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There are conflicting data on the timescale for the representation of adult zebra finch song. Acoustic structure and perturbation studies
suggest that song is divided into discrete vocal elements, or syllables, lasting 50 –200 ms. However, recordings in premotor telencephalic
nucleus HVC (used as proper name) and RA (robust nucleus of arcopallium) suggest that song is represented by sparse, fine-grained
bursting on the 5–10 ms timescale. We previously found patterns of timing variability that distinguish individual syllables and repeat
across multiple 500- to 1000-ms-long motifs (Glaze and Troyer, 2006). Here, we extend our methods to analyze whether this is attributable
to a syllable-based code or representations on a finer timescale. We find evidence for the latter. First, identity-dependent timing is
dominated by independent variability in notes, finer song segments that compose a syllable; for example, the length of a note is no more
correlated with other notes in the same syllable than it is with notes in other syllables. For a subset of notes, clear modulation in spectral
structure allowed for accurate timing measurements on the 5–10 ms timescale. Temporal independence holds at this scale as well: the
length of an individual 5–10 ms song slice is correlated with the same slice repeated 500 –1000 ms later, yet is independent of neighboring
slices. We propose that such fine-grained, persistent changes in song tempo result from an interaction between slow modulatory factors
and precisely timed, sparse bursting in HVC and RA.
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Introduction
How brains learn and produce complex sequences is one of the
touchstone questions in neuroscience (Lashley, 1951; Hikosaka
et al., 2002; Keele et al., 2003; Rhodes et al., 2004). Although many
natural skills contain a hierarchy of subtasks (Miller et al., 1960),
the units of behavior are not always clear. Zebra finch courtship
song has several characteristics that make it an ideal model system
for understanding sequence learning and production. Songs are
learned, highly stereotyped, and have a hierarchical temporal
structure spanning multiple timescales: songs consist of several
repeats of 500- to 1000-ms-long “motifs”; motifs consist of a
stereotyped sequence of three to seven “syllables,” 50- to 250-ms-
long vocalizations separated by silence; many syllables can be
further divided into 30- to 70-ms-long “notes.”

Many studies have proposed that the syllable is a basic unit of
song production (Yu and Margoliash, 1996; Zann, 1996; Wil-
liams, 2004; Solis and Perkel, 2005). This view is supported by
evidence that respiratory expirations accompany syllables and
inhalations accompany silent gaps, whereas song interruption
caused by strobe flashes or electrical stimulation tends to occur
during gaps (Cynx, 1990; Vu et al., 1994; Wild et al., 1998; Franz
and Goller, 2002). However, the syllable-based view is challenged

by temporally sparse bursting in the premotor telencephalic nu-
cleus HVC (telencephalic song nucleus). During each motif,
HVC projection neurons produce a single burst of spikes time-
locked to the song with millisecond precision (Hahnloser et al.,
2002). Fee et al. (2004) have proposed that HVC acts like a clock,
continuously pacing song behavior. Under this proposal, the 5-
to 10-ms-long burst is the fundamental unit of the song motor
code, and slower acoustic changes result from convergent con-
nections downstream of HVC (Fee et al., 2004; Leonardo and Fee,
2005).

In a previous study, we explored song temporal structure by
closely examining natural variability in the lengths of syllables
and the gaps of silence between them (Glaze and Troyer, 2006).
At a slow timescale, length changes are dominated by modulatory
factors that influence syllables and gaps throughout the song. At
the syllable timescale, syllables are less “elastic” than gaps (i.e.,
they stretch and compress proportionally less with tempo
changes), and syllable–syllable and gap– gap length correlations
are stronger than syllable– gap correlations. Such syllable/gap dif-
ferences contradict the hypothesis that song timing is driven by a
uniform clock that continuously paces motor output. Impor-
tantly, syllable pairs consisting of the same syllable repeated
across motifs were especially related, having strong length corre-
lations and similar elasticity. This “identity dependence” of tem-
poral variability suggested that syllables may form a basic unit in
the motor code for song.

Here, we extend our methods to examine the structure of song
timing at timescales finer than the syllable. We find that the
identity-dependent temporal structure of syllables is dominated
by independent variability among constituent notes. Further-
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more, for a subset of notes, we were able to reliably measure
temporal variability within short 10 ms slices of the song. Here,
we find that identity-dependent temporal structure is dominated
by independent variability among constituent 10 ms slices. Over-
all, we find timing variability on two widely divergent timescales:
(1) slow modulations that result in song-to-song changes in
tempo, and (2) deviations at short timescales (as fast as 5–10 ms)
that are reliably repeated across motifs (every 500 –1000 ms).
These patterns provide the first behavioral evidence for a fine-
grained motor code on a timescale comparable to that found in
forebrain premotor nuclei.

Materials and Methods
Analysis was based on the songs from nine adult males �400 d after
hatch. Birds were recorded while serving as tutors for juvenile birds as
part of other developmental studies. All care and housing was approved
by the Institutional Animal Care and Use Committee at the University of
Maryland, College Park. All analyses were performed in Matlab (Math-
works, Natick, MA), and all template matching and dynamic time-
warping (DTW) algorithms were written as C-MEX routines.

Song collection. During recordings, birds were housed individually in
cages (�18 � 36 � 31 cm). Recordings were made from sound-isolation
chambers (Industrial Acoustics, Bronx, NY), which contained two cages
separated by 18 cm and two directional microphones (Pro 45; Audio-
Technica, Stow, OH). Signals were digitized at 24,414.1 Hz, and ongoing
data were selected using a circular buffer and a sliding-window ampli-
tude algorithm. “Sound clips” separated by �200 ms were included in
the same “recording,” and clip onset times were indicated by filling the
gaps between clips with zeros.

For each bird, we gathered an initial random sample of 1000 record-
ings that were �2 s long and had maximum power from the side on
which the target bird was stationed. Recordings were analyzed using the
log-amplitude of the fast Fourier transform (FFT) with a 256-point
(10.49 ms) window moved forward in 128-point steps. Frequency bins
outside the 1.7–7.3 kHz range were excluded from all subsequent analy-
ses because song structure is less reliable at the highest and lowest fre-
quencies. We then used an automated template-matching algorithm (de-
tailed below) to select out recordings that contained repeated sequences
of the most commonly produced motif and were relatively free of extra-
neous sound such as interfering vocalization from the other bird in the
sound chamber.

A median of 633 (range, 411– 896) recordings per bird had a template
sequence. If a sequence contained an interval between adjacent syllable
onsets that deviated from the mean by more than �30 ms, the entire song
was discarded under the assumption that the match was erroneous (me-
dian, 22; range, 6 –97 songs per bird omitted for this reason). The vast
majority of these deviations occurred when an introductory note was
incorrectly identified as the first syllable in the song.

Template matching. Each recording was composed of a series of clips,
periods of sound separated by at least 10 ms of silence. The sound in these
clips was matched to syllables in the bird’s song (clips could also result
from cage noise, production of non-song vocalizations or calls, and
sounds produced by the juvenile bird in the same recording chamber).
To do this, syllable templates were formed by aligning and averaging four
to five manually chosen clips corresponding to each syllable; exemplars
were aligned using the lag times corresponding to peaks in a standard
cross-correlation.

These templates were then matched against each clip with a novel
sliding algorithm: for each template and each time point (t) in the clip, a
match score (c) was computed as the reciprocal of the mean-squared
difference between template and song log-amplitudes at each time-
frequency point:

c�t� � n � m/�
i�1

n �
j�l

m

�s�i � t, j� � s��i, j��2, (1)

where s is the song spectrogram, s� is the template spectrogram, n is the
number of time bins in the template, m is the number of frequency bins,
i indexes time, and j indexes frequency.

Candidate syllable matches were computed as peaks in the score vector
c over a fixed threshold of 0.3 (manually chosen based on visual inspec-
tion). Based on the alignment giving the peak match, a clip was deter-
mined to potentially constitute a syllable if the onset and offset for the clip
and template were matched to within 20 ms. If a clip had multiple syllable
matches, the match with the highest peak value was chosen.

For each bird, the template song was based on the most common
syllable sequence falling within the first �2 s of that bird’s song (this
reflects a drop-off in available song recordings that are longer than 2 s). If
the syllable-matching algorithm found a sequence of syllables matched to
this template song, each clip corresponding to a syllable match was se-
lected out for further analysis.

Song-timing calculations. Timing variability was then analyzed with a
more fine-grained algorithm; each syllable in the song sequence was
independently analyzed in this part of the analysis. Analysis can be di-
vided into the following steps. First, all identified clips from song se-
quences were reprocessed using the log-amplitude FFT with a 128-point
window slid forward in 4-point steps, yielding 0.16 ms time bins. Second,
the resulting spectrograms were smoothed in time with a 64-point
Gaussian window that had a 25.6 (�5 ms) SD. Third, time-derivative
spectrograms (TDSs; calculated as differences in log-amplitude in time-
adjacent bins) were computed and used in the rest of the analysis; the
TDS has proved to yield more reliable data on timing than the amplitude
spectrogram. Fourth, syllable templates were recomputed by averaging
syllable TDSs across songs, aligning each TDS to this mean, re-averaging
aligned TDSs, and repeating this process twice. Fifth, each TDS was then
mapped to its template using a DTW algorithm (Anderson et al., 1996;
Glaze and Troyer, 2006) (see Appendix). If the algorithm failed to map a
syllable onset or offset, the entire song was omitted (median, 2; range,
0 –176 songs per bird). One bird had a large number (176) of songs
omitted because the first syllable of each motif had variable and noisy
onsets. A final sample of 411– 877 sequences per bird resulted from the
process described above.

Note boundaries were manually determined based on large and sud-
den changes in spectral properties within syllable templates (see Fig.
1 A, B). Note lengths were then determined as the interval between points
mapped via DTW to corresponding boundary times in the template.

Timing analysis. The first part of our analysis concerned the measure-
ment of two latent factors we hypothesized to explain song-to-song vari-
ability in note lengths: a “note-specific” factor that makes the same note
especially related to itself across motifs and a “syllable-specific” factor
that makes different notes in the same syllable especially related. A linear
regression of each note length with total sequence length was used to
extract two significant components of song-to-song variability: (1) the
normalized regression coefficient, “elasticity,” which represents the abil-
ity to stretch and compress with global tempo changes; and (2) the resid-
uals from the regression, which represent length components indepen-
dent of global tempo (Glaze and Troyer, 2006).

We looked for note-specific and syllable-specific factors by examining
pairwise differences among elasticity coefficients and pairwise Pearson’s
correlation coefficients among residuals. Here we describe calculations
for correlation coefficients; calculations for elasticity coefficients were
analogous. We compared distributions of correlation coefficients be-
tween renditions of the same note produced in different motifs (“same-
id”), between different notes in the same syllable across motifs (“same-
syl”), and between different notes in different syllables across motifs
(“diff-syl”). Because the residual lengths of a given syllable are related
across all motifs in a song (Glaze and Troyer, 2006), pairwise measure-
ments from different motif pairings were not independent (e.g., same-id
measurements between the same note in motifs 1 and 2 and in motifs 3
and 4). This means that distributions containing all pairwise correlations
have repeated measures that invalidate statistical tests. Therefore, we
calculated three measures for each unique note from the first motif: mean
correlation with the same note in all subsequent motifs, mean correlation
with different notes in the same syllable in subsequent motifs, and mean
correlation with notes in different syllables across subsequent motifs. We
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then tested whether the distribution of pairwise differences per note were
different from zero. We excluded syllables with only one note to have a
same-syl measurement for each note. Across birds, the sample included
122 notes (11–19 per bird), and of these, 109 (10 –17 per bird) were in
syllables that included more than one note.

The second part of our analysis involved an analogous set of questions
on a finer timescale. Specifically, we examined whether two �10 ms
“slices” of a note were any more related to each other than they were to
other 10 ms slices in other notes and syllables. Here, we focused the
analysis on “amplitude-modulated” (AM) notes that have an even distri-
bution of power across frequencies at any given time point but fast

changes in power across time (see Fig. 3C). This
type of note lends itself well to an analysis of
temporal stretching and compressing on the
5–10 ms timescale. Three birds had at least one
unique AM note, and one bird had two in the
same motif, yielding a total of four unique AM
notes across birds.

We divided each AM note into slices defined
as peak-to-peak intervals in the spectral time
derivative (see Fig. 3C). This yielded a total of
15 unique AM slices, 3– 4 slices per note. We
then performed the same linear regression and
pairwise statistics for each AM slice as we did for
notes. Most of this analysis compared “same-
slice” and “same-note” relationships because
only one bird had multiple AM notes in the
same motif.

Results
We analyzed subsyllabic temporal struc-
ture in zebra finch song from nine adult
males that were tutoring juveniles in a
larger development study. Adult song
acoustics are organized hierarchically (Fig.
1A): a bout of song generally consists of
several motifs, defined as stereotyped se-
quences of syllables. Syllables, distinct vo-
calizations separated by gaps of silence,
can in turn be divided into notes, segments
with distinct acoustic structure. Adults
tend to produce a variable number of mo-
tifs within a single song bout. For the pur-
poses of this study, we gathered from each
song recording a manually defined syllable
“sequence,” a fixed number of back-to-
back motifs (range of two to four per bird).
Across birds, the sample included 41 dis-
tinct syllables and 122 distinct notes within
motifs. The final sample included 411– 877
sequences per bird, for a total of 5745 se-
quences; 69,434 syllables; and 205,146
notes across motifs and recordings.

We had previously found tempo
changes that are shared by all song seg-
ments across the sequence and two mea-
sures of syllable length from a linear re-
gression with sequence length that
distinguished syllables from each other
(Glaze and Troyer, 2006): residual length
correlations that remain after factoring
out tempo and elasticity coefficients, the
normalized regression coefficient that
measures the ability to stretch and com-
press proportionally with sequence length.
That analysis indicated that syllables could

be distinguished from each other in each of these measures: the
residual length of a given syllable is more correlated with the same
syllable in other motifs, and elasticity coefficients among the
same syllables produced across a sequence are significantly more
similar to each other than they are to the coefficients of other
syllables. For simplicity, we refer to these two patterns together as
“identity dependence.”

Here, we extend our methods to probe the timescale of iden-
tity dependence by analyzing temporal variations within sylla-

Figure 1. Song hierarchy and timing models. A, Template spectrogram from bird 16 (smoothed and averaged; see Materials
and Methods) (first 2 motifs only), restricted to 1.7–7.4 kHz where spectral cues are most reliable. Songs are segmented at three
levels of organization: songs are divided into motifs; motifs are divided into syllables (lowercase labels); and syllables are divided
into notes (numeric labels; vertical lines indicate segmentation). B, Template spectrogram (left) and TDS (right) of the last syllable
in the motif. C, D, Schematic covariance matrices. Gray squares represent notes. Covariances are represented as either strong
covariance (black square) or no/weak covariance (white square). Pairwise covariance between two syllables (syl) is equal to the
sum of all pairwise covariances among constituent notes. In C, note timing variability is grouped by syllables, so that notes from
the same syllable are strongly correlated. In D, there is no grouping by syllable, and syllable length deviations stem from the
accumulated deviations of individual notes that are correlated across motifs.
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bles. There are two basic types of subsyllabic organization that
one may expect to explain identity-dependent patterns. First, if
the syllable is a cohesive unit of behavior, subsyllabic segments
within that syllable should share the properties of the syllable. In
this “grouped” scenario, two subsyllabic intervals in the same
syllable will have similar elasticity coefficients and a stronger cor-
relation than two intervals coming from different syllables (Fig.
1C). Alternatively, the syllable might simply be the concatenation
of independent components of the motor code, the efferents of
which converge on a continuous representation of the syllable at
the periphery. In this “independent” scenario, the elasticity coef-
ficients and the length deviations for two intervals in the same
syllable will be no more related than for two intervals coming
from different syllables (Fig. 1D).

All statistics were based on notes from the first motif, whereas
correlations and elasticity comparisons were made with notes in
subsequent motifs (see Materials and Methods). Unless indicated
otherwise, all values reported below include SEs (mean 	 SE).
However, because many of the distributions showed significant
skew, statistical significance was assessed using the Wilcoxon
signed-rank (WSR) test for pairwise comparisons.

Note-based analysis
To distinguish the grouped and independent scenarios, we first
segmented syllables into notes based on sudden changes in spec-
tral profile (Fig. 1A,B). Across birds, 70% of the syllables in our
sample had more than one note (range of one to nine). Across all
notes, the mean note length was 36.40 	 18.62 ms, whereas the
mean SD was 1.70 	 0.70 ms [coefficient of variation (SD/mean),
5.58 	 3.88%]; after factoring out sequence length in the regres-
sion, residual SD was 1.61 	 0.88 ms (all ranges 	 SD).

For each note of the first motif, we made three measurements
with notes in subsequent motifs: average correlation with (1)
notes of the same identity (same-id notes); (2) different notes in
the same syllable (same-syl notes); and (3) notes in different syl-
lables (diff-syl notes). To test the grouped and independent sce-
narios, we then asked whether a given note was more correlated
with same-id notes than it was with same-syl and diff-syl notes
and whether average correlation with same-syl notes was stronger
than average correlation with diff-syl notes. We based all statistics
on pairwise comparisons of measures for each note (109 notes in
multinote syllables).

A representative correlation matrix from a single bird is
shown in Figure 2G; the prominent off-diagonal structure shows
that correlations across motifs are dominated by notes of the
same identity. Across all notes, the mean same-id correlation was
0.18 	 0.01 (range [0.11,0.31] averaged by bird); the mean diff-
id, same-syl correlation was 
0.02 	 0.01 (range [
0.05,0.01] by
bird); and the mean diff-syl correlation was 0.01 	 0.003 (range
[
0.01,0.03] by bird). Same-id correlations were significantly
stronger than same-syl and diff-syl correlations ( p � 0.0001,
WSR) (Fig. 2A,C,E). Unexpectedly, same-syl correlations were
actually slightly more negative than diff-syl ( p � 0.0001, WSR).

We then asked why notes are significantly more anticorrelated
with those in the same syllable than with those in other syllables.
Although our analysis excluded directly adjacent note pairs, the
same-syl group did include notes with adjacent motif positions
(e.g., the correlation between note a1 in the first motif and note a2
in the second motif). Qualitative analysis suggested that these
“motif-adjacent” pairs accounted for the difference, which the
statistical tests supported: focusing on syllables with more than
two notes (n � 80 unique notes, 5–13 per bird), nonadjacent
notes in the same syllable were just as correlated as notes from

different syllables ( p � 0.96, WSR; nonadjacent correlation,
0.01 	 0.01), whereas notes were significantly more anticorre-
lated with motif-adjacent notes than they were with nonadjacent
notes in the same syllable ( p � 0.0001, WSR; motif-adjacent
correlation, 
0.06 	 0.01). In these data, it is impossible to dis-
cern whether the motif-adjacent anticorrelations reflect a real
tradeoff in variability or correlated measurement error (see
Discussion).

We also measured absolute differences among elasticity coef-
ficients and found patterns that were qualitatively similar to the
correlation structure (Fig. 2B,D,F). Overall, the mean same-id
difference was 0.20 	 0.02, the mean same-syl difference was
0.60 	 0.06, and the mean diff-syl difference was 0.64 	 0.05.
Same-id coefficients were significantly closer than same-syl and
diff-syl coefficients ( p � 0.0001). Elasticity coefficients were also
slightly closer among different notes in the same syllable than
they were among notes from different syllables (WSR, p � 0.012).
However, the effect was inconsistent, with mean difference show-
ing the opposite trend in four of nine birds (i.e., mean same-syl
differences greater than diff-syl differences).

In the aggregate, the timing data indicate that the temporal
relationship among syllables of the same identity is dominated by
note lengths. Although syllables of the same identity undergo

Figure 2. Timing is note based. A, C, E, Correlation coefficients among notes after factoring
out sequence length, between notes of the same identity across motifs (A), notes of different
identity in the same syllable (C), and notes from different syllables (E). B, D, F, Pairwise absolute
elasticity differences (see Materials and Methods for definition) organized as in A, C, and E. G,
Correlation matrix from bird 16. mot., Motif.
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unique, correlated changes in length across motifs, this reflects an
accumulation of independent deviations in note lengths. Fur-
thermore, although syllables of the same identity have similar
elasticity coefficients, this similarity is also dominated by similar-
ities on the note level.

Spectral type does not explain note-based data
Previous studies have classified notes on the basis of more ab-
stract acoustic properties, or spectral “type.” It is possible that
note type may explain some (or all) of the identity dependence as
well if these correlated timing deviations are tied to mechanisms
that directly represent song acoustics. We focused our analysis on
the subset of notes that allow for clear classification, using previ-
ously defined categories (Williams et al., 1989; Williams and Sta-
ples, 1992; Sturdy et al., 1999): “harmonic stacks,” which have a
clear fundamental frequency in the 500 –1000 Hz range that re-
mains fairly constant throughout the note; “high notes,” which
exhibit peak power in the 3–7 kHz range; “sweeps,” which show a
continuously decreasing fundamental frequency; “short noisy
sweeps,” which typically constitute introductory-like notes;
“noisy, low-amplitude” notes; and AM notes, which show fast,
regular changes in amplitude across frequency bins. We found
that the length distribution for harmonic stacks is bimodal with a
relatively clean break at 60 ms. Using this threshold, we divided
this category into “short stacks” and “long stacks.” In total, 64%
of notes were classified as one of these types, with 4 –31 unique
notes in each category. Of these, 47 notes from seven birds (3–14
per bird) had at least one other note of the same type in that song.

There were differences among the overall distributions of elas-
ticity and residual variability for different note types (see supple-
mental material, available at www.jneurosci.org). However,
when we examined relationships between note pairs, the same-
type relationships closely resembled the same-syl and diff-syl data
and not the same-id data: correlations were not significantly dif-
ferent between same-type and diff-type pairs ( p � 0.16, WSR;
means, 0.01 	 0.01 vs 
0.01 	 0.01), nor were elasticity similar-

ities ( p � 0.63, WSR; means, 0.83 	 0.15
vs 0.68 	 0.11). These data suggest that the
identity-dependent temporal structure is
unrelated to acoustic type.

Fine timescale for identity dependence
We have used a note-based analysis to ar-
gue that identity dependence among sylla-
bles is dominated by independent patterns
at subsyllabic timescales. In fact, identity
dependence among notes could stem from
patterns on an even finer scale, such as the
accumulation of variability in the 5–10 ms
bursting patterns found in premotor nu-
cleus HVC (Hahnloser et al., 2002; Fee et
al., 2004). In this case, we should find in-
dependent timing variability in any given
5–10 ms slice of song. If notes are not dis-
tinguished as cohesive units in the motor
code, then two different slices from the
same note should, in fact, be as unrelated
to each other as they are to slices from dif-
ferent notes (Fig. 3B). On the other hand,
if the motor code does distinguish notes,
length variations in different slices from
the same note should be especially related
to each other as well (Fig. 3A).

However, there is a limit to testing these patterns using our
methods. To measure song-to-song timing variability, the DTW
algorithm depends on regular changes in the spectral profile of a
syllable (see Materials and Methods and Appendix). The precise
tracking of timing in 5–10 ms slices is thus impossible within
notes that are temporally homogeneous (e.g., harmonic stacks)
and unreliable within notes that have a strong spectral compo-
nent of song-to-song variability. Instead, the current analysis de-
pends on spectrotemporal features that can be reliably identified
song by song on a fine timescale (cf. Chi and Margoliash, 2001).

Thus, we focused our analysis on AM notes (defined above),
which allowed for the accurate measurement of �10 ms temporal
slices corresponding to pulses in song amplitude (Fig. 3C). We
divided these notes into intervals defined peak to peak in the
spectral time derivative (mean length, 9.37 	 0.38 ms). Across
the sample, the analysis included four unique notes from three
birds, with 3– 4 slices per note and a total of 15 slices.

Variance on the 10 ms scale
We found that a 10 ms slice was indeed more correlated with itself
across motifs than it was with other slices of the same note (Fig.
4A,C) ( p � 0.001, WSR; mean same-id correlation, 0.10 	 0.01;
mean same-note correlation, 0.004 	 0.01). The mean difference
held for all four notes individually. We did not find significant
anticorrelation among motif-adjacent slices as we had among
notes ( p � 0.626, WSR; mean motif-adjacent and nonadjacent
correlations were 
0.001 	 0.01 and 0.01 	 0.01, respectively).

The elasticity coefficients showed the same pattern as correla-
tions: slice elasticity was significantly closer to the same slice
across motifs than it was to the elasticity of other slices in the same
note ( p � 0.005, WSR; mean same-id elasticity difference, 0.20 	
0.04; mean same-note elasticity difference, 0.56 	 0.06).

Are different 10 ms slices in the same AM note any more
related than those from different AM notes? Two observations
suggest not. First, bird 10 produced two different AM notes (Fig.
3C), and here we found no effect of note identity ( p � 0.47, WSR,

Figure 3. Timing on a fine scale. A, B, Schematic covariance matrices for two notes in the same syllable produced in two
different motifs. As in Figure 1, covariances are represented as either strong covariance (black square) or no/weak covariance
(white square). In A, notes are encoded as cohesive units, so the covariance between the same note across motifs is shared by all
portions within the note. In B, notes are not encoded cohesively, and the covariance between same-id notes reflects the accumu-
lation of independent covariances on a finer timescale. C, Top, The mean spectrograms for two AM notes produced by bird 10.
Bottom, Corresponding spectral time derivatives used to divide notes into �10 ms slices of song.
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among both correlation and elasticity distributions). Second, the
average relationship between two different slices in the same note
is similar to the relationship between two different notes in dif-
ferent syllables (among correlation coefficients, 0.004 	 0.01 vs
0.01 	 0.003; in elasticity similarity, 0.56 	 0.06 vs 0.64 	 0.05).

Although peaks in the time derivative provided a convenient,
systematic way to segment AM notes, there is no reason that this
segmentation should necessarily correspond to a temporal seg-
mentation in the underlying motor code. To look for structure in
the underlying representation, we performed a continuous cor-
relation analysis, calculating length correlations between 5 ms
intervals centered on any two points within each AM note. Across
notes, we found that the correlation depended most strongly on
the distance between the two intervals rather than any particular
alignment with the discrete pulses of acoustic output (Fig. 4E).
These qualitative results confirm a 5–10 ms timescale for the
representation of song but do not indicate that the amplitude
pulses directly correspond to elements of the underlying motor
representation.

Effect sizes
Correlation coefficients yield a normalized measure of the
strength of identity dependence across motifs. We also estimated
this strength in units of real time. Because this analysis did not

require pairwise statistical tests, we include all 122 notes in these
estimates.

To isolate identity dependence, we first regressed each note
with (1) sequence length, (2) the sum of all notes (except same-id
notes), and, to factor out jitter that is correlated across motifs, (3)
adjacent intervals on either side of that note (previous and sub-
sequent gaps included for the first and last notes of syllables).
Among the residuals from this multiple regression, we estimate
mean pairwise covariance among notes of the same identity at
0.18 	 0.07 ms 2 (range [0.006,0.59] ms 2 by bird). Taking the
square root of positive covariances (111 of 122), this comes out to
an estimated 0.36 	 0.03 ms of note length deviation that is
correlated across motifs and independent of global factors and
jitter.

We performed the same analysis with �10 ms AM slices, ex-
cept we did not factor out adjacent intervals because we had
found no significant anticorrelation as we had among notes.
Here, we find a mean 0.04 	 0.02 ms 2 of variance that is shared
between the same slice of song across motifs. Again, taking the
square root of covariances (all 15 �0), we derive an average
0.18 	 0.03 ms of deviation in the length of a 10 ms AM slice that
is repeated across motifs.

Under the hypothesis that identity dependence is simply the
accumulation of similarity between fine timescale components,
the covariance between intervals should be proportional to inter-
val length. For all notes excluding AM notes, the average covari-
ance per millisecond was 0.005 	 0.001 ms 2/ms (for positive
covariances, SD/ms � 1.24 	 0.07%). Among AM notes and
slices, where we know that covariance accumulated indepen-
dently on the 10 ms timescale, the average covariance per milli-
second was 0.004 	 0.001 ms 2/ms (SD/ms � 0.92 	 0.11%). The
average covariance per millisecond among AM notes is similar to
what we find in other notes (0.004 	 0.001 vs 0.005 	 0.001);
thus, the data as a whole are consistent with the proposal that
identity dependence is dominated by an independent accumula-
tion of covariance on a fine timescale.

Discussion
We have probed subsyllabic timing in zebra finch song to test the
hypothesis that song syllables constitute cohesive units within the
underlying motor representation for song. We examined two
measures of song-to-song variability that we had previously
found to be similar for syllables of the same identity repeated
across motifs (Glaze and Troyer, 2006): the ability to proportion-
ally stretch and compress with tempo change (elasticity) and
length correlations that remain after factoring out global tempo.
In each of these measures, we find that identity-dependent simi-
larity is dominated by smaller segments: length deviations among
notes in the same syllable are no more correlated with each other
than they are with notes in other syllables, and note elasticity is
poorly predicted by the particular syllable in which it is produced.
We then applied the same analysis to a subset of notes that allow
accurate timing measurements of 5–10 ms subnote slices. We
found analogous patterns on this finer scale: timing deviations in
a given slice are correlated with the same slice repeated in other
motifs, yet are independent of other slices in the same note.

These results suggest that the song motor code has remarkably
high fidelity; specifically, song segments as short as 5–10 ms are
represented independently. The data also expose remarkably di-
vergent timescales–temporal deviations in 5–10 ms segments
correlated over seconds. We hypothesize that the slow timescales
in our data stem from modulatory factors that are spread widely
through the song system and vary from song to song, whereas the

Figure 4. Temporally precise deviations in AM notes. A, C, Correlation coefficients among 10
ms AM slices after factoring out sequence length, either between slices at the same position
across motifs (A) or between slices from different motif positions in the same note (C). B, D,
Distributions of pairwise absolute elasticity differences (diff.), organized as in A and C. E, Corre-
lation matrix for the same AM note produced by bird 10, repeated across three motifs. Each
value in the matrix represents the correlation between two 5 ms stretches of song centered at
the times corresponding to the vertical and horizontal coordinate of that location.
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fast temporal deviations are a direct behavioral expression of
sparse and precise bursting activity that has been recorded in the
premotor nuclei HVC and RA (robust nucleus of arcopallium)
(Yu and Margoliash, 1996; Hahnloser et al., 2002; Fee et al., 2004;
Leonardo and Fee, 2005).

Fast and slow timescales
One of the most remarkable aspects of our data are the contrast of
fast and slow timescales. This mixture follows naturally from the
hypothesis that sparse, fine-grained bursting in HVC reflects the
activity of a synfire chain, in which neurons that are active during
consecutive 5–10 ms slices of the song motif are linked by strong
synaptic connections (Fee et al., 2004; Abeles, 1991). Modulatory
changes that increase the excitability of neurons along this chain
will lead to faster propagation of activity and hence a faster song
tempo (Arnoldi and Brauer, 1996). If different neural groups
undergo somewhat different changes in excitability, tempo
changes will be spread unequally over the different links in the
chain. Because repeated motifs are generated by repeated propa-
gation along the same chain, these link-specific temporal devia-
tions will persist over the time course of the slow modulation.

This explanation applies most cleanly in HVC, where individ-
ual projection neurons burst exactly once during each song mo-
tif, ensuring the independence of different links in the chain.
However, RA bursting patterns are also repeated across motifs
(Yu and Margoliash, 1996; Chi and Margoliash, 2001), with es-
sentially uncorrelated populations of neurons active during
any two time points within the same motif (Leonardo and Fee,
2005). Therefore, slow modulation in RA could also contrib-
ute to temporally specific tempo changes that are repeated
every 500 –1000 ms.

Syllable-based representations
While our data provide evidence for a fine-grained motor code,
other experiments suggest that song has a syllable-based repre-
sentation. The respiratory pattern is highly stereotyped and in-
volves expirations that accompany syllables and short inhalations
that accompany gaps (Wild et al., 1998; Franz and Goller, 2002).
Respiratory nuclei in the brainstem are part of coordinated re-
current circuits that run through HVC and RA and mediate in-
terhemispheric coordination of HVC activity that is particularly
pronounced at syllable onsets (Schmidt, 2003; Ashmore et al.,
2005). Furthermore, birds interrupted by bright flashes of light or
brief pulses of current tend to stop their songs at syllable (occa-
sionally note) boundaries (Cynx, 1990; Vu et al., 1994; Franz and
Goller, 2002), and in vitro data indicate that brief pulses delivered
to HVC slices yield rhythmic bursting, the timing of which
roughly matches the rate of syllable production (Solis and Perkel,
2005). Finally, syllables and gaps are distinguished from each
other along two independent measures of timing: syllables are
less elastic than gaps, and after factoring out tempo, syllable–
syllable and gap– gap length correlations are significantly stron-
ger than syllable– gap correlations (Glaze and Troyer, 2006).

In reconciling the fine-grained and syllable-based views of the
motor code for song, it is important to separate the notion that
syllables form cohesive units from a simple distinction between
portions of the song with and without vocal output. This distinc-
tion may reflect systematic differences between the bursting neu-
rons that subserve vocalization and those that are active during
silent gaps. Such differences in network structure could include a
number of different factors, such as patterns of connectivity, the
strength of synaptic connections, or the number of neurons ac-
tive at a given point on the song. However, such differences need

not entail syllable-based (or note-based) units, because neurons
bursting at different times in the same syllable may be no more
related than neurons bursting within different syllables. To estab-
lish a true syllable-based hierarchy, any experimental manipula-
tion must lead to measurable changes that are shared across neu-
rons coding for the same syllable but are distinct from the
changes in neurons coding for different syllables.

Peripheral versus central representations
Our leading hypothesis is that fine-grained deviations are driven
by sparse, precise bursting in the forebrain nuclei HVC and RA.
However, it is possible that these deviations, in fact, stem from
physiological mechanisms peripheral to the central pattern gen-
erator, or from inaccuracies in measurements of song timing.
Two results make this unlikely. First, if similar peripheral mech-
anisms generate similar acoustic features, one would expect song
acoustics and temporal variability to be related. We detected no
such relationship between timing variance and note type. Fur-
thermore, different 10 ms pulses within AM notes have very sim-
ilar acoustics, yet have independent length variation. Second, any
timing deviation that originates downstream from the song pat-
tern generator must be offset by compensating deviations, pro-
vided that the pattern generator continues to pace activity inde-
pendently of the source of the deviation (Fig. 5). Thus, deviations
that stem from either peripheral mechanisms or the measure-
ment algorithm will induce patterns of negative correlation
among neighboring song segments. Again, we detected no such
correlation between slices within AM notes.

We did find negative correlations between a given note and
adjacent segments in subsequent motifs. This could result from
spectral deviations that are correlated across motifs. Because the
DTW algorithm warps time to achieve maximal spectral match-
ing, these spectral deviations would be converted to correlated
temporal distortions. However, the note length variance ex-
plained by this anticorrelation is nearly nine times smaller than
the variance explained by the same-id correlations, again suggest-
ing that the central pattern generator dominates timing variance
on the note level. Indeed, the data suggest that linear warping
techniques used to align spike timing with song acoustics (Leo-
nardo, 2004) may be improved if performed note by note rather
than syllable by syllable.

Figure 5. Schematic representing two hypothetical sources of length deviations. The factors
determining measured timing values can be conceptually separated into those that depend on
the central pattern generator for song and those determined by influences downstream of the
pattern generator. The timing of song is indicated by vertical dashes, according to the coding
within the pattern generator (top) or as measured in the song output (bottom). Dashed arrows
indicate temporal deviations. A, Deviations originating downstream of the pattern generator.
Because centrally coded timing continues unaffected, the deviations are eventually offset by
equal and opposite deviations. This leads to patterns of negative covariance in measured tim-
ing. B, Timing deviations caused by the pattern generator. Here, the relative timing of subse-
quent output activity remains unaffected, leading to variance that can be independent of other
timing deviations. Overall, independent length deviations in the behavior must reflect timing
variability in the song pattern generator.
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Implications for perception and learning
Our results demonstrate that the vocal production system of
birds operates with sufficient fidelity to repeat submillisecond
temporal deviations in specific portions of the song. Tests of
auditory discrimination have shown that zebra finches can per-
ceive temporal changes on the millisecond scale (Dooling et al.,
2002; Lohr et al., 2006), whereas HVC neurons in anesthetized
birds shows similar auditory sensitivity (Theunissen and Doupe,
1998). From our data, we estimate that 0.5 ms 2 of identity-
specific variance would accumulate during a 100 ms interval of
song. This suggests that the temporal deviations specific to indi-
vidual song syllables are near or above the detection threshold for
zebra finches.

The timescales in these data may also have implications for
song learning. Others have suggested that sparse representations
may facilitate reinforcement-based learning strategies (Fiete et
al., 2004). However, feedback delays are expected to be �40 –100
ms, complicating the use of matching signals to adjust temporally
precise motor programs (Troyer and Doupe, 2000). Because tem-
poral deviations are repeated over multiple song motifs, evalua-
tive signals from earlier motifs may be used to modulate neural
plasticity triggered by premotor spike patterns that are repeated
in later motifs. Such a strategy may be useful in wide array of
sensorimotor learning tasks in which similar delay problems
exist.

Conclusion
We have analyzed temporal variability in birdsong acoustics to
reveal structure in the motor code on multiple timescales. The
fine-scale data suggest a direct link between acoustics and premo-
tor bursting patterns. The long timescale of correlations is sug-
gestive of similar patterns found in behavioral studies on humans
(Gilden, 2001). In general, timing variability provides a common
language for synthesizing results from behavioral and electro-
physiological studies, and also provides strong constraints for
computational models that attempt to connect the two levels of
analysis. Furthermore, the large samples of song acoustics that
can be readily collected yield statistical power that is difficult to
achieve in physiological investigations. This approach to song
analysis may thus reveal subtle but important changes in song
representation during different behavioral contexts and over the
course of song development (Hessler and Doupe, 1999; Brainard
and Doupe, 2001; Tchernichovski et al., 2001; Deregnaucourt et
al., 2005; Ölveczky et al., 2005; Cooper and Goller, 2006; Kao and
Brainard, 2006; Crandall et al., 2007).

Appendix
Following is the modified DTW we used to map syllable time-
points to mean spectrograms [for a general introduction to DTW
and basic terminology, see Rabiner and Juang (1993)]. The algo-
rithm was similar to Glaze and Troyer (2006), with several im-
portant modifications.

First, the similarity metric between each syllable and the mean
was based on the time derivative of full spectrograms rather than
summed amplitude envelopes. Let the matrix m denote the mean
(template) TDS and the matrix s denote the TDS of a particular
song syllable. (A TDS is computed by subtracting the frequency
vectors obtained from adjacent time bins in the raw spectro-
gram.) The match d(i, j) between time bin i of a particular syllable
and time bin j of the template was equal to the overlap of the
corresponding time-derivative vectors, d(i, j) � �k sikmjk, where
frequency is indexed by k. With this modification, the algorithm

allowed us to track changes in the spectral profile of a syllable that
are not always evident in the amplitude envelope.

The local path constraints and weighting were also different
from the previous algorithm. At each point in the algorithm,
three possible paths were available: P13 (2, 1), P23 (1, 1), or P3
3 (1, 2). The cumulative product matrix D was computed as
follows:

D�i, j� �

max � 3/2 �1

2
d �i,j� � 1

4
d �i � 1,j� � 1

4
d�i � 1,j � 1�
 � D�i � 2,j � 1�

d �i,j� � D�i � 1,j � 1�

3/2 �1

2
d �i.j� � 1

4
d �i,j � 1� � 1

4
d�i � 1,j � 1�
 � D�i � 1,j � 2�

(2)

This differs from the previous version in several important ways.
First, the scheme allows the slope of local length changes to fall
between 1/2 and 2, whereas the older version had more restrictive
limits of 2/3 and 3/2. Second, unlike the previous algorithm, d(i,
j) was included in all three path calculations to determine D(i, j),
and its value was divided equally with d(i 
 1, j) in path P1 and
d(i, j 
 1) in path P3. This allows for the fact that, geometrically,
the path joining (0, 0) and (2, 1) (i.e., P1) is actually equidistant
from points (1, 0) and (1, 1); similarly, P3 is equidistant from (0,
1) and (1, 1). Finally, it can be shown that with this weighting
scheme, if d(i, j) has the same match strength for all time bins i
and j, then the algorithm accumulates the same amount between
any two points for all choices of path, so there is no bias against
any of the paths; in the previous version, there was a slight bias
against a slope of 1.
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