t�

� x�
� kBT

�

� x� �P� x� ,t�,

(1)

where kB is Boltzmann’s constant, U is poten-
tial energy, and T is temperature (Risken,
1989). In a short timescale, network dynamics
can be practically approximated as an equilib-
rium state (see below). For a limited time,
therefore,

�P� x� ,t�

�t
� 0. (2)

Assuming that T is constant, we obtain the following from Equations 1
and 2:

�

� x� ��U� x��

� x�
P� x��� � kBT �

�2P� x��

� x�2 � 0.

Thus,

P� x�� �
e�

U� x��

kBT

Z
, (3)

Figure 2. Sets of spontaneously active cells change over time. A, Example raster plot. Of 88 monitored cells, 56 cells were
spontaneously active during our observation time. Each row represents a single cell, and each dot represents a single Ca 2�

transient. B, Activities in a given time window (shaded area) were counted for each cell and converted to a vector, g�. The similarity
index between times i and j is defined as g�i � g�j/�g�i� � �g�j�. C, Similarity indices decreased as the time difference between two
vectors increased. Data were binned with different time windows (1–50 s) and pooled for all possible vector pairs. D, The same
data as in C were plotted versus bin widths. E, Each similarity index is shown as a pseudocolored matrix for all possible pairs of 10 s
time windows. Note the similarity indices seem to be discontinuously distributed in this matrix.
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in which Z is a normalization constant (or par-
tition function). Incidentally, Equations 3 is
equivalent to the Maxwell–Boltzmann distri-
bution. Therefore, we can estimate U as
follows:

U� x�� 
 � log�P�x���,

where a 
 b indicates that a is proportional to b.
We used this equation to evaluate the stability
of a network state.

Measurement of cell viability. Cell viability
was determined by the 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT)
reduction assay. MTT is a yellow water-soluble
tetrazolium salt. This dye is converted to water-
insoluble purple formazan during reductive
cleavage of its tetrazolium ring by the succinate
dehydrogenase system of active mitochondria.
Thus, the amount of formazan formed can be
determined spectrophotometrically and serves
as an estimate of mitochondrial activity and
hence the viability of living cells in the sample
(Denizot and Lang, 1986). Cultured slices were
loaded with OGB-1 and exposed to a laser (10
mW at 488 nm) for 30 min. As a positive con-
trol experiment, some cultures were immersed
in glucose-free, non-oxygenated PBS for 4 h.
The slices were then incubated with 0.5 mg/ml
MTT for 1 h at 37°C and solubilized by 50%
dimethylformamide and 20% SDS, pH 4.7. The
amount of MTT formazan produced was mea-
sured as its absorbance at a test wavelength of 570
nm versus a reference wavelength of 655 nm.

We report the means � SDs for all averaged
measurements.

Results
Optical imaging of
multineuronal activity
Hippocampal slice cultures were loaded
with OGB-1, and their fluorescence im-
ages were compared with post hoc immu-
nostaining against NeuN, a neuron-
specific marker (Fig. 1A). More than 90%
of CA3 neurons were loaded with OGB-1.
Non-neuronal cells were also loaded with
the fluorophores, but they had smaller so-
mata and higher basal fluorescence intensity
and were therefore distinguishable from
neurons (error detection of �3%) (Fig. 1B);
that is, neurons could be identified in
OGB-1 images with �97% confidence.

Simultaneous loose patch-clamp re-
cording and fMCI revealed that action po-
tentials were reflected in somatic Ca 2�

transients (Fig. 1C) (supplemental movie
1, available at www.jneurosci.org as sup-
plemental material). Because of slow
[Ca 2�]i decays (time constant of 300 – 400
ms) and a low rate of scan speed (10 –30
Hz), individual spikes emitted at higher
firing rates (	5 Hz) were inseparable, and thus our datasets con-
sist of the onset of each burst train or a single spike (Fig. 1C,
bottom).

Glial Ca 2� waves usually have much slower kinetics and
higher amplitudes than spike-triggered neuronal Ca 2� transients

(Ikegaya et al., 2005). We thus discarded the data of cells that
displayed slow Ca 2� transients with a more than two-frame peak
latency. Using this procedure, �10% of the cells were discarded.
Therefore, our data were only minimally contaminated with
non-neuronal signals.

Figure 3. PCA-defined network states are nonrandomly organized. The raster plot shown in Figure 2 A was analyzed. A, Cell
maps (top) and pseudocolored eigenvectors (bottom) of the first eight PCs that accounted for 	70% of the total variance. Values
in the parentheses indicate contribution ratios to the total variance. B, Spatiotemporal patterns of spontaneous activity illustrated
in the two-dimensional PC1–PC2 space. C, A portion (20 – 40%) of neurons were randomly selected and removed from the raster
plot, and PCA was performed for the remaining neurons. This cell-ablation procedure did not significantly affect the contribution
ratios of PCs. D, ISIs were transposed at random within cells to collapse temporal correlations between the events. E, PCA of a
surrogate raster plot generated by the ISI-shuffling procedure. For this surrogate, we determined a new set of eigenvectors and
depicted the data in a new PC coordinate. F, The contribution ratios of the original raster plot were higher than those of ISI-shuffled
surrogates. Simulations were repeated 20 times, and all data are represented as red lines. G, A cell event was exchanged with a
randomly selected event of another randomly selected cell, and this procedure was repeated for all events of all cells to randomize
the raster plot while preserving both the activity levels of individual cells and the temporal correlation at the population level. H,
PCA of a surrogate raster plot generated by the event-exchanging procedure. I, The real contribution ratios were higher than those
of any of 20 event-exchanged surrogates.
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The mean photobleaching rate was 0.46 � 0.04%/min (Fig.
1D). Spontaneous Ca 2� transients were evident even after 20
min, and the overall frequency of reconstructed spikes did not
decrease during the recording epoch (Fig. 1E). In addition, cell
viability, as assessed by MTT reduction activity, of OGB-1-loaded
slices was not reduced after 30 min exposure to the laser (Fig. 1F).

Thus, our fMCI technique is reliable, at
least in the range of tens of minutes.

Network states defined by
spontaneous activity
We imaged the CA3b subregions of 38
hippocampal slice cultures at 10 –30
frames/s for 10 –30 min. An example ras-
ter plot representing the spatiotemporal
patterns of spontaneous activity is shown
in Figure 2A. Unless otherwise specified,
we show the analyzed data of this raster
plot because we obtained similar results in
all control movies.

Each raster plot was transformed into a
time series of g� by sliding a 1–50 s time
window along the time axis (Fig. 2B). The
vector g� represents the spatiotemporal
weight of network activity, i.e., the set of
active cells and their individual activity
levels at a given time. We compared g�i and
g�i (at times i and j, respectively) by com-
puting a similarity index between them
(Fig. 2B). The index was plotted versus the
time difference | i � j | for all possible vec-
tor pairs (Fig. 2C). The vector similarity
decreased as the time difference increased.
The relative decay rate was �8%/min and
almost independent of the bin width in the
range of 10 –50 s (Fig. 2C), indicating that
the network activity patterns changed over
time. Conversely, the absolute value of the
similarity index increased as the bin size
increased and reached a near-maximal
steady state at a bin size of 	10 s (Fig. 2D).
In the following analysis, we thus analyzed
10 s binned vectors unless otherwise spec-
ified. To evaluate the temporal modula-
tion of the similarity indices in more de-
tail, they were plotted as a matrix for
individual vector pairs (Fig. 2E). In this
matrix, the similarity index occasionally
showed relatively abrupt, discontinuous
transitions at some time points, depicting
cluster-like structures.

PCA is a data-reduction technique that
linearly decomposes the data into a lower-
dimensional set of new orthogonal vec-
tors. We used PCA to relieve redundancies
in the descriptions of network activity
(Stopfer et al., 2003; Briggman et al., 2005)
and tried to facilitate visualization of the
global similarities and differences in a g�
series. The dimension that accounts for
the single greatest portion of the total vari-
ance was termed PC1, and we adopted the
top PCs that contributed to 70% of the

total variance. On average, the first 7.6 � 3.5 PCs (n � 15 slices)
were required to meet this criterion. In the movie shown in Figure
2A, the first eight PCs reached 70% (Fig. 3A,C). Each PC is
expressed as a linear combination (or eigenvector) of the ob-
served neurons in the 56-dimensional dataset (Fig. 3A). We visu-
alized the results, for illustration purposes, with the first two PCs

Figure 4. Network states are stable and diverse. Data shown in Figure 2 A were analyzed except for E. A, Dunn index indicates
the plausibility of separation (4 clusters, here). B, Data in the PC coordinate were divided into four discrete states with the fuzzy
K-means algorithm. C, Time course of a shift in network states. D, Probabilities of state transitions between neighboring 10 s
segments. E, Distribution of time spent for remaining in a single state showed a 1/time � structure with � � 1.3. Data were
collected from 15 slices. F, G, In ISI-shuffled (F ) and event-exchanged (G) surrogates, Dunn indices were lower than those of the
real data and not separable into stable states.
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and found that the time series of network activity depicted a
trajectory-like structure (Fig. 3B).

To determine whether this structure can arise from a stochas-
tic process, we created surrogate raster plots with two shuffle
methods. First, the intersignal intervals (ISIs) were transposed at
random within each cell to eliminate temporal correlations be-
tween cells (Fig. 3D). Second, each single event was exchanged
between a pair of cells, maintaining their relative timing (Fig.
3G). The procedures were repeated for all Ca 2� transients. This
randomization preserves event frequencies of individual cells and
population modulation of event timings such as global synchro-
nization. For each shuffled surrogate, we determined a new set of
eigenvectors and plotted the data in a new PC coordinate. In both
ISI-shuffled and event-exchanged surrogates, the trajectory-like
structure disappeared (Fig. 3E,H), and the contribution ratios of
PCs to the total variance were lower than those of the original
raster plot (Fig. 3F, I). This implies that the dynamics of network
states (i.e., data points in the PC coordinate) are more organized
than expected by chance alone. We also performed the same anal-
ysis for different bin sizes (1–50 s); trajectory-like structures be-
gan to appear at a 5 s bin width, and the difference from surro-
gates became more evident for larger bins (supplemental Fig. 1,
available at www.jneurosci.org as supplemental material).

To examine the robustness of these network dynamics, we
performed “cell-ablation” simulations, in which we randomly

selected 20 – 40% of the neurons and removed them from the
raster plot. The contribution ratios were almost unchanged by
cell ablation (Fig. 3C). These results suggest that the structures of
network states are maintained by the global entity (not a specific
fraction) of multineuronal activity.

We next used the fuzzy K-means clustering algorithm to sep-
arate network states. The optimal number of groups was deter-
mined using the Dunn index (Fig. 4A). In the example movie,
network states were most plausibly separated into four groups
(Fig. 4A,B). The time course of changes in network states is
shown in Figure 4C. On average, networks displayed 2.2 � 0.8
states per 10 min (n � 15 movies). Without PCA, fuzzy K-means
could not separate the vector data very well (data not shown; see
also Fig. 2E). Thus, the combination of PCA, Dunn index, and
fuzzy K-means provides a powerful tool for analyzing this type of
high-dimensional data.

We calculated the probability of state transitions by compar-
ing the states of two consecutive vectors g�i and g�i � 1, i.e., neigh-
boring 10 s segments (Fig. 4D). The probability of remaining in
the same state was much higher than that of drifting to another
state. In other words, the network tended to maintain the same
state as that of the previous 10 s period. Importantly, state tran-
sitions seemed to be unidirectional; that is, the states shifted up in
the order of 1 3 2 3 3 3 4 and rarely returned to an earlier
state. This trend was observed in all movies obtained (n � 15)

Figure 5. Examples of other control movies. A–C, Contribution rates were significantly higher than those of ISI-shuffled (1) and event-exchanged (2) surrogates. Data were divided into the
optimal number of clusters, determined by the Dunn index (3), with the fuzzy K-means algorithm (4). The time course of a change in network states (5) reveals that states tended to shift up to other
states and drifted away from the original state.
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(Fig. 5) and also in all slices perfused with culture medium
instead of ACSF (n � 3) (supplemental Fig. 2, available at www.
jneurosci.org as supplemental material). The quasi-
unidirectional state transitions were evident even in the presence
of 50 �M D,L-AP-5, an NMDA receptor antagonist (n � 6 slices)
(Fig. 6). Thus, the state transitions were independent of NMDA
receptor activity.

The durations for which the network stayed at a single state
without transitions conformed to a power law distribution, i.e.,
showed a quasilinear relationship in a log–log coordinate (Fig.
4E) (n � 15 movies). Because the data format of Figure 4E can be
interpreted as a transition probability map in the so-called hid-
den Markov model (Rabiner, 1989), we performed computer
simulations by assuming a Markov process on the transition
maps. The hidden Markov algorithm almost precisely repro-
duced the total residence time in each state, but it did not repli-
cate individual sojourn times; that is, it did not produce a power-
law distribution of sojourn times (n � 15 movies; data not
shown). Thus, the state transitions observed here cannot be
accounted for by a simple stochastic chain process.

In ISI-shuffled or event-exchanged surrogates, the Dunn in-
dices were lower than that in the original raster plot (Fig. 4F,G).
When they were forced to separate into four virtual clusters with
the fuzzy K-means algorithm (because the original data had four
states), they unstably jumped from cluster to cluster and did not
remain in a single state for very long (Fig. 4F,G, right).

We next examined what determines the network states. The
global excitability of a network was almost unchanged over time
(Figs. 1E, 7A, bottom). Thus, we hypothesized that sets of active
cells differed among states, yielding discrete states. The map of
cells that were activated in each state is illustrated in Figure 7B.
The percentage of cells that was commonly activated in two dif-
ferent states is shown in Figure 7C. As expected, different subsets
of neurons were recruited in different states, although some cells
were reused across states (“core” population). A hierarchically
clustered dendrogram revealed cell groups that potentially con-
tributed to network state dynamics (Fig. 7D).

To determine whether the states of spontaneous activity are
maintained by network activity (i.e., synaptic input from sur-
rounding neurons embedded in the network), fast synaptic trans-
mission was blocked by applying application of a combination of
10 �M CNQX, a non-NMDA receptor antagonist, 50 �M D,L-
AP-5, and 50 �M picrotoxin, a GABAA receptor antagonist. In the
presence of this inhibitor mixture, spontaneous activity was re-
duced but did not completely disappear (Fig. 8A,B). Thus, some
CA3 neurons were autonomously active, independent of synaptic
input. As expected, such network-independent activity did not
show an organized structure in the PC coordinate (Fig. 8C,D).
The data were separated into two clusters using fuzzy K-means
(i.e., state 3 and state 4) (Fig. 8B,D), but they were unstable
compared with Figure 8, A and C.

The coefficient of variance (CV) of ISIs is defined as the SD �

Figure 6. Neither maintenance nor transition of states requires NMDA receptor activity. Experiments were performed in the presence of 50 �M D,L-AP-5. For details, see the legend of Figure 5.
Similar results were obtained in all six slices perfused with AP-5.
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divided by the mean � of the ISI distribu-
tion in individual neurons, i.e., CV � �/�
(Stevens and Zador, 1998). The CV value
decreased after treatment with the inhibitor
mixture ( p � 0.0001, Kolmogorov–Smir-
nov test) (Fig. 8E). The average CV values
were 1.56 � 0.77 for controls (n � 558 cells
in 15 slices) and 1.00 � 0.54 for the inhibitor
mixture (n � 111 cells in 10 slices). Because
the average CV was 	1 in control slices, ISIs
could be nonrandomly patterned (note that
CV � 1 for a random Poisson process). We
thus plotted the distribution of ISIs in Figure
8F. In control slices, the ISI distribution had
a power-law distribution. In the inhibitor
mixture, the ISI distribution showed an ex-
ponential decay, suggesting a time-
independent stochastic process.

Stability of network states
From a mathematical point of view, the
stable state of an open system could repre-
sent an attractor, related to a local mini-
mum in a potential energy function. To
examine whether our network state was
associated with an attractor, we delivered
weak electric stimulation to the dentate
granule cell layer. Because granule cells
send mossy fiber axons to CA3 pyramidal
cells and interneurons (Acsady et al.,
1998), dentate stimulation applies an ex-
ternal perturbation to the CA3 network. If
a state is linked to an attractor, the system
will return to a particular stable configu-
ration after receiving a slight perturbation.
This was indeed true. The dentate stimu-
lation elicited spike activities in a small
fraction of CA3 neurons (Fig. 9A, thick
black dots), but, in most cases, the net-
work continued in the same state (Fig.
9A).

At the same time, we noticed that the
networks occasionally jumped to other
states after stimulation (Fig. 9A). We thus
calculated the probability of state transi-
tions by collecting data from six slices that
received stimulation (Fig. 9B). The prob-
ability that the state was different before
and after a stimulus, i.e., the probability of
stimulation-evoked state transitions, was 25.0% (n � 240 stim-
uli). This value was much lower than the probability that the
network continued to stay in the same state (75.0%), indicating
that network states are resistant to external perturbations. When
states were compared between neighboring 10 s segments that
were not interposed by stimulation (i.e., spontaneously occur-
ring state transitions), the probability was 20.2% (n � 480 seg-
ment pairs), which was not significantly different from that of the
evoked state transitions ( p 	 0.1; � 2 � 2.51) (Fig. 9B).

We next investigated the inner structures of network states.
For each state, the centroid of data points (z�) was determined by

z� � �
i

g� i/N,

where g� is a data vector in the PC space, and N is the number of g�i

involved in the state. To facilitate data comparisons across states,
the g�i trajectory relative to the centroid was normalized as r�i �
(g�i � z�)/�, where � represents the SD of the distance between g�
and z�, i.e.,

� � ��
i

�g� i � z��2/N,

such that the mean distance was 0 and the SD was 1 (Fig. 10A). To
enhance computational accuracy, a 10 s time window was slid
with 1 s steps along the time axis of a raster plot. We plotted the
distributions of r� and the angles 	 between r� and z� as cos	 � r� �
z�/(|r� | � | z� |) (n � 61 states in 15 movies). We found that 	 was

Figure 7. Different cell ensembles are involved in network states. Data of Figure 2 A were analyzed. A, Colored raster plot. Each
color indicates a different state. The bottom histogram represents the percentage of active cells at a given time (1 s bin). B, Maps
of cells activated during each state. C, Overlap ratios of cells activated in two different states. The ratio is calculated by 100 � Ni �

j/(Ni � Nj � Ni � j), where Ni and Nj indicate the total numbers of cells activated at states i and j, respectively, and Ni � j indicates
the number of cells activated in both states. D, Hierarchical clustering of cells participating in each state reveals the existence of
distinct neural cliques. Each small colored box indicates the state at which the cell was activated. Some cells fired specifically in one
or a few specific state(s), whereas there also was a core population that was activated in all states.
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almost uniformly distributed (Fig. 10C), whereas the r� distribu-
tion seemed to be Gaussian (Fig. 10B); that is, r� remained in the
proximity of the centroid and did not stray far from it.

We sought to quantify this attractor-like stability of network
states. As a fundamental result of statistical mechanics, the po-
tential energy function U is given by U 
 � log P, where P is the
normalized density of the data point r� (see Materials and Meth-
ods). For P obtained from Figure 10B, the potential energy U
around a putative attractor is depicted in Figure 10D.

We then quantified the time-varying dynamics of network
states (Fig. 11). The periods during the network stayed at a single
state had a long-tailed distribution (Fig. 4E), but the mean resi-
dence time was calculated to be 41 s. During this residence time,
the network state is considered to be approximately equilibrated,
and, therefore, data for each 41 s epoch (i.e., from �20.5 to 20.5 s)
were used to measure P. We present the whole time series of the
example raster plot in supplemental movie 2 (available at www.

jneurosci.org as supplemental material).
Here, the U dynamics during the transi-
tions from state 1 to 2 and from state 2 to 3
are shown in Figure 11, A and B, respec-
tively. In both cases, the lowest energy
points moved during the state transition;
that is, the putative attractor was dynamic.

Discussion
Using a simple method with PCA and
fuzzy K-means algorithm, we revealed
that the internal states of spontaneous net-
work activity are dynamic but locally sta-
ble, resulting in states that are heteroge-
nous and discrete in nature.

Network states defined by active
cell ensembles
To monitor the suprathreshold activity of
a large population of neurons, we adopted
fMCI, a functional imaging technique
with multicell loading of the calcium flu-
orophore OGB-1. Compared with electro-
physiologic single-unit or multiunit re-
cordings, fMCI has some advantages,
including the following: (1) simultaneous
recordings from �100 neurons in a wide
area (	0.1 mm 2), (2) single-cell resolu-
tion (compared with in unit recordings,
spike separation procedures are techni-
cally imperfect), (3) identifiable locations
of neurons, and (4) detection of non-
active neurons during the recording pe-
riod. Unfortunately, the time resolution of
fMCI is not very fast (at best 30 frames/s in
this paper), so the fine temporal structure
of spike dynamics cannot be investigated.
Instead, we focused on the ensemble dy-
namics of active neurons by taking advan-
tage of the outstanding spatial resolution
of fMCI. Specifically, because the similar-
ity index approached the maximum with a
10 s bin, our main analysis focused on the
slow dynamics of ensemble structures of
spontaneous network activities.

The similarity index of spontaneous
activity decreased as the time interval be-

tween the compared vectors increased. This indicates that spon-
taneous activity drifted with time, engaging different cell subsets.
Similar results have been reported in other brain regions in vitro
and in vivo (Ikegaya et al., 2004; Kerr et al., 2005; MacLean et al.,
2005). The possibility that this activity shift is attributable to
photodamage caused by a long laser exposure is excluded for the
following reasons. (1) The laser intensity used here (5–10 mW)
was lower than that usually used in conventional confocal laser
scanning microscopy (�20 mW). In fact, the photobleaching
rate was as slow as 0.5%/min (Wang et al., 2005), (2) the global
level of spontaneous network activity did not change over time,
and (3) the cell viability, as assessed by MTT reduction, did not
decline during the imaging period.

The mean similarity index was gradually reduced at a rate of
�8%/min. Importantly, however, data points in the PC coordi-
nate were scattered in a few noncontiguous areas. This vector

Figure 8. State stability depends on network activity. A, B, Representative raster plot (top) and the corresponding states
(bottom) before (A, Control) and after perfusion with a combination of 10 �M CNQX, 50 �M AP-5, and 50 �M picrotoxin (B,
CNQX/AP5/Picrotoxin). C, In the control period, the contribution ratios of the real data were higher than those of ISI-shuffled and
event-exchanged surrogates (left), and the data were separated into two states in two-dimensional PC coordinates (right). D, In
the presence of CNQX, AP-5, and picrotoxin, the contribution ratios were no longer different from chance (left), and there was no
apparent stable state (right). E, Cumulative probability of the CV of ISIs in 558 cells in 15 control slices and 111 cells in 10
CNQX/AP-5/picrotoxin-treated slices. CV was significantly lower in the presence of CNQX, AP-5, and picrotoxin ( p � 0.0001,
Kolmogorov–Smirnov test). F, In controls, ISIs showed a power-law distribution with an exponent of � � 0.4, whereas in the
presence of CNQX, AP-5, and picrotoxin, the ISI distribution was approximated by an exponential distribution with a decay
constant of 
 � 27 s.
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separation did not emerge through a stochastic process because
ISI-shuffling and event-exchanging procedures collapsed this
noncontiguous data structure. We thus conclude that spontane-
ous activity contains a series of stable states at the population
level.

Attractor-like behavior of network states
A stable state of an open system could indicate a specific point
toward which activity is attracted and eventually converges. More
specifically, it is related to a local minimum in a potential energy
function. Although experimental studies alone cannot conclu-
sively demonstrate that the network states are directly linked to
attractors, the fact that the network tended to return to the pre-
stimulus activity state when spontaneous activities were per-
turbed by artificial electric stimulation is suggestive of the pres-
ence of attractor-like stable points.

It is also intriguing that, without external inputs, the network
underwent a spontaneous change in global activity patterns.
Once the network shifted to a new state, the earlier state was not
stably revisited, at least during our observation periods. This shift
did not require NMDA receptor activity, consistent with the
space-selective “place cell” activity of hippocampal neurons,
which is regarded as a stable cell-ensemble configuration that can
develop independent of NMDA receptors (Kentros et al., 1998).
Interestingly, the time interval of functional state transitions we
described here ranged from a few seconds to minutes, approxi-
mately equal to the time required for establishing stable place-cell
activities (Wills et al., 2005) and also approximately equal to the
retention time of working memory in behaving animals and hu-

mans (Baddeley, 2003). Thus, this in vitro study might provide an
insight into a fundamental feature of cortical memory traces.

Speculation on network dynamics
State transitions are theoretically achievable through two differ-
ent modes. First, several stable points preexist in a potential en-
ergy function, and a network itinerates among them. Thus, a
network state shows ergodic multistability. In this case, the po-
tential function can be estimated by globally averaging the dy-
namics across time and space. Second, the potential function
itself is variable, and the lowest energy point moves over time. In
this case, the network is metastable, and, thus, any measurement
cannot be time averaged to quantify it. In all movies we obtained,
state transitions were approximately unidirectional and irrevers-
ible from a global, long-term viewpoint, suggesting that the stable
point at which the network previously stayed no longer exists. We
thus speculate that the network state is metastable. Metastable
dynamics cannot, in general, be quantified with time averaging,
but fortunately here, the states were locally stable (the mean time
spent in a single state was 41 s). During this short period, we could
estimate the potential energy function U.

In a strict sense, however, the recording length of our large-
scale data are insufficient. Definitive conclusions might require
recordings for hours and days. Indeed, Beggs and Plenz (2004)

Figure 9. Network states are robust to external perturbations. A, Weak stimulation of the
dentate gyrus (arrows, every 30 s) evoked spikes in a CA3 network (black dots) but did not
induce a state transition in most cases. Each color indicates a different state. Note that very
strong stimulation often induces a change in sates (data not shown). B, Summary of the prob-
ability of spontaneous and stimulus-evoked state transitions. Stimulation did not induce state
transitions with frequencies higher than the spontaneous transition level ( p 	 0.1; � 2 �
2.51; n � 240 stimuli in 6 slices).

Figure 10. Internal structures and dynamics of network states. A, Schematic illustration for
a normalization procedure to quantify network stability. The PC1–PC2 space (left) was trans-
formed to a new plane coordinate (right). r�i is a normalized differential vector between an
original data point (g�i) and the state centroid (z�). B, Scatter plots of r�i in a new plane (n � 15
slices). The bottom and left histograms show the distributions of r�x and r�y, respectively. C,
Probability density of the angle (	) between r�i and z� in the PC coordinate system. D, Pseudocol-
ored potential energy in the r�x versus r�y coordinate, which was calculated based on the density
of r�i obtained from B (see Materials and Methods). The z-axis indicates a three-dimensional
representation of this potential energy function (an arbitrary unit).
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reported that spontaneous activity patterns are repeated with re-
turn times on the order of hours in cortical slice cultures, al-
though their multielectrode recordings did not discriminate in-
dividual neuron identities, and thus it is unclear that such pattern
repetitions represent exactly the same replay at the single-cell
level. For now, we can only state that the spontaneous activity
observed in cultured hippocampal CA3 networks behaves in a
metastable mode for at least tens of minutes. Rather importantly,
our statistical physics approach is a new strategy to quantify an
attractor present in a biologic network (see also Wills et al., 2005;
Wagenaar et al., 2006). This work therefore provides a novel
framework to disclose the latent dynamics and structures hidden
in multineuronal activity.
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