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Computational Diversity in Complex Cells of Cat Primary
Visual Cortex

Ian M. Finn and David Ferster
Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208

A previous study has suggested that complex cells perform a MAX-like operation on their inputs: when two bar stimuli are presented
within the receptive field, regardless of their relative separation, the cell’s response is similar in amplitude to the larger of the responses
elicited by the individual stimuli. This description of complex cells seems at odds with the classical energy model in which complex cells
receive input from multiple simple cells with overlapping receptive fields. The energy model predicts, and experiments have confirmed,
that bar stimuli should facilitate or suppress one another depending on their relative separation. We have recorded intracellularly from
apopulation of complex cells and studied their responses to paired bar stimuli in detail. A wide range of behavior was observed, from the
more classical separation-dependent interactions to purely MAX-like responses. We also found that the more MAX-like a cell was, the
broader its spatial-frequency tuning as measured with drifting gratings. These observations are consistent with energy models in which
classical complex cells receive input from simple cells with similar preferred spatial frequencies, and MAX-like complex cells receive
input from simple cells with disparate preferred spatial frequencies. Generalized energy models, then, can account for diverse modes of
computation in cortical complex cells.
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Introduction

Simple cells in the primary visual cortex are well described by
feedforward models in which their basic response properties are
derived from the lateral geniculate nucleus (LGN) (Hubel and
Wiesel, 1962). The nature of the circuitry that gives rise to cortical
complex cells is, by comparison, much less clear. Similar to sim-
ple cells, complex cells are selective for orientation and spatial
frequency (Hubel and Wiesel, 1962; Movshon et al., 1978). Un-
like simple cells, complex cells lack obvious substructure in their
receptive fields (Hubel and Wiesel, 1962; Movshon et al., 1978;
Szulborski and Palmer, 1990), and as a group appear to be more
heterogeneous.

How can we best account for the aspects of complex cell re-
sponses that are shared with simple cells as well as those that are
disparate? Hubel and Wiesel (1962) proposed that complex cell
tuning is inherited from simple cell progenitors. In support of
their hierarchical model, extracellular experiments designed to
detect second-order structure in complex cell receptive fields
have revealed simple-cell like patterns (Movshon et al., 1978;
Emerson et al., 1987; Szulborski and Palmer, 1990; Livingstone
and Conway, 2003). In particular, it has been reported that the
spike rate response to an oriented bar flashed in the center of a
complex cell’s receptive field was modulated by the presence of a
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second, simultaneously presented bar in a manner that depended
on the separation between the two bars (Movshon et al., 1978).
The dependence of this interaction effect on bar separation was
reminiscent of the subfield structure of simple cell receptive
fields, and it predicted for individual complex cells the shape of
their spatial-frequency tuning curves.

In a previous model, it was proposed that complex cells might
perform a very different computation on their inputs, one resem-
bling a MAX-like operation (Riesenhuber and Poggio, 1999,
2002; Serre et al., 2007). That is, when presented with pairs of
stimuli, the response of a complex cell would resemble the larger
of the responses to the two stimuli alone. MAX-like behavior has
been observed in extracellular recordings from primate areas V4
(Gawne and Martin, 2002) and inferotemporal cortex (Sato,
1989) and in intracellular recordings from complex cells in cat
area V1 (Lampl et al., 2004).

The MAX-like computation reported by Lampl et al. (2004) is
distinct from that measured in previous experiments (Movshon
et al., 1978; Emerson et al., 1987; Szulborski and Palmer, 1990;
Livingstone and Conway, 2003), and is not predicted by the stan-
dard hierarchical model of cortical processing. How, then, can
the rather different reports of complex cell behavior be recon-
ciled? We found in a detailed intracellular study of complex cells
that both types of response patterns exist: in some complex cells,
the interactions between stimuli in a pair clearly depended on the
separation between stimuli and their polarity; in others, stimuli
interacted in a MAX-like manner, independent of separation or
polarity. The two types of cells lay at the ends of a continuum:
quantitative indices of MAX-like behavior showed a unimodal
distribution and were inversely correlated with the spatial-
frequency tuning bandwidth of the cells.
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A hierarchical energy model (Adelson and Bergen, 1985) con-
structed using one or two pairs of simple cells qualitatively repro-
duced the complex-cell behavior observed here. Classical re-
sponses emerged when a single pair of simple cells with matched
statial frequencies was used. More MAX-like behavior was ob-
served when two pairs of cells with different spatial-frequency
selectivities provided input to the model complex cell. Thus, it
may be the case that complex cells participate in a variety of image
processing computations dependent in part on the spatial-
frequency preferences of the inputs they receive.

Materials and Methods

Animal preparation. Adult female cats weighing between 2 and 3 kg were
anesthetized with a ketamine/acepromazine mixture (30 mg/kg ket-
amine, 0.7 mg/kg acepromazine, i.m.). Cannuli were inserted into the
femoral veins and anesthesia was subsequently maintained with intrave-
nous infusion of sodium pentathol (1-2 mg/kg/hr). A trachea tube for
artificial respiration and a vertebral clamp for suspension of the thorax
were surgically inserted, and the animal was placed in a stereotaxic head
holder. Small caliber holes were drilled in the cranium for placement of
screws used to monitor the electroencephalogram, and a craniotomy
measuring between 2 and 4 mm in width and 4 and 7 mm in length was
made at Horsley—Clark coordinates centered 2 mm laterally and 6 mm
posteriorly. After a suitable period during which the animal’s vital signs
remained stable, paralysis was induced with the perfusion of 3—4 ml of
vecuronium bromide (1.5 mg/kg), after which the animal was artificially
respirated at 30 breaths/min. Heart rate and expired CO, were moni-
tored, with the later adjusted periodically by the alteration of an admin-
istered room air/O, mixture to keep end tidal CO, in the range of 3.5
4.2%. Continuous perfusion of the paralytic was administered at 0.2
mg/kg/hr for the duration of the experiment; the anesthetic (pentothal)
was set to perfuse automatically at a rate between 1 and 2 mg/kg/hr to
maintain the animal in stage 2 sleep. Body temperature was monitored
and maintained close to 38.3°C with a feedback-controlled heat lamp.
Gas-permeable hard contact lenses filled with a saline/atropine mixture
to effect pupil dilation were inserted in both eyes after the nictating
membranes were retracted by the application of 2-3 drops of 2% phen-
ylephrine hydrochloride. Corrective external lenses were then placed in
front of the eyes to focus the display screen onto the retinas. Focus was
determined by imaging the retinas onto the display screen with a fiber-
optic light source directed into the eyes. To minimize brain movement
related to respiration, bilateral pneumothoracotomies were performed
to limit respiration-induced changes in intrathoracic pressure. Before
recording, a durotomy was made, typically with an area between 2 and 5
mm?, over which a layer of warm agar (3% in 0.9% saline) was applied to
protect the cortex during and between electrode penetrations. All meth-
ods related to animal treatment during experiments have been approved
by Northwestern University’s Committee on Experimental Animal
Research.

Stimulation and recording. Recordings were made with whole-cell
patch microelectrodes pulled on a Flaming/Brown micropipette puller
(model p87; Sutter Instrument, Novato, CA) from 1.2 mm thin-wall
borosilicate glass filaments. The electrodes, with resistances ranging be-
tween 7 and 11 M), were filled with an internal solution, consisting of (in
muMm) 130 K +—gluconate, 2 MgCl,, 5 HEPES 1.1, EGTA, 0.1 CaCl,, and 4
Mg?"-ATP, which was subsequently buffered to pH 7.3 and adjusted
(via dilution with ddH,0) to 285 mOsm. Membrane potentials were
recorded with an Axoclamp-2A amplifier in current-clamp mode and
digitized at between 4 and 10 kHz. Spikes were identified by subtracting
a low-pass-filtered version of the membrane potential from the original
voltage trace. For voltage analyses, spikes were removed by median fil-
tering. Stimuli were generated on a Macintosh computer (Apple, Cuper-
tino, CA) running Matlab (Mathworks, Natick, MA) with the Psycho-
physics toolbox libraries, which controls the output of a Viewsonic
(Walnut, CA) video monitor (mean luminance, 20cd/m?) placed 50 cm
in front of the animal. All neurons were recorded from areas 17 or 18 and
had receptive fields with eccentricities <10 °.

Receptive-field characterization and cell classification. Receptive fields
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were initially identified by hand. Once localized, the ocular dominance of
the cell was determined and the nondominant eye was blocked. Orienta-
tion preference was assessed with a protocol that pseudorandomly inter-
leaves 12 4 s presentations, each preceded by 250 ms of blank stimulation,
of a drifting grating at 12 different orientations between 0 and 330°. The
preferred orientation was defined as that which produced the largest
change in mean potential (F0) at the grating’s temporal frequency. To
position the visual stimulus more precisely over the receptive-field cen-
ter, a one-dimensional map was made using two sets of between eight and
12 bars of high, typically 90%, contrast: bright bars (“ON”) were pre-
sented at 38 cd/m? and dark bars (“OFF”) were presented at 2 cd/m 2. The
bars were between 0.2 and 0.6° wide and were presented individually and
pseudorandomly for 60 ms, with a subsequent 240 ms of blank stimula-
tion to allow the cell to return to near the resting potential between
stimuli. Both ON and OFF bar maps were constructed, and those bars
that produced a response different from the mean at 50—80 ms latency
were considered to lie within the receptive field. This protocol was re-
peated a number of times (between 5 and 25). Stimulation boundaries
were set to encompass the extremes of each map. Overlap between maps
made with ON and OFF stimuli, as well as the F1/F0 ratio derived from
responses to preferred orientation drifting gratings, were used to classify
cells as complex.

Spatial-frequency measurements. Spatial-frequency selectivity was
measured by presenting eleven (including a blank trial) pseudorandomly
interleaved drifting gratings of different spatial frequencies, all at the
preferred orientation and temporal frequency and at 64% contrast. Tun-
ing curves were constructed from the average response to each spatial
frequency. Preferred spatial frequency and bandwidth were obtained
from fits to the equation V(sf) = V.., + A X exp(—(sf/[pF)"*¥) X (1/V1
+ (hpFisf)*)", where V., is the resting membrane potential of the cell,
A is amplitude, sfis spatial frequency, IpF and IpE are variables capturing
the low-pass behavior of the curve, and hpF and hpL are variables cap-
turing the high-pass behavior of the curve. The spatial frequency that
elicited a maximal response was considered to be the preferred spatial
frequency. Bandwidth was determined by extracting the high and low
spatial-frequency cutoffs (where the response dropped to one-half max-
imal) and taking the ratio of the two (Sceniak et al., 2002). The preferred
spatial frequency determined in large part the number of stimuli used for
paired-bar mapping: the bars were chosen such that 0.5/bar width, which
is the highest frequency that can be resolved, was larger than the cell’s
peak spatial frequency.

Paired-bar measurements. All paired-bar experiments contained pre-
sentations of (1) single bars presented at each position with both ON and
OFF polarity (£45% contrast), (2) every possible pair of ON and OFF
polarity bars at = 45% contrast, (3) single bars of 290% contrast at each
position, representing the superposition of bars of =45% contrast, and
(4) blank stimuli.

Results

Complex cell responses to paired bar stimuli

Whole-cell intracellular recordings were obtained from complex
cells in anesthetized cats. We first determined the cell’s orienta-
tion and spatial-frequency preferences using drifting gratings.
The cell’s receptive field center and extent were then mapped by
measuring subthreshold responses to narrow, optimally ori-
ented, single bright (ON) and dark (OFF) bar stimuli (*£45%
Weber contrast relative to background). For paired bar mapping,
the receptive field, together with a small portion of the surround-
ing region, was divided into between 8 and 12 oriented bars, with
the bar width chosen to be as narrow or narrower than one-half of
the period of the cell’s preferred spatial frequency. Bars were
presented for 20—60 ms followed by blank periods of 160-240
ms. We measured responses to a complete set of second order
(paired) stimuli by flashing every combination of bar position
and polarity. When the members of a pair with the same polarity
were both located in the same position, the contrasts added to
create a single bar with doubled (+90%) contrast.
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The stimulation method and example
responses recorded from a complex cell
are shown in Figure 1. Here, the stimuli
were flashed for 60 ms, followed by 240 ms
of a blank screen (Fig. 1A). All bar pairs
were displayed once in random order dur-
ing a stimulus trial. A subset of one trial is
shown for an example complex cell in Fig-
ure 1B with the cell’s responses above the
stimuli that evoked them; note that this
block of 10 stimuli contained a blank stim-
ulus (at 2.4 s) in among the pairs and sin-
gleton bars. We generally presented the
full stimulus set between 10 and 30 times
(each time with a different random order),
and then averaged the responses to each
stimulus after eliminating spikes with a
median filter.

Figure 1C shows average responses for
the cell in Figure 1 B to high-contrast single
bright bars (gray traces) and dark bars
(black traces). At most spatial locations,
the peak responses of the cell were very
similar in amplitude and occurred at
nearly the same latency, identifying the cell
as being complex. To the right are space-
time maps of the responses, again showing
the receptive field similarity when probed
with either ON or OFF polarity bars.

A matrix representation of all the
ON-ON bar pairs with which the cell was
stimulated is shown in Figure 2 A. Individ-
ual bar stimuli are arrayed along the top
row and leftmost column. Across any
given row a, one bar stimulus remains
constant and is paired with its appropriate
partner from column b. Thus, along the
major diagonal (when a = b, marked “0”
in the figure), the bars superimpose to
produce a single bar stimulus that is dou-
bled in contrast. In this representation,
paired-bar stimuli with the same separa-
tion between bars fall along diagonals;
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Figure1.  The paired-bar stimulus protocol and example complex cell responses. A, Example stimulus frames for the paired-bar

protocol. All possible pairs of ON and OFF bars were flashed at 45% contrast along with individual bars of both polarities at 45 and
90% contrast. B, Complex cell responses to part of a paired-bar protocol. Bars were flashed for 60 ms with 240 ms of succeeding
blank time. This cell depolarized in response to almost all combinations of bars, regardless of polarity. C, Responses to ON and OFF
bars at 90% contrast for the complex cell in B. The similarity between ON and OFF responses at each position clearly marked this
cell as being complex. pos, Position.
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Figure 2.  Stimulus organization. A, Responses to all stimuli were arranged in matrices as depicted. Stimuli falling along the
arrows contained bars that were equidistant from each other. The major diagonal stimuli (bar separation, 0) were at 90% contrast,
mimicking the coincidence of two 45% contrast stimuli at the same spatial location; all other stimuli were at 45% contrast. Four
variations of this stimulus arrangement were created for each cell: ON—ON (shown), ON—-OFF, OFF—OFF, and OFF—ON. B, The full
set of ON—ON responses for the complex cell from Figure 1. Responses to each bar presented individually at 45% contrast (R, and
R,) areinred, the response to both bars together (R, , ) is in blue, and the predicted response to both bars together (R, + R,) is
ingreen. Along the main diagonal, the blue responses are identical to the gray traces in Figure 1C. The gray box contains traces that
have been magnified for easier viewing (arrow).

looking along the diagonal marked by 2,

for example, the center-to-center distance

between paired bars is exactly two bar widths. Altogether, four
different matrices could be constructed from our stimulus set,
one for each combination of bar polarities: ON-ON, OFF-OFF,
ON-OFF, and OFF-ON.

Average responses to each stimulus in Figure 2A are illus-
trated in Figure 2 B for the complex cell from Figure 1. The re-
sponses are plotted relative to, and slightly elevated from, the
resting membrane potential of the cell (horizontal lines). At all
positions (a,b) where a # b, we placed the response to bar a alone
(red), the response to bar b alone (red), the response to bars a and
b together (blue), and the linear prediction generated by sum-
ming the responses to a and b alone (green). For major diagonal
entries (a = b; bar separation, 0) in ON-ON and OFF-OFF ma-
trices, we placed the response to a (red), the response to a at
double contrast (=90%; blue; same as ON responses in Fig. 1C),
and twice the response to a (green). Above the example ON-ON
matrix are four entries (gray box) that have been magnified so
that the individual traces can more easily be identified. The coin-

cidence of an ON bar and an OFF bar at the same spatial location
is equivalent to showing no stimulus at all, and so the major
diagonals in ON-OFF and OFF-ON matrices were not filled in.

MAX-like and classical complex cells

We recorded paired bar responses from 45 complex cells, two of
which are shown in Figure 3. For MAX-like cell 1 (M1) (Fig. 3A),
we show the ON-ON matrix (left) and the ON-OFF matrix
(right). For cell M2 (Fig. 3B), we show the OFF—OFF matrix (left)
and OFF-ON matrix (right). The remaining two matrices for M1
and M2 can be found in supplemental Figures 1 and 2 (available
at www.jneurosci.org as supplemental material). The format of
Figure 3 is identical to that of Figure 2 B, except that the matrix
entries with bar separation 0 are not shown. Here, again the gray
boxes depict entries that have been magnified for easier viewing.
For M1, eight bars of 0.31° width were flashed in pairs, with each
stimulus on for 60 ms and followed by 240 ms of a blank screen.
For M2, eight bars of 0.39° width were flashed in pairs with each
stimulus on for 40 ms and followed by 180 ms of a blank screen.
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similar to the maximum of the individual responses, indicating MAX-like behavior. B, OFF—OFF and OFF—ON matrices for a second
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did not often observe suppression between
bars of opposite polarity.

Similar separation- and polarity-
dependent changes in bar interactions are
shown for a second cell (C2) in Figure 4 B;
note that bar separations 0 and 1 are, how-
ever, not shown. The remaining two ma-
trices for the cells in Figure 4 can be found
in supplemental Figures 3 and 4 (available
at www.jneurosci.org as supplemental
material).

Quantification of responses to

flashed stimuli

For each cell, we measured the amplitude
of its responses to all flashed stimuli by
calculating the average membrane poten-
tial within a 10 ms window centered on the
peaks of the responses. In separate graphs,
we plotted the paired stimulus amplitudes
(R,,) against the maximum, the mini-
mum, and the linear sum of the compo-
nent bar amplitudes (R, and R;,). Figure 5
shows the results of this analysis for three
MAX-like cells (including M1 and M2
from Fig. 3) and three classical cells (in-
cluding C1 and C2 from Fig. 4, and C3
from Figs. 1, 2).

complex cell, both demonstrating mostly MAX-like responses independent of bar distance or polarity.

These two cells appeared to behave in a
very MAX-like manner: their responses to
almost all bar pairs (blue traces) were con-
sistently similar to the larger of the indi-
vidual responses (red traces), and invari-
ably smaller than the sum of the individual
responses (green). The two cells in Figure
4, however, showed very different behav-
ior, resembling more the classical complex
cells described by Movshon et al. (1978) in
which the interactions between bars in a
pair depended systematically on bar sepa-
ration and polarity. In classical cell 1 (C1),
for example, bright bars separated by a dis-
tance of two bar widths showed consistent
suppression across the entire receptive
field: for the violet-shaded traces in Figure
4A (left), the paired response (blue) was
always smaller than the larger of the indi-
vidual (red) responses. When the polarity
of one of the bars was reversed, however,
the suppression turned into facilitation:
for the gray shaded traces in Figure 4A
(right), the paired response to the bars
(blue) was always greater than the larger of
the individual responses (red). At further
separations between bars (five bar widths),
the interaction reversed, with summation
seen between two bright bars (Fig. 4 A, left,
gray shading). Note that there is no obvi-

ous corresponding suppression for the larger bar separation vis-
ible in Figure 4 A (right). This was a consistent finding in that we
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Figure4.  Classical responses in complex cells. 4, ON—ON and ON—OFF matrices for a complex cell with varied responses to pairs of bars. Ata bar
distance of2, the responsetoboth bars togetheris consistently less than the maximum response to the bars alone for same-polarity stimuli (indicated
byvioletshading); the reverseis truefor opposite-polarity stimuli (indicated by gray shading). Ata bar distance of 5, same-polarity bars evoke alarger
response together than individually. B, A second complex cell's OFF—OFF and OFF—ON matrices showing the same behavior asin A.

For MAX-like cells, the maximum of the individual responses
to the bars in a pair was a good predictor of the cell’s response to

the pair, whereas for classical cells the prediction was poor. The
MIN measure underpredicted the paired responses for both types
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Figure5.  Plots of complex cell response amplitudes. For MAX-like cells, the responses to bar

pairs are most accurately predicted by the maximum of the responses to the individual bars
(MAX column) across all spatial positions and bar polarities. The minimum and linear sum of the
responses to individual bars do not predict well the paired responses (Min and Linear columns).
For classical cells, the maximum, minimum, and linear sum of responses to individual bars all fail
to predict the paired responses.

of cells in almost all cases. As expected from the data in Figures
3and 4, the linear sum of the responses to individual stimuli
generally overpredicted the paired response in the case of MAX-
like cells, and did not accurately predict the paired response in the
case of classical cells.

To determine the MAX behavior of each stimulus pair, we
computed a MAX index as follows:

Ra,b — Max (Ra)Rb)

MI@b) = =3 INRR)

This formulation was originally proposed by Sato (1989) and has
been used previously to study complex cells (Lampl et al., 2004).
It has the benefit of being able to represent perfect MAX behavior
(a max index of 0) as well as perfectly linear behavior (a max
index of 1); in addition, facilitation (a paired response greater
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than the maximum of the individual responses) is represented
by values >0, whereas suppression (a paired response less than
the maximum of the individual responses) is represented by
values <0.

The MAX index attempts to capture the relationship between
three different quantities (R,, R, R, ;) in a single number, and as
such does not always represent all aspects of the relationships
perfectly. For example, as a quotient, the MAX index can be
overly sensitive to the size of the denominator (MIN response): if
the MIN response is very small, the index will be artificially in-
flated, whereas if the MIN response is large, the index will be
closer to perfect MAX (0) than would, intuitively, be expected. In
our data, the former problem arose infrequently, as 75% of the
MIN responses we measured were at least 25% the size of the
corresponding MAX responses. In addition, Figure 5 illustrates
that even for cells where the MAX and MIN responses were often
comparable in amplitude (M1), the paired responses were, in
general, better explained by the MAX responses than the MIN
responses. These observations suggest that, for our data, the MAX
index should serve well as a single, normalized index capable of
differentiating between the spatial integration demonstrated by
MAX-like cells and that demonstrated by classical cells.

That the MAX index can faithfully represent the behavior seen
in cells M1, M2, C1, and C2 is shown in Figure 6, where we plot
MAX index against bar separation for all of the entries in the
matrices from Figures 3 and 4. The MAX indices for M1 and M2
were all close to zero (individual points), as was the average MAX
index at each bar separation (solid line). In these cells, the inter-
action between any two bars was almost completely independent
of the separation and polarity of the bars. Cells C1 and C2, on the
contrary, had strongly modulated MAX index profiles. The MAX
indices clearly depended on the distance between bars, and the
dependence flipped when one bar changed polarity (compare
ON-ON with ON-OFF or OFF-OFF with OFF-ON); the shape
of the dependence, however, was the same for matrices in which
both bars had the same polarity (ON-ON compared with OFF—
OFF) or in which the two bars had opposite polarity (ON-OFF
compared with OFF-ON). The strong dependence of the MAX
index on bar separation and polarity thus explains why, for these
cells, both the MAX and the linear measures in Figure 5 failed to
represent their behavior.

Quantification of overall MAX behavior

To determine whether the MAX-like behavior of cells such as M 1
and M2 is distinct from the classical behavior of cells like C1 and
C2, or whether there exists a continuum between MAX-like cells
and classical cells, we quantified the degree to which complex
cells were sensitive to the separation between bar stimuli. For
each cell, the indices from all four graphs of MAX index versus
bar separation were combined (Figs. 7A, B, individual points).
Indices for opposite-polarity pairs (ON-OFF and OFF-ON)
were negated, and then at each bar separation, the points were
averaged together to give a composite MAX index (Figs. 7A, B,
solid lines).

Figures 7, A and B, shows the composite MAX indices for a
MAX-like cell (M1), and a more classical cell (C3). To quantify
the sensitivity of the composite MAX index to bar separation, we
took the difference between the maximum and minimum com-
posite MAX indices, which we refer to as the spatial-variation
index (SVI). Cells like M1 and M2 with little or no modulation to
their composite MAX index profiles had small SVIs (M1, 0.2; M2,
0.1). Cells with highly modulated composite MAX index profiles
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naturally from the commonly used energy
model of complex cell receptive fields (Ad-
elson and Bergen, 1985). In the model, a
single complex cell receives the squared
output of two simple cells with overlap-
ping receptive fields that are 90° out of
spatial phase from each other. The pre-

ferred spatial frequency of the complex cell
derives from the preferred spatial frequen-
cies of the presynaptic simple cells, which
are assumed to be identical. Because sim-
ple cells are roughly linear in spatial sum-
mation, their preferred spatial frequencies
are, in turn, determined mostly by the dis-
tance between their subfields. At the same

M1 ON/ON ON/OFF C1 ON/ON ON / OFF
2 L[]
o Rt et
2 .
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Figure6.  MAXindex plots for the matrices from Figures 3 and 4. Thefilled circles representindividual MAX indices, whereas the

time, subfield separation determines the
way in which the simple cells, and there-
fore the complex cells they project to, re-
spond to paired bars. When bars of oppo-

solid line tracks the mean of the indices at each bar separation. Cells M1 and M2 show relatively flat average MAX index profiles
that do not vary greatly with bar separation or polarity. Cells C1 and (2 show modulated average MAX index profiles with
suppression (MAX indices <<0) at small bar separations (purple ovals), and enhancement (MAX indices >0) at larger bar sepa-
rations (gray ovals) for the same polarity bars. The pattern of suppression reverses when one of the bars switches polarity.

site polarity are separated by the same
amount as the underlying subfields, that is,
when a bright bar falls in a simple cell’s ON
region and a dark bar falls in the simple
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N

max

o
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0 4 8
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Figure7.

like C1 and C2 had larger SVIs (C1, 1.1; C2, 2.4). A histogram of
the SVIs for the 45 cells studied is plotted in Figure 7C.

We also applied a second method, one that does not rely on
MAX indices, to evaluate the dependence of stimulus interactions
on bar separation distance; this method, which is based on the
difference between the average responses to same-polarity and
opposite-polarity pairs at each bar separation, is detailed in sup-
plemental Figure 5 (available at www.jneurosci.org as supple-
mental material). The correlation between the two measure-
ments of spatial variation was very strong (r = 0.86; p < 0.001).
Neither metric gives any indication that the population of com-
plex cells is split into two distinct groups. Instead, both measures
show a unimodal distribution (supplemental Fig. 5C, available at
www.jneurosci.org as supplemental material).

Spatial-frequency peak and bar-pair interactions

Movshon et al. (1978) demonstrated that the spatial-frequency
tuning of some complex cells could be explained by the spatial
interactions among paired bar stimuli. This relationship falls out

Method for measuring complex cell spatial variation. A, Average MAX indices (composite MAX index) for cell M1. The
SVl is derived by taking the largest composite MAX index and subtracting the smallest composite MAX index. B, Same as in A for
the cell (3. C, Histogram of the SVI showing a continuum of MAX-like behavior over the population.

cell’s OFF region, the simple cell (and con-
C sequently the complex cell) will respond

20- strongly. Conversely, bars of the same po-
larity that fall one in an ON region and one
in an OFF region will antagonize each
other such that the simple cell (and the
complex cell) will not respond strongly
(supplemental Fig. 6, available at www.j-
neurosci.org as supplemental material).

According to the energy model, then,
the separation between same-polarity bars
that generates maximum suppression in a
0 complex cell (or, equivalently, the separa-

012 tion between opposite-polarity bars that

SVI yields maximum facilitation), should be
one-half the reciprocal of the preferred
spatial frequency of the cell. In terms of the
MAX index, the reciprocal of preferred
spatial frequency should equal the bar sep-
aration for which the composite MAX in-
dex is the smallest. We tested this expecta-
tion by measuring the spatial-frequency tuning of complex cells
with drifting gratings. The cycle averaged responses of an exam-
ple cell are shown in Figure 8 A. Tuning curves were constructed
from the mean depolarization at each spatial frequency and fit
with a six-parameter function (see Materials and Methods). In
Figure 8 B, tuning curves for six different cells are shown, three
with very classical behavior (top) and three with MAX-like be-
havior (bottom).

The comparison between preferred spatial frequency and
paired bar interactions is shown in Figure 8C. Here, we plot the
composite MAX index against bar separation for the same cells as
in Figure 8 B. The vertical arrow in each graph points to the bar
separation at which maximum suppression should be observed
considering the cell’s preferred spatial frequency in response to
drifting gratings. That is, the position of the arrow is at one-half of
the reciprocal of the preferred spatial frequency. Note that the
prediction is plotted in terms of the bar width used for stimula-
tion (rather than degrees of visual angle).

For cells that were more classical in their behavior (strong

(N=45)
S

# of cells
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dependence of the MAX index on bar A

separation) (Fig. 8C, top), the predic- 0
tions based on preferred spatial fre-
quency clearly matched the bar separa-
tions at which the composite MAX index

SF (cyc/°) C
41 .22 33 44 66 88 1.2 1.8 25 35
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was minimal (filled circles). For MAX-
like cells (cells with weak dependence of
MAX index on bar separation) (Fig. 8C,
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bottom), the match was more variable.
To capture this observation for the pop-
ulation, we quantified the match by tak-
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ing the difference between the location

of the arrow in Figure 8C and the loca-
tion of the minimum of the composite
MAX index. We then plotted this differ-
ence against the spatial-variation index
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for each cell (Fig. 8D). As can be seen
SF (cyc/®)

from the graph, the more classical a cell’s
behavior was (the larger the SVI of the

cell), the better the match between the Figure 8.
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Complex cell preferred spatial frequencies predict the distance of maximum paired-bar suppression. 4,

predicted and measured bar separation
yielding a minimal composite MAX
index.

Spatial-frequency bandwidth and
bar-pair interactions

An underlying assumption of the energy
model is that the preferred spatial frequen-
cies of the presynaptic simple cells are
identical. In this way, bars of a given polar-
ity and separation will interact similarly,
regardless of their absolute position within
the complex cell’s receptive field. One pos-
sible difference between classical complex
cells and more MAX-like complex cells,
then, is that in the former the constituent
simple cells match in spatial frequency,
whereas in the latter they do not. The
spatial-frequency tuning curves of Figure
8 B are suggestive in this regard, in that the
classical complex cells (top row) are more
narrowly tuned for spatial frequency than
the MAX-like cells (bottom row). This re-
lationship would be consistent with the
simple-cell inputs to MAX-like cells hav-
ing a range of preferred spatial frequen-

Cycle-averaged responses of a complex cell to drifting gratings of varied spatial frequency. B, Spatial-frequency tuning
curves for six cells with similar preferred spatial frequencies; their bandwidths, however, varied considerably. The smooth
curve is a least-squares fit to the data (closed circles). €, Plots of composite MAX indices for the cells in B and predictions
of minimal composite MAX index (filled circles) from the preferred spatial frequency (vertical arrows). D, Difference
between the location of the smallest composite MAX indices and the predictions based on spatial frequency plotted
against SVI. The predictions are worse for MAX-like cells.
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Figure9. The relationship between spatial-frequency bandwidth and complex cell spatial variation. A, Plot showing negative

correlation between the spatial-variation index and spatial-frequency bandwidth for 29 complex cells (r = 0.65). B, Histogram of
spatial-frequency bandwidth over the population. C, MAX indices for eight cells with narrow spatial-frequency bandwidths (<6,
red cells in B) were averaged after converting their raw bar distances to multiples of the preferred spatial period (red curve).
Maximal suppression and facilitation for the average MAX indices occurred around 0.5, as predicted. MAX indices for eight cells
with broad spatial-frequency bandwidths (>12, blue cells in B) were also averaged (blue curve). The curve stayed much closer to
the liney = 0, or perfect MAX behavior, than the curve for cells with narrow spatial-frequency bandwidths. Error bars indicate

cies, rather than matching preferred spa-  SEM.

tial frequencies.

To determine whether spatial-frequency bandwidth is corre-
lated with MAX-like behavior, we derived bandwidths for each
cell from the fitted tuning curves by dividing the high and low
spatial-frequency cutoffs (at which half-maximal responses were
observed). Bandwidths for curves in Figure 8 B are indicated by
the number in the top left corner of each panel. In Figure 94,
bandwidth is plotted against the degree of MAX-like behavior for
each cell (Fig. 7, spatial-variation index). The plot shows a signif-
icant negative correlation (r = 0. 65; p < 0.001).

Figure 9C demonstrates explicitly the relationship between
MAX behavior and spatial-frequency-tuning bandwidth. Here,
we chose two subsets of complex cells, the eight cells with the
narrowest bandwidths (Fig. 9B, red), and the eight cells with the
widest bandwidths (Fig. 9B, blue). For each subset, we averaged
together the plots of MAX index versus bar separation distance

(plots like those in Fig. 7 A, B). Before combining the plots, how-
ever, we rescaled the x-axis in units of optimal spatial period. That
is, a value of 1 on the x-axis is equal to the reciprocal of the
preferred spatial frequency of a given cell, as measured with drift-
ing gratings. Using this normalization, the spacing of points on
the x-axis became different for each cell, because the bar width in
relation to the preferred spatial period was not the same over the
population. To obtain the average curves, then, the entire set of
points for each group of eight cells was binned in intervals of
approximately one-fourth of the preferred period.

It is clear from the graphs in Figure 9C that cells with large
spatial-frequency bandwidths (blue line and SEM bars) show sig-
nificantly less modulation in their MAX index profiles than cells
with narrow bandwidths (red line and SEM bars). Both curves
peak at one-half the preferred spatial period, as would be ex-
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pected from the energy model. The curve for the large-bandwidth
(>12) cells, however, has a peak amplitude less than half that of
the small-bandwidth (<6) cells, the peak is broader, and the
curve falls nearly to 0 for larger bar separations. Overall, the
average MAX index then depends only weakly on bar separation
for cells with large spatial-frequency bandwidths.

Spatial-frequency bandwidth in the energy model

We proposed above that one way to generate MAX-like cells is to
modify the energy model (Adelson and Bergen, 1985) by com-
bining inputs from simple cells with a range of preferred spatial
frequencies. To test the effect of this scenario on MAX-like be-
havior in complex cells, we created two versions of the energy
model. In the classical version, the complex cells received input
from a single pair of simple cells with identical preferred spatial
frequencies and receptive fields 90° out of spatial phase from one
another. The sensitivity of each simple cell varied (in the direc-
tion perpendicular to the preferred orientation) as a Gabor func-
tion of distance: S; = cos(1.5mx) X efxz/O'B; S, = sin(1.57x) X
e —x2/0.23'

In the MAX-like version of the model, the complex cell re-
ceived input from an additional pair of simple cells with a pre-
ferred spatial frequency of a little less than half that of those in
pair 1: Sy = cos(0.6mx) X e ~* 1023 S, = sin(0.6mmx) X e ¥ 1023,

For each version of the model, we presented 6000 pairs of bars,
either with the same or opposite polarity, that were one-eighth
the size of the receptive fields of the model cells, with the bar
positions chosen randomly and constrained only to be nonover-
lapping. The response of each constituent simple cell to a bar was
obtained by summing the extent of the receptive field of the sim-
ple cell covered by the bar (taking the dot product of the stimulus
and the receptive field sensitivity profile); the response to bar
pairs was taken as the sum of the responses to each bar individu-
ally. All responses were measured relative to rest (0 mV). To
obtain the response of the complex cells, the output of each sim-
ple cell was squared and then all of the outputs were summed,
with the result normalized by taking the square root (for an
equivalent and more physiological formulation, see Discussion).
MAX indices were calculated and then grouped according to the
distance between bar centers in the same manner as the experi-
mental data; note that here, as in Figures 7, A and B, and 8C, the
MAX indices for opposite polarity pairs were negated before
averaging.

The average MAX indices for both versions of the model are
plotted in Figure 10. The two simple models successfully cap-
tured many qualitative features of the curves in Figure 9C. With
simple cell pair 1 alone providing input, the average MAX index
for the model complex cell was strongly dependent on bar sepa-
ration, with a pronounced trough at a separation of one-half of
the preferred spatial period, similar to the real data. At larger
separations, the average MAX index reached well above 0, again
matching the behavior of real complex cells seen in Figure 9C.
Most importantly, in the model complex cell with input from
pair 1 and pair 2, both the trough in the average MAX index at
small distances and the peak at larger distances were reduced, as
was observed in the real complex cells with large spatial-
frequency bandwidths. Thus, even in this extremely simplified
model, input from simple cells with different preferred spatial
frequencies prevented the full expression of suppression and fa-
cilitation that is expected from an energy model with simple cells
that have identical spatial-frequency tuning.
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Figure10.  Multiple spatial-frequency channels in an energy model of complex cells produce
MAX-like responses. An energy model with two simple cells in quadrature phase (pair 1), whose
responses were measured relative to rest (0 mV) and squared (which is physiologically equiva-
lent to using four simple cells with rectification at rest and half-squaring), generates MAX index
plots similar to those for complex cells with narrow spatial-frequency bandwidths (red curve).
An energy model with two pairs (pair 1 and pair 2) of simple cells having different preferred
spatial frequencies generates MAX index plots similar to those for complex cells with broad
spatial-frequency bandwidths (blue).
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Discussion

Lampl et al. (2004) observed MAX-like behavior in complex cells,
but because single cells were not tested with a complete stimulus
set and the indices measured from many cells were aggregated in
their analysis, the authors could only draw conclusions about the
average behavior of cortical complex cells. We have studied com-
plex cells in more detail and observed that the manner in which
individual complex cells integrate stimuli across their receptive
fields is diverse. Many cells exhibit the classical patterns of inter-
action observed in previous extracellular experiments such as
those of Movshon et al (1978). Others perform an almost perfect
MAX-like computation similar to that reported by Lampl et al.
(2004).

A continuum of complex cell behavior

Although we make reference to two distinct patterns of response,
it is clear that the distinction between MAX-like and classical
complex cells is one of degree and not one of type. Quantitative
measures of MAX-like behavior (Fig. 7, spatial-variation index, and
a second index in supplemental Fig. 5, available at www.jneurosci.
org as supplemental material) showed that complex cells fall
along a continuum. This observation is in line with the charac-
terization of complex cells as an extremely heterogeneous group
that defies easy subcategorization. We have not attempted here to
match various classification schemes for complex cells [for exam-
ple, the A, B, and C subgroups of Henry et al. (1978), or the
special complex cells many of which project to the superior col-
liculus (Palmer and Rosenquist, 1974; Gilbert, 1977)] with vari-
ation along the SVI axis. Additional study will also be required to
determine whether MAX-like behavior varies systematically
among cortical layers. A preliminary analysis correlating elec-
trode depth with SVI for our data would suggest, however, that it
does not. SVI also does not correlate with the F1/FO metric for
classifying simple and complex cells (Skottun et al., 1991). For
most of the complex cells in this study, F1/F0 lies between 0.2
and 0.3.

Evidence for models of complex cell formation
Hubel and Wiesel (1962) proposed a hierarchical model in which
simple cells converge onto complex cells, preserving orientation
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selectivity, but generating phase insensitivity. Some complex
cells, however, particularly those in lower layer 3 and below, re-
ceive direct input from relay cells of the lateral geniculate nucleus.
Alternatives to the hierarchical model have made use of this con-
nection to construct complex cell receptive fields. Mel et al.
(1998), for example, proposed that individual complex cell den-
drites could act similarly to simple cell subfields by integrating
input from LGN relay cells aligned in space; complete simple
cell-like input would then be mimicked by the integration of
multiple dendrites in the complex cell soma. There is as yet, how-
ever, no clear evidence that this scheme is used in cortex.

Evidence for the hierarchical model, both direct and indirect,
has come in many forms. Based on the matches obtained between
two-bar profiles and predictions of those profiles derived from
spatial-frequency tuning, Movshon et al. (1978) concluded that
spatial-frequency tuning for some complex cells could be ex-
plained by the convergence of input from relatively linear sub-
units similar to simple cells. Anatomical experiments (Gilbert
and Wiesel, 1979) show a strong projection from layer 4, which
contains a large number of simple cells, to layers 2 and 3, where
complex cells predominate. Alonso and Martinez (1998) showed
that complex cells in the upper layers receive monosynaptic ex-
citatory input from simple cells with overlapping and similarly
oriented receptive fields.

Complex cell energy models

The energy model of Adelson and Bergen (1985) demonstrated
theoretically that a complex cell could be built from the squared
output of two linear filters (approximations to simple cells) with
receptive fields offset by 90° in spatial phase, and indirect evi-
dence for such a mechanism has been obtained from analyses of
one-dimensional (bars) and two-dimensional (spots) white-
noise experiments on complex-cell receptive fields (Touryan et
al., 2002, 2005; Rust et al., 2005). We note that the energy model
as traditionally formulated has some physiological correlates, but
is not altogether realistic. For example, the squaring of simple-
cell input implies that simple cells are only sensitive to the mag-
nitude of a contrast change, but not its sign. A more realistic
model would substitute two simple cells for each one simple cell
in the model, with the new simple cells having identical receptive
field positions but opposite subunit signs. Each simple cell would
then give half-squared output with rectification at rest, the half-
squaring arising from the power-law relationship between mem-
brane potential and spike rate as observed previously (Hansel and
van Vreeswijk, 2002; Miller and Troyer, 2002; Priebe and Ferster,
2005).

In the original energy model, the output of the complex cells is
un-normalized, being simply the squared sum of the inputs. Be-
cause squaring is an expansive nonlinearity, the range of MAX
indices produced by such a model is far larger than those ob-
served in real complex cells. The square-root normalization of
the complex cells” output we have used in our model is designed
to make the relationship between stimulus contrast and response
amplitude more physiological and to bring the MAX indices into
a more realistic range, between approximately —1 and 1. Al-
though the square root is a computationally convenient way of
performing this normalization, it carries no theoretical signifi-
cance. Other compressive or saturating nonlinear functions, such
as the soft-MAX function or divisive normalization would serve
equally well (Riesenhuber and Poggio, 1999, 2002). Physiological
mechanisms that could contribute to the normalization step in
the model include synaptic depression, depolarization-induced
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changes in driving force on synaptic currents, and synaptic inhi-
bition (Heeger, 1992).

Conclusions

In this work, we characterized complex cells on the basis of their
membrane-potential responses. Although we have not made a
systematic study of the MAX-like behavior of complex cells spike
responses, it is likely that complex cells would show a range of
behaviors in spiking similar to what we find in the membrane
potential responses. Lampl et al. (2004) reported that complex
cell spike responses were MAX-like on average. And two example
cells, one MAX-like cell and one classical, in which the membrane
potential and spike responses were similar in character, are
shown in supplemental Figure 7 (available at www.jneurosci.org
as supplemental material). A quantitative characterization of the
range of complex cell MAX behavior in spiking would require a
comprehensive extracellular study.

On the face of it, MAX-like behavior might seem contradic-
tory to that expected from a hierarchical or energy model, be-
cause in such models, the interactions between stimuli at each
stage propagate in a manner that should reflect the combination
of stimuli as opposed to favoring one stimulus over the other. As
we have shown, however, incorporating simple cells with differ-
ent preferred spatial frequencies into the energy model can ac-
count for important aspects of MAX-like complex cells, includ-
ing broader spatial-frequency tuning and a minimal dependence
of MAX indices on bar separation distance or polarity. The model
as presented was designed to replicate the average behavior of
MAX-like complex cells (Fig. 8), which shows some variation in
the MAX index with bar separation. Changing the saturation
function for complex cell output and adding more simple cells
with different preferred spatial frequencies can produce re-
sponses that are closer to the almost perfectly invariant behavior
seen in some individual cells, such as in Figure 5A.

The energy model is parsimonious in that it can account for
both MAX-like and classical complex cells, the only difference
being the preferred spatial frequencies of its component simple
cells. Other models are possible. As suggested by Lampl et al.
(2004), a MAX response to a bar pair would be expected if the bar
that evoked the larger response also evoked strong shunting in-
hibition. The authors further suggest that measuring the conduc-
tance changes evoked by paired bar stimuli could potentially de-
termine whether inhibitory mechanisms contribute to MAX-like
behavior. A second possibility is that direct relay-cell inputs could
be combined onto the complex-cell dendrites to mimic the en-
ergy model (Mel etal., 1998), but with the dendritic subunits each
having different preferred spatial frequencies. Experiments to de-
termine whether MAX-like and classical complex cells receive
different amounts of monosynaptic input from geniculate relay
cells could help to address this question.

Whether MAX-like behavior arises from the convergence of
multiple spatial-frequency channels or through a different net-
work mechanism (Ohzawa et al., 1990; Mel et al., 1998; Chance et
al., 1999; Tao et al., 2004; Serre et al., 2007), our observation that
a subset of complex cells in the primary visual cortex compute a
MAX operation over a wide variety of stimuli affirms the conclu-
sion of Lampl et al. (2004). The authors wrote that the visual
system may use MAX-computing complex cells to achieve robust
object recognition as in the model proposed by Riesenhuber and
Poggio (1999). Given the recent successes of their model in high-
level object recognition (Serre et al., 2007), the potential is great
for a computational approach to continue to inform biological
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experimentation, and vice-versa, in the study of the functioning
of the neocortex.
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