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Stochastic Processes at Ribbon Synapses
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In several sensory systems, the conversion of the representation of stimuli from graded membrane potentials into stochastic spike trains
is performed by ribbon synapses. In the mammalian auditory system, the spiking characteristics of the vast majority of primary afferent
auditory-nerve (AN) fibers are determined primarily by a single ribbon synapse in a single inner hair cell (IHC), and thus provide a unique
window into the operation of the synapse. Here, we examine the distributions of interspike intervals (ISIs) of cat AN fibers under
conditions when the IHC membrane potential can be considered constant and the processes generating AN fiber activity can be consid-
ered stationary, namely in the absence of auditory stimulation. Such spontaneous activity is commonly thought to result from an
excitatory Poisson point process modified by the refractory properties of the fiber, but here we show that this cannot be the case. Rather,
the ISI distributions are one to two orders of magnitude better and very accurately described as a result of a homogeneous stochastic
process of excitation (transmitter release events) in which the distribution of interevent times is a mixture of an exponential and a gamma
distribution with shape factor 2, both with the same scale parameter. Whereas the scale parameter varies across fibers, the proportions of
exponentially and gamma distributed intervals in the mixture, and the refractory properties, can be considered constant. This suggests
that all of the ribbon synapses operate in a similar manner, possibly just at different rates. Our findings also constitute an essential step
toward a better understanding of the spike-train representation of time-varying stimuli initiated at this synapse, and thus of the funda-
mentals of temporal coding in the auditory pathway.
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Introduction
In vertebrate auditory, visual, vestibular, and electroreceptive
systems, the conversion of the representation of stimuli from
graded membrane potentials to stochastic trains of action poten-
tials is performed by ribbon or ribbon-like synapses (Zhai and
Bellen, 2004; Fuchs, 2005; Prescott and Zenisek, 2005; Sterling
and Matthews, 2005; Moser et al., 2006). Remarkably, in the
mammalian auditory system, spiking characteristics of the vast
majority of auditory-nerve (AN) fibers, the primary afferents, are
primarily determined by a single ribbon synapse each, although
each inner hair cell (IHC) receptor contains several ribbons
(Liberman et al., 1990). This provides a unique opportunity to
derive important aspects of the release statistics of this synapse in
an undisturbed environment, namely from the spike trains of AN
fibers, if their refractory properties are known or can be esti-
mated. More generally, it makes the IHC-AN fiber system an
ideal model for studying the operation of ribbon synapses.

The simplest case in which release statistics can be studied is in
the absence of auditory stimulation, when for most practical pur-
poses and for moderately long periods of time the receptor po-
tential can be considered constant and the processes generating
AN fiber activity stationary (Geisler, 1998). It is generally as-
sumed that excitation of AN fibers is provided by a Poisson point
process, which, in the case of spontaneous activity, is homoge-
neous or fractal doubly stochastic, to account for rate trends and
phenomena seen over longer time scales (�100 ms to tens of
seconds) (Lowen and Teich 1991, 1992; Jackson and Carney,
2005) (for review, see Delgutte, 1996; Mountain and Hubbard,
1996). Both types of process lead to identical interspike-interval
(ISI) distributions (Teich et al., 1990). The observed deviations
from strictly exponential ISI distributions are therefore com-
monly attributed to the refractoriness of AN fibers. By the same
rationale, the slow recovery (over tens of milliseconds) of the
discharge probability with time since the last spike (Gray, 1967;
Gaumond et al., 1982, 1983; Li and Young, 1993; Johnson, 1996)
has also been attributed to the refractory properties (Kiang et al.,
1965; Gaumond et al., 1983; Young and Barta, 1986; Carney,
1993; Li and Young, 1993; Miller and Wang, 1993; Zhang et al.,
2001). However, direct studies of the refractory properties of AN
fibers by means of electrical stimulation have shown that refrac-
tory periods are very short, �1 or 2 ms (Brown, 1994; Dynes,
1996; Cartee et al., 2000; Miller et al., 2001; Shepherd et al., 2004;
Morsnowski et al., 2006). These data, therefore, question the
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common notion that the excitation of AN fibers is provided by a
Poisson process.

Here, we show that a simple and physiologically plausible
modification of an excitatory Poisson process, in combination
with refractoriness that is consistent with the experimental data,
can fully account for the observed spontaneous ISI distributions.
In addition to providing new insights into the operation of rib-
bon synapses, our model is likely to also promote understanding
of the effects of auditory stimulation on AN fiber spike trains and
of constraints on temporal coding.

Materials and Methods
Five adult cats (three females, two males; weighing 3–3.5 kg) with clean
tympani were used for this study. All surgical and experimental proce-
dures were approved by the Monash University Department of Psychol-
ogy Animal Ethics Committee and were performed in an electrically
shielded, sound-attenuating room.
Surgery. Cats were anesthetized with pentobarbitone sodium (40 mg/kg,
i.p.) and prepared for recordings from the left AN, as described in detail
previously (Heil and Irvine, 1997; Heil and Neubauer, 2001). Anesthesia
was maintained throughout the experiment by intravenous injections of
pentobarbitone, mixed with physiological saline containing 5% glucose.
No further medication was used. The electrocardiogram was continuously
monitored, and rectal temperature was held at �38°C by a thermostatically
controlled DC blanket. A round-window electrode, allowing the compound
action potential to be monitored (Rajan et al., 1991), and a length of fine-
bore polyethylene tubing, allowing static pressure equalization within the
middle ear, were inserted through a small hole in the bulla on the recording
side. The bulla was resealed, and the external meatus cleared of surrounding
tissue and transected to leave only a short meatal stub. On the recording
side, the skull was trephined caudal to the tentorium, the dura was re-
moved, and the cerebellum over the cochlear nucleus was aspirated. The
AN was exposed near its exit from the internal auditory meatus.

Recording procedures. Single AN fibers were recorded with micropi-
pettes or, more often, with glass-insulated tungsten microelectrodes with
impedances of 4 –7 M� at 1 kHz. Signal-to-noise ratios were approxi-
mately equivalent and generally excellent. Under visual control through
an operating microscope, the electrode was advanced in a
dorsoposterior-to-ventroanterior and slightly medial-to-lateral direc-
tion, similar to the approach by Liberman and Kiang (1978), to contact
the nerve as near to its exit from the internal auditory meatus as possible.

Acoustic stimuli were digitally produced (Tucker Davis Technology,
Gainesville, FL) and presented to the cat’s left ear (i.e., ipsilateral to the
AN chosen for recording) via a calibrated sealed sound delivery system
consisting of a STAX SRS-MK3 transducer in a coupler [Sokolich WG
(1981) U.S. Patent Application 4251686, pending]. Noise and tone bursts
were used as search stimuli, because some AN fibers have very low spon-
taneous discharge rates (Liberman and Kiang, 1978) and might have
been missed otherwise. Once a fiber was encountered and well isolated
(i.e., when action potentials were of large signal-to-noise ratio and clearly
from a single fiber only), we determined the characteristic frequency
(CF) of the fiber (the frequency to which a fiber is most sensitive) by
manually varying the stimulus frequency and amplitude. Next, and for
other purposes, up to 200 repetitions of tones with a given frequency (at
CF first), duration, and shape of the pressure envelope (usually 100 ms,
including 4.2 ms cosine-squared rise and fall times) were presented at a
fixed rate (usually 4 Hz), at sound pressure levels (SPLs) increasing from
low (as low as �14 dB SPL) to high values (generally 80 –90 dB SPL, never
exceeding 100 dB SPL) in small steps (most often 4 dB). This protocol
was followed, within �2 s (the time required for storing the previous data
on disc), by recording the spontaneous activity of the fiber over a period
equal to the product of the number of repetitions and the repetition
period used for the tone stimulation. Thus, with 200 repetitions pre-
sented at 4 Hz, spontaneous activity was sampled over a period of 50 s. If
the recording conditions were still stable, another tone stimulus, differ-
ing from the previous one in frequency or temporal envelope, was se-
lected and the protocol repeated. In this way, several long samples of
spontaneous activity were recorded from most fibers, separated by peri-

ods during which responses to tones were recorded. In this paper, only
data on spontaneous activity are presented.

The electrode signal was amplified, filtered, and passed through a
Schmitt trigger. Spike times were taken as the instances at which the
amplified and filtered electrode signal crossed the Schmitt trigger level
and were stored on disc with 1 �s resolution for off-line analysis.

Data analysis. For off-line analysis, spike times were imported into
Excel 2000 (Microsoft, Redmond, CA) spreadsheets. Visual Basic for Appli-
cations routines were developed to compute the more complex measures
and to simulate data, as explained below and in the Results. The Solver of
Excel was used to fit the models to the data using the Newton procedure.

Selection of the periods of stable spontaneous rate within the samples. The
analyses presented here are restricted to periods of sufficiently stable
spontaneous activity. To identify such periods, we proceeded as follows.
We first plotted for each sample of spontaneous activity the cumulative
sum of the ISIs as a function of ISI number in the sequence in which they
were recorded. For a perfectly regular spike train of constant ISI, such a
plot would result in a straight line through the origin with a slope equal to
that ISI. Spike trains with random ISIs but of constant longer-term rate
resulted in random fluctuations of the data points around a straight line
with a slope approximately equal to the mean ISI and with an offset near
zero. Longer-term fluctuations in spike rate become obvious in such
plots as smooth changes in the slope of the function, and the offsets of
straight line fits can deviate substantially from zero. We next performed
straight-line fits to such functions for each sample and computed the
RMS of the residuals for each such fit. We also separated each sample of
spontaneous activity into two subsamples, one covering the first and the
other the second half of the ISIs of the complete sample, and computed
the mean ISI and the associated SD for each subsample. A sample of
spontaneous activity had to fulfill two criteria to be considered stable.
First, the difference between the means of the ISIs during the first half and
the second half of the sample had to be smaller than twice their probable
difference, D, given by D � (SD1

2/n1 � SD2
2/n2) 0.5, where SD1 and SD2

are the SDs from the first and second halves of the sample, respectively,
and n1 and n2 are the corresponding numbers of ISIs. If the total number
of ISIs in the sample was odd, the difference between n1 and n2 was 1;
otherwise, the difference was zero. For n1 and n2 greater than �30, the
means can be expected to be normally distributed, so this criterion has an
error probability of �5%. In other words, �5% of random spike trains
with stable longer-term rate can be expected to not meet this criterion.
Second, the offset of the straight-line fit to the function relating the
cumulative ISI to ISI number had to be smaller than 30 times the RMS
value computed from the fit to all ISIs. If one or both of the two criteria
were not fulfilled by a given sample, the sample was pruned until the
remaining period fulfilled both criteria. If no such period existed, the
entire sample was discarded. Pruning started by discarding the ISIs from
the first to that at which the cumulative function first intersected the
straight-line fit. If necessary, this procedure was repeated iteratively, until
the remaining period fulfilled both criteria. This pruning procedure is
particularly effective in removing possible rate instabilities at the begin-
ning of the sample. All data reported here are from samples or periods of
samples that passed both criteria. Of the 186 samples included in this
study (see Results), 78 (42%) were pruned in this way. On average, 10.5%
of the ISIs were removed by the pruning. It is worth emphasizing that we
arrived at our model and our conclusions (to be described below) based
on analyses of complete (unpruned) samples. The major effects of the
pruning of periods of unstable rate are a reduction in the scatter of data
points around model functions, such as that relating SD to mean ISI
(compare Fig. 10), and a reduction in the widths of the distributions of
estimated parameters.

Model fitting to cumulative distribution functions. For the analyses of ISI
distributions, all ISIs from a given sample, or from the period of a sample
that had passed the rate stability criteria, were sorted by their magnitudes
and plotted as a cumulative distribution function (CDF). For conve-
nience, these functions will be referred to as sample CDFs. To prevent the
sample CDF from reaching 1 and to enable fair comparisons between
sample and theoretical CDFs, a margin correction was used in the calcu-
lation of the sample CDF. To calculate the cumulative probability, Pi, of
a given ISI, we used the formula Pi � i/(n � 1), where i is the rank of the
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ith ISI after sorting them by magnitude, and n is the total number of ISIs
in the sample (Sachs, 2002).

We fitted our models directly to the sample CDFs of the ISIs, rather
than to their probability density functions (PDFs) or even hazard func-
tions (HFs). Our approach has at least two major advantages over ap-
proaches that attempt to fit the latter functions. One is accuracy, because
the computation of a sample CDF does not require binning of data. In
this way, no information is lost and quantization errors are kept to the
unavoidable minimum resulting from the sampling rate with which the
spike times were stored. The other advantage is that even with moderate
numbers of ISIs in a sample, say a few hundred, CDFs are very smooth.
Such sample CDFs, therefore, allow small systematic deviations of the
data from a model to be readily seen. The corresponding PDFs and HFs,
in contrast, are inherently much noisier, because the PDF is the derivative
of the CDF, and the HF the ratio of the PDF and the survival function
(i.e., 1-CDF). To reduce fluctuations in PDFs and HFs requires addi-
tional binning or smoothing operations, which both result in substantial
loss of information. Even after such operations, PDFs and HFs appear
much noisier than the CDFs (compare, for example, the appearances of
CDFs with PDFs and HFs in Figs. 2 and 3). We therefore computed the
latter functions for illustrative purposes only. It is clear, but worth em-
phasizing, that a model that fits a sample CDF must also fit the corre-
sponding PDF and HF, and that a model that does not fit a sample CDF
also does not fit the corresponding PDF or HF, although the mismatch
may be difficult to see with the latter two functions.

To fit a given model to a sample CDF, we minimized a cost function by
means of the adaptive Newton’s method. For each data point, we calcu-
lated the vertical difference (in units of probability) as well as the hori-
zontal difference (in units of time) between the sample CDF and the
model CDF. The cost function was the sum of the products of the squared
vertical differences and the squared horizontal differences, the latter being
weighted with the survival function. The weights were introduced to prevent
an undue bias by the ISIs at the upper end of the distributions in a sample,
because they display the largest scatter along the horizontal axis.

The estimation of model parameters can be problematic when more
than one parameter needs to be estimated simultaneously, as is the case
here: the models to be tested had three or four free parameters, with two
of those characterizing the refractoriness of a fiber and the other(s) the
process providing the excitation to the fiber (see Results). There may be
multiple solutions with similar costs, because parameters might compen-
sate each other. Furthermore, given a particular cost function, the solu-
tion obtained may depend on the starting values to which the model
parameters are set. Therefore, we developed a three-stage procedure spe-
cifically designed to guide the fitting routine in its convergence on the
absolute minimum of the cost function with a reasonable combination of
parameter estimates. From the first to the third stage, one, two (or three
for the four-parameter models), and finally all three (or four) free pa-
rameters were optimized. The free parameter at the first stage was the
time constant of the relative refractory period (RRP) (see Results for
details). One (or two) of the other parameters was held constant, whereas
the value of the last parameter, a scale parameter, was estimated from the
mean ISI by the method-of-moments (Ayyub, 1997). The estimate was
updated with every iterative step of the adaptive Newton procedure using
this method. At the second stage, the time constant of the RRP and the
duration of the absolute refractory period (ARP) (and a third parameter,
depending on the model) were free parameters, whereas the scale param-
eter was again estimated, and continuously updated, from the mean ISI
by the method-of-moments.

The starting values of the parameters characterizing the refractory
function were selected based on existing knowledge. In a first round of
fits, the starting value for the time constant of the RRP was set to 1 ms, a
plausible figure according to the experimental findings described in the
Introduction, and the starting value of the ARP to 90% of the shortest ISI
in the sample. This choice also seemed reasonable given that the ARP, by
its definition, can be expected to be shorter than the shortest ISI in the
sample. The starting value for the scale parameter was calculated by the
methods-of-moments from these values and from the mean ISI of
the sample (see Eqs. 6, 13, and 16). For the four-parameter models, the
starting value of the fourth parameter, which captures the relative pro-

portions of different components in presumed mixtures of distributions,
was set such that the starting conditions were identical to those for the
three-parameter model [i.e., the starting values were a � 1 and b � 0 (for
models Ib and II, respectively; see Results)]. For each model, we also
performed a second round of fits in which we used as the starting value
for one parameter the median across all fitted samples obtained from the
initial round. For the three-parameter model, this was the time constant
of the RRP, and for the four-parameter models, the parameter specifying
the proportions in the mixture (i.e., a or b). Both rounds produced identical
results for all, or nearly all, samples, emphasizing the reliability of the fitting
procedure. These observations render it unlikely that even better solutions
might have been obtained for some samples with other starting conditions,
although we cannot exclude this possibility for all samples.

Evaluations of the goodness-of-fit of the different models were based
on the vertical differences between the sample CDF and the model CDF
(the presumed population CDF). We used the sum of the squared vertical
differences as well as the maximum absolute vertical difference between
sample and model CDF as key measures, because they are the basis of
quadratic class statistics, such as those of the Cramér-von Mises family
and of supremum class statistics, respectively (Stephens, 1986). The
goodness-of-fit of a given model was further quantified by the vertical
differences between sample and model CDFs to the cumulative proba-
bility averaged across all samples. The randomness-of-fit was assessed
based on the shape and amplitude of this function. To allow for averag-
ing, the vertical differences between sample and model CDF were calcu-
lated for 10,000 probability values equally spaced between 0 and 1 by
linear interpolation between the observed differences as a function of the
empirical cumulative probability for each sample. In this way, the differ-
ences are obtained at equal probabilities in different samples of sponta-
neous activity. Each difference was weighted by the square root of the
number of ISIs in the sample to normalize for the fact that the magnitude
of the maximum difference between a sample and a model CDF is nearly
proportional to the inverse of the square root of that number (Sachs,
2002). These differences were then averaged across samples at identical
probability values and divided by the mean of the square roots of the
number of ISIs in the sample. These mean residuals and their associated
SEs (SEM) were plotted as functions of the empirical cumulative proba-
bility for each of the models.

The meaningfulness and the reliability of the parameter estimates ob-
tained with this fitting procedure were controlled using extensive simu-
lations for one of the models, as explained in the Results. The fits of these
sets of simulated random data (�30,000 samples in total, with numbers
of ISIs between 401 and 3411 to mimic the real data) returned parameter
estimates close to the parameter values used to generate the data. The
medians of the returned estimates differed from these values by 2.4%
(�0.3) for the ARP, �7.2% (�0.7) for the time constant of the RRP, and
�5.7% (�0.3) for the parameter specifying proportions. The evaluation
of the estimates was complemented by direct comparisons of empirical
values of mean ISI, SD, and coefficient of variation (CV) with those
calculated from the parameter estimates returned by the fits (see Fig. 7).
The parameter estimates were further controlled by applying the fitting pro-
cedure to theoretical CDFs. Theoretical CDFs were not generated as random
samples but were computed from the inverse model CDF for equally spaced
probabilities. These fits showed that our procedure was capable of precisely
retrieving the model parameters in this condition. The medians of the pa-
rameter estimates obtained from the fits to 186 theoretical CDFs, computed
with various numbers of points to mimic the real data, differed from the
parameters used to generate the CDFs by �0.03%.

Results
Database
Spontaneous activity was recorded from 171 AN fibers from five
cats. From each fiber, we obtained between 1 and 18 samples of
spontaneous activity, yielding a total of 461 samples, each lasting
between 12.5 and 135 s. The mean spontaneous discharge rates
(mean SR) of the fibers (averaged across all unpruned samples
from a given fiber) ranged from �0.1 to �100 Hz, covering the
wide range of spontaneous rates reported in the cat and other
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species (Kiang et al., 1965; Walsh et al.,
1972; Liberman and Kiang, 1978; Müller
and Robertson, 1991; Relkin and Doucet,
1991; Yates, 1991; Gleich and Wilson,
1993; Richter et al., 1995; Köppl and Yates,
1999; Yates et al., 2000; Taberner and
Liberman, 2005). The distribution of SRs
was bimodal, with one maximum at �1
Hz (low-SR fibers) and the other at
�40 – 80 Hz (high-SR fibers), in agree-
ment with previous reports for the cat (Ki-
ang et al., 1965; Liberman, 1978; Joris and
Yin, 1992). The distribution of SRs was in-
dependent of CF, except that our sample
was devoid of low-SR fibers with CFs be-
low �1 kHz. The CFs of the fibers in our
sample ranged from �0.3– 40 kHz. The
progressions of CF with depth of the elec-
trode tip from the surface of the nerve were
similar to those observed previously
[Liberman and Kiang (1978), their Fig.
4A–E]. Together, these observations indi-
cate that we sampled fibers from most ar-
eas of the auditory nerve (although not
necessarily in each cat).

General framework of the models
and nomenclature
The goal of the present study is to provide
a physiological, yet simple, model that ac-
curately describes the distributions of ISIs
derived from the spontaneous activity of
AN fibers. Therefore, we take the most
common existing model as a starting
point. We first show its inadequacy and
then develop, via a variant of this model,
another model that describes the observed
ISI distributions very well and with physi-
ologically plausible values of a minimum
number of parameters (four). Hence, the
basic constituents of the models that are
examined here are essentially the same as
those used in nearly all previous accounts
of AN fiber spontaneous (and driven) ac-
tivity. The models assume that excitation
to a fiber is provided by a stochastic point
process so that excitatory events occur at
random times. An excitatory event can be
thought of as the release of a package of neurotransmitter from
the ribbon synapse in the IHC. Each excitatory event results in a
spike unless that fiber is in a refractory state. The refractory state
is characterized by an ARP, during which the probability of a
spike resulting from an excitatory event is zero, followed by a
RRP, during which the probability of a spike resulting from an
excitatory event increases monotonically toward 1. The fiber en-
ters a refractory state after each spike, and the refractory memory
extends back in time only to the last spike. Furthermore, excita-
tory events and refractoriness are independent. In other words,
the refractory state of the fiber has no influence on release from
the IHC. Although these are characteristic features of a renewal
process, the analysis of ISI distributions is also meaningful if the
processes were nonrenewal. For example, Teich et al. (1990)
modeled longer-term rate fluctuations in long records of sponta-

neous activity as resulting from a fractal doubly stochastic Pois-
son point process. Such a process is not a renewal process, be-
cause the interevent intervals are no longer statistically
independent. But the model produces the same distribution of
interspike intervals as a dead-time modified homogeneous Pois-
son point process (Teich et al., 1990). In the following, the inter-
val between two consecutive excitatory events will be referred to
as an interevent interval (IEI). This is to be distinguished from the
(observed) interval between two consecutive spikes, the ISI. The
three specific variants of this general framework, to be described
in more detail below, are schematically illustrated in Figure 1.

We will first introduce the specifics of the models and describe
the results obtained with them qualitatively. The models will then
be compared quantitatively, and the parameters extracted from
the ultimate model will finally be examined in detail.

Figure 1. Some characteristic features of the models for the distribution of ISIs examined here. Models Ia and Ib assume that
the distribution of the IEIs is exponential; model II assumes that it is a mixture of an exponential and a gamma distribution. The
scaling factor, �E, the shape factor (�), the PDF, the HF, and the mean IEI for each model are shown in the top block (excitation).
Note that the PDF, with probability density plotted along a logarithmic axis, is curved, and the HF is monotonically rising when the
distribution of IEIs is gamma (� � 2) or when it is a mixture of an exponential (� � 1) and a gamma distribution (center line in
the two panels at right), whereas the PDF forms a straight line and the HF is constant when the distribution is exponential (� �
1). Each excitatory event is thought to result in a spike of the afferent fiber unless the fiber is refractory. The refractory functions of
the three models are shown in the center block (refractoriness). The bottom row identifies the mean ISI of each model (output).
See Results for additional explanations.
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Model I: the IEIs are distributed exponentially
Model I makes the assumption that the excitatory events are gen-
erated by a homogeneous Poisson process. This means that the
probability of an event occurring at time t (t � 0), given that the
last event occurred at t � 0, is constant and thus independent of
the time elapsed since the last release event. This assumption is in
accord with a large number of previous studies of AN fiber activ-
ity (Kiang et al., 1965; Molnar and Pfeiffer, 1968; Schroeder and
Hall, 1974; Manley and Robertson, 1976; Lütkenhöner et al.,
1980; Geisler, 1981, 1998; Geisler et al., 1985; Javel, 1986; Young
and Barta, 1986; Bi, 1989; Carney, 1993; Li and Young, 1993;
Miller and Wang, 1993; Schmich and Miller, 1997; Zhang et al.,
2001; Krishna, 2002; Kuhlmann et al., 2002) (for review, see Del-
gutte, 1996; Mountain and Hubbard, 1996). The CDF of the IEIs
is then given by the exponential distribution as follows:

FIEI	t
 � 1 � e��Et, (1)

where t (in seconds) denotes the duration of the IEIs and �E (in
s�1) is the scaling factor. The PDF and the HF, in this case the
constant rate �E, of the IEIs are shown in Figure 1. The mean IEI,
1/�E, is also specified there.

Variant a
In a first variant of this model (model Ia), we assume that the
refractory state is composed of an ARP of duration tD, followed
by an RRP, during which the probability r(t) of a spike occurring
given an excitatory event increases exponentially from 0 to 1 with
time since the previous spike, with a time constant 1/�R, so that:

r	t
 � 1 � e��R	t�tD
 fort � tD

r	t
 � 0 fort � tD, (2)

where t is the time since the previous spike. Hence, the refractory
period has a random, exponential distribution with a mean du-
ration of (tD � 1/�R). This refractory function has been imple-
mented in many previous modeling studies (Schroeder and Hall,
1974; Lütkenhöner et al., 1980; Young and Barta, 1986; Li and
Young, 1993; Prijs et al., 1993; Schoonhoven et al., 1997; Meddis
and O’Mard, 2005; Meddis, 2006), and its shape is in excellent
agreement with recent physiological data (Brown, 1994; Miller et
al., 2001; Morsnowski et al., 2006); it is also illustrated in Figure 1.

In this scenario, the ISIs should be distributed according to a
general-gamma distribution (Young and Barta, 1986; Li and
Young, 1993; Lehmann, 2002), the CDF of which is given by the
following:

FISI	t
 � 1 �
	�E � e��R�	t�tD
 � �R � e��E�	t�tD



	�E � �R

fort 	 tD

FISI	t
 � 0 fort 
 tD .

(3)

The PDF of this general-gamma distribution is given by the
following:

fISI	t
 �
�E � �R

	�E � �R

� 	e��R�	t�tD
 � e��E�	t�tD

 fort 	 tD

fISI	t
 � 0 fort 
 tD .

(4)

Generally, the HF (Gray, 1967) is the ratio of the PDF and the
survival function (1�CDF), so that:

hISI	t
 �
fISI	t


1 � FISI	t

. (5)

Thus, the HF for this model is easily computed with Equation 5,
with FISI(t) and fISI(t) given by Equations 3 and 4, respectively.
The HF describes the tendency for some event to occur at time t
(t � 0, given that the last event occurred at t � 0) and is the
probability density at time t renormalized by the probability that
the event failed to occur before t.

According to this model, the mean ISI is the sum of three
components, the ARP, the mean duration or time constant of the
RRP, and the mean IEI or time constant of the presumed Poisson
process generating the excitation (Fig. 1), so that:

�ISI � tD � 1/�R � 1/�E.. (6)

Generally, the variance of the ISI distribution is given by the
following:

�ISI
2 ��

tD

�

	t � �
ISI


2 � fISI	t
dt. (7)

For model Ia, fISI(t) is given by Equation 4 and �ISI by Equation 6,
so that the SD of the ISIs takes on the simple form:

�ISI � �1/�R
2 � 1/�E

2, (8)

(Young and Barta, 1986) or, when expressed as a function of the
mean (Li and Young, 1993):

�ISI � �	�ISI � tD
2 � 2/�R � 	�ISI � tD
 � 2 � 	1/�R
2. (9)

Note that if tD and �R are constant, �ISI approaches (tD � 1/�R)
and �ISI approaches 1/�R, as �E approaches infinity. Thus, �ISI

decreases monotonically with decreasing �ISI. An increase in �ISI

with decreasing �ISI below (tD � 1/�R) [Li and Young (1993),
their Fig. 3a] cannot occur in reality, because �ISI cannot be
shorter than (tD � 1/�R), because �E cannot be negative.

Probing model Ia
We evaluated whether and how well this model can account for
the ISI distributions of AN fibers by fitting Equation 3 to the
sample CDFs, as described in Materials and Methods, and then
examining the quality of the fits. Because the difference between a
sample CDF and the population CDF decreases to zero with
probability 1 as n increases (the Glivenko–Cantelli theorem of
probability theory), we restricted the fits to samples of stable
spontaneous activity containing at least 400 spikes (n � 186).
When �R � �E, the denominator in Equation 3 is zero, so that the
ratio is undefined. Although this was unlikely to happen, �R was
constrained to �0.99 �E to ensure a stable fitting procedure. In
addition, �R and �E were constrained to values �0, whereas pa-
rameter tD was unconstrained.

Figures 2 and 3 (left column) show the results of this fit of
model Ia for two representative high-SR fibers (AN2001– 6-
12– 02 and AN2001–7-08 – 01). At first sight and from an over-
view perspective (Figs. 2a, 3a), the model appears to provide a
reasonably good description of the data; sample and model CDFs
appear to correspond closely over most of the ISI ranges, because
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the vertical residuals (data minus fit) are
all �0.02 (Figs. 2b, 3b). A closer look, how-
ever, reveals systematic mismatches. The
residuals show an M-shape pattern as a
function of ISI. Consequently, the model
overestimates the proportion of short ISIs,
below �2 ms in these and many other ex-
amples (Figs. 2a, 3a, left subsets), whereas
it underestimates the proportion of rela-
tively long ISIs (Figs. 2a, 3a, right subsets).
This mismatch is a clear indication that the
model does not correctly describe the dis-
tribution of spontaneous ISIs of AN fibers.

The mismatch is, of course, also seen in
the PDFs and HFs. When the probability
density is plotted on a logarithmic axis, the
PDFs resulting from the fits fall off linearly
with increasing ISI above ISIs of a few mil-
liseconds. Scrutiny of the sample PDFs,
however, reveals that the fall-offs are su-
pralinear (Figs. 2c, 3c), a phenomenon also
clearly observable in previously published
data sets and out to the longest ISIs shown
[Kiang et al. (1965), their Fig. 8.6; Molnar
and Pfeiffer (1968), their Fig. 2; Manley
and Robertson (1976), their Figs. 2A, 5A,
6A; Lowen and Teich (1992), their Fig. 1;
Li and Young (1993), their Fig. 4h]. Simi-
larly, the HFs of this model level off after a
few milliseconds, whereas the sample HFs
continue to increase out to tens of millisec-
onds and possibly beyond (Figs. 2d, 3d).
The latter phenomenon has been reported
widely in the literature (Gray, 1967; Gau-
mond et al., 1982, 1983; Young and Barta,
1986; Li and Young, 1993; Prijs et al., 1993;
Johnson, 1996), and the failure of the
model to capture this phenomenon has al-
ready been pointed out by Young and
Barta (1986) and Li and Young (1993).

Additional indications that the model
may not be correct are provided by the es-
timates of ARP and the RRP returned by
the fits. The estimates of the ARP appeared
too short, and in most cases were even neg-
ative (mean tD across the 186 estimates,
�0.041 ms; median, �0.001 ms). The es-
timates of the RRP (mean 1/�R, 2.77 ms;
median, 2.45 ms), in contrast, appeared
too long in light of the results of direct
measurements after electrical stimulation
of the AN, which indicate values in the
range of 0.2–1.5 ms (Parkins, 1989;
Brown, 1994; Dynes, 1996; Cartee et al.,
2000; Miller et al., 2001; Shepherd et al.,
2004; Morsnowski et al., 2006). Such long
estimates of the RRP are also incompatible
with the ability of AN fibers to follow high rates of electrical
stimulation with 1 spike per pulse, up to at least 800/s (Javel and
Shepherd, 2000), which requires the mean refractory period to be
�1.25 ms. Thus, in summary, based on the qualitative observa-
tions described above, it appears that model Ia does not accu-
rately describe the distributions of ISIs from the spontaneous

activity of AN fibers. Quantitative analyses supporting this con-
clusion are provided below.

Variant b
A conspicuous feature that indicated the inadequacy of model Ia
was the systematic overestimation of the probability of short ISIs

Figure 2. a–l, Fit of models Ia (a– d; left column), Ib (e– h; center column), and II (i–l; right column) to the sample CDF (a, e,
i; top rows), the PDF (c, g, k), and the HF (d, h, l; bottom row). The subset panels in a, e, and i show blow-ups of the main panels,
with the left subset from the bottom left and the right subset from the top right portion of sample and model CDFs. The best-fitting
model functions are shown in gray (smooth curves) and data in black. The parameters of these functions are identified in the top
panels. Sample PDFs and HFs were computed using a running average over 30 ISIs; thus, bin width varies with ISI. The center row
(b, f, j) shows the residual probabilities between sample and model CDF (data minus fit). Data are for AN fiber 2001– 06-12 with
an SR of 65.1 spikes/s and are based on 2802 ISIs, as identified at the top of the figure. See Results for additional explanations.
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in nearly every sample (Figs. 2a, 3a, left subsets). We therefore
considered the possibility that this discrepancy between model
and data might be an artifact of our recording techniques. As
explained in the Materials and Methods, we recorded, as the oc-
currence times of the spikes, the instances at which the (amplified
and filtered) electrode signal crossed the Schmitt trigger level.
One inevitable consequence of this procedure is that the phase at
which a spike crosses the trigger level varies with the spike ampli-
tude. When a spike Sk has a smaller amplitude than its predeces-
sor Sk-1, then Sk will be triggered at a later phase than Sk-1, and the
interval between the stored times of Sk and Sk-1 will slightly over-

estimate their actual interval [i.e., that be-
tween corresponding phases (provided
spike shape is identical and independent of
ISI)]. This scenario is most likely to occur
at short ISIs, when the peak amplitude of
Sk is reduced as a consequence of the re-
fractory properties of the fiber and/or as a
consequence of contamination by the af-
terpotential of Sk-1. Gaumond et al.
(1982), who demonstrated these effects,
estimated that they would prolong the es-
timated ISIs by �100 �s. A second conse-
quence of the combination of these physi-
ological properties with our recording
technique, at least theoretically, could be
that spikes of very small amplitude remain
below the trigger level and thus might go
undetected. Because spike amplitude de-
creases with decreasing ISI at short ISIs
[Gaumond et al. (1982), their Fig. 14; Sie-
gel (1992), Fig. 5; Shepherd et al. (2004),
their Fig. 9], a failure to detect very small
spikes could lead to an underestimation of
the probability of short ISIs. The probabil-
ities are estimated correctly, or nearly so,
when the spikes are of large enough ampli-
tude to cross the trigger level.

This possible scenario can be approxi-
mated by a modified refractory function
(Fig. 1, model Ib) where the probability
r(t) of a spike resulting from an excitatory
event is zero during the ARP, but where it
then jumps instantaneously to a value
(1�a) greater than zero, from which it
then rises exponentially to 1 with time
since the previous spike, with a time con-
stant 1/�R, so that:

r	t
 � 1 � a � e��R	t�tD
 fort � tD

r	t
 � 0 fort � tD,

(10)

where t is the time since the previous spike.
A closely related function has been used by
Bruce et al. (1999b) and Litvak et al. (2003)
to model the recovery of the spiking
threshold of AN fibers. The output of a
cascade of a Poisson process of intensity �E

(Eq. 1) and this modified refractory func-
tion (Eq. 10) is a mixture of a general-
gamma distribution, as before, and a dead-
time modified exponential distribution,

with fractions of a and (1 � a), respectively. Its CDF is therefore
given by the following:

FISI	t
 � a � �1 �
	�E � e��R�	t�tD
 � �R � e��E�	t�tD



	�E � �R
 � �

	1 � a
 � 	1 � e��E�	t�tD



fort 	 tD

FISI	t
 � 0 fort 
 tD
, (11)

Figure 3. a–l, Same as in Figure 2, but for a different AN fiber (2001– 07-08) from a different cat. Note that for the best fit of
model Ib, returned identical values of 1/�R and 1/�E (within the constraints set) are shown.
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and its PDF by the following:

fISI	t
 � a � � �E � �R

	�E � �R

� 	e��R�	t�tD
 � e��E�	t�tD

� �

	1 � a
 � �E � e��E�	t�tD


fort 	 tD

fISI	t
 � 0 fort 
 tD
(12)

The HF is again computed with Equation 5, with FISI(t) and fISI(t)
now given by Equations 11 and 12. Consequently, the mean ISI is:

�ISI � a � 	tD � 1/�R � 1/�E
 � 	1 � a
 � 	tD � 1/�E


� tD � a/�R � 1/�E. (13)

The variance is again given by Equation 7, with fISI(t) given by
Equation 12 and �ISI by Equation 13.

This variant of model I (model Ib) thus has four covert pa-
rameters, one more than the previously examined variant (model
Ia), a. For a � 0, it is identical to a simple exponential distribution
with intensity �E and a constant dead time tD, and for a � 1, it is
identical to model Ia.

Probing model Ib
We fitted model Ib (Eq. 11) to the empirical CDFs of the 186
samples of stable spontaneous activity containing at least 400
spikes. Parameters �R and �E were constrained as above. Param-
eter a was constrained to values between 0 and 1, whereas tD was
unconstrained.

In all 186 cases, the fits of model Ib were better than, or at least
equal to, those of model Ia. Figures 2e and 3e show the results of
this fit for the same high-SR fibers as before. The fits of model Ib
to the sample CDFs were substantially better (the vertical resid-
uals were clearly smaller) than those of model Ia where a was
fixed at 1 (Figs. 2, 3, compare f and b). Nevertheless, a closer look
at the CDFs still reveals systematic mismatches between data and
model, particularly at short ISIs. In contrast to model Ia, model Ib
tends to underestimate the proportion of short ISIs, below �2 ms
in the samples illustrated in Figures 2 and 3 (Figs. 2e, 3e, left
subsets) and in most other samples. Consequently, the very short
ISIs in most samples are not explained by model Ib. Furthermore,
the estimates of the time constant of the RRP are mostly well
outside the physiologically plausible range (mean � SD of 1/�R,
8.15 � 5.40 ms; median, 7.05 ms; interquartile range, 4.34 –10.68
ms) (Fig. 4). Also, estimates of (1�a), which according to the
model should essentially indicate the proportion of spikes that
would have gone undetected because of their small amplitude,
were incredibly high, �50% [mean � SD of (1�a), 0.48 � 0.18;
median, 0.51; interquartile range, 0.42– 0.58] (data not shown).
The signal-to-noise ratio in our recordings was excellent, and it
was clear during recording that nothing like this proportion of
spikes was undetected.

The most striking, but heuristic, outcome of the fits of model
Ib was the fact that in 45% of the cases (83 of 186), the estimates
of �R and �E were identical (within the constraints set). This is
reflected in the density of data points falling onto or very close to
the diagonal in the plot of 1/�R against 1/�E (Fig. 4). Thus, in
essence, the number of parameters is reduced to three in these
cases. The sample shown in Figure 3 is one such example. Never-
theless, even in these cases, the fits were much better than with
model Ia (Fig. 3, compare f and b; Fig. 5d). This observation
suggests that in these cases, but possibly also in others, 1/�R

should no longer be interpreted as the time constant of the RRP.
Instead, a very different interpretation is unavoidable, which is
developed below, and leads to model II.

Model II: the distribution of IEIs is a mixture of an
exponential and a gamma distribution with shape factor 2
After equating �R with �E, the right side of Equation 13, the
formula to derive the mean ISI with model Ib simplifies to (tD �
a/�E � 1/�E). This term can be rewritten as [tD � (1�a)�1/�E �
a�2/�E). This reformulation reveals that the mean ISI can also be
interpreted to result from a mixture of two distributions of IEIs
modified by an ARP of duration tD. One distribution in the mix-
ture occurs with a fraction of (1�a) and is exponential, with
scaling factor �E, as before. The other distribution in the mixture
occurs with a fraction of a and is a gamma distribution of shape
factor � � 2, but importantly with the same scaling factor as the
exponential distribution, so that the mean IEI of the gamma dis-
tributed IEIs is 2/�E.

Based on this interpretation, we developed model II, which
makes the assumption that the distribution of IEIs is a mixture of
an exponential distribution and a gamma distribution with shape
factor � � 2. Both components have the same scaling factor, �E.
Their relative proportions in the mixture will be denoted as
(1�b) and b, respectively, to avoid confusion with model Ib. This
mixture can be easily conceived of as emerging from a primary
homogeneous Poisson point process with rate �E. What is re-
quired is that some of these primary events are removed by a
subsequent process or simply fail to trigger secondary events fur-
ther down a cascade of precursor steps that might be required to
produce the ultimate excitatory events. If every other event gen-
erated by the primary Poisson process is removed, the intervals
between the remaining events have a gamma distribution with
shape factor � � 2 and scaling factor �E (Cox, 1962; Stein, 1965;
Koch, 1999). If this happens only intermittently, the distribution
of remaining events will be a mixture of a gamma distribution
with � � 2 and an exponential distribution of common scaling
factor. Equivalently, primary events can be removed from the

Figure 4. Plot of the estimates of 1/�R against 1/�E obtained from the fits of model Ib. Note
that in a large fraction of cases (83 of 186; 45%), the two estimates are essentially identical
(symbols on or very close to the dashed line, which represents that condition).
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exponential distribution, if the following simple rule is obeyed:
never remove two or more consecutive events.

Figure 1 (model II) illustrates the PDFs and the HFs of a
gamma distribution with shape factor � � 2 and scaling factor �E

of an exponential distribution (which is the same as a gamma
distribution with shape factor � � 1 with the same scaling factor
and of a mixture of the two with fractions of b and (1�b), respec-
tively. Note that the gamma distribution with shape factor � � 2,
and consequently also the mixture of distributions, have PDFs,
with fall-offs that are supralinear. Their HFs rise monotonically,
from 0 (for the gamma distribution) and from (1�b) �E for the

mixture, and continue to rise notably to-
ward �E, to rather long IEIs, of several
times 1/�E.

We assume the same refractory func-
tion (Eq. 2) as in model Ia, because its
shape agrees with direct measurements
(see above). Therefore, the number of pa-
rameters in model II is the same as in
model Ib (4), but one of the parameters
has very different meanings in the two
models (Fig. 1). The CDF of model II is
given by the following:

FISI	t
 � 1 �
1

	�E � �R

� �	�Ee��R�	t�tD


� �Re��E�	t�tD

 � �1 � b �
b�E

	�E � �R
�
� b�E�Re��E�	t�tD
 � �t � tD �

1

�E
��

for t 	 tD

FISI	t
 � 0 fort 
 tD . (14)

Accordingly, the PDF is given by the
following:

fISI	t
 �
�E � �R

	�E � �R

� �	e��R�	t�tD


� e��E�	t�tD

 � �1 � b �
b�E

	�E � �R
�
� b	t � tD
�Ee��E�	t�tD
�

fort 	 tD

fISI	t
 � 0 fort 
 tD
. (15)

The HF is again computed with Equation
5, with FISI(t) and fISI(t) now given by
Equations 14 and 15. The mean ISI is given
by the following:

�ISI � 	1 � b
 � 	tD � 1/�R � 1/�E
 � b

� 	tD � 1/�R � 2/�E


� tD � 1/�R � 	1 � b
/�E. (16)

The variance is again given by Equation 7,
with fISI(t) given by Equation 15 and �ISI

by Equation 16. It is easy to see that for b �
0, model II is identical with model Ia.

Note that according to model II, the slow monotonic rise of
the hazard function over at least several tens of milliseconds (Figs.
2, 3) (Gray, 1967; Gaumond et al., 1982, 1983; Li and Young,
1993) [Prijs et al. (1993), their Fig. 7] originates from the fraction
of gamma-distributed IEIs of the stochastic process providing the
excitation (Fig. 1, right column). The refractory properties of the
AN fiber, if brief, only contribute to shaping the initial rapid rise
of the hazard function. With the assumption of a Poisson process
providing the excitation, the slow rise of the hazard function
would have to be attributed to the refractory properties of AN

Figure 5. Quantitative comparisons of the models. a– c, Histograms showing various measures of goodness-of-fit of the three
different models as indicated below each column. The right column shows the measures for a simplified version of model II, which
has only three parameters. a, The measure of goodness-of-fit is the sum of the squared vertical differences between a given
sample CDF and the model CDF; in b, it is the maximum vertical difference; and in c, it is the cost function that was minimized
during the fitting procedure. For each sample, the measures for models Ib and II have been normalized with respect to those for
model Ia. The vertical bars represent the median and the vertical lines represent the interquartile range; the thick horizontal bars
represent the medians of the measures obtained from the top 19 of the 186 samples when ranked according to number of ISIs. d,
Plot of the costs of model Ib normalized to those of model Ia and plotted against the ratio of the estimates of �E and �R. The two
larger symbols represent the medians, and the horizontal and vertical bars represent the interquartile ranges of the two subgroups
of samples for which the estimates of �E and �R are nearly identical (triangle) or for which they differ substantially (square). e,
Plot, along the abscissa, of the ratio of the costs of a simplified three-parameter version of model II to the costs of model Ia against,
along the ordinate, the ratio of the costs of the full four-parameter version of model II to the costs of model Ia. The ratio between
the three-parameter models is smaller than 1, indicating a better fit of the simplified model II, in 137 of 186 samples (data points
left of vertical dashed line), a highly significant proportion (
 2 � 21.99; p � 0.0001). The addition of the fourth parameter to
obtain the full version of model II brings about further, although relatively small, improvements (distance of data points from
diagonal). See Results for additional explanations.
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fibers (Kiang et al., 1965; Gaumond et al., 1983; Young and Barta,
1986; Carney, 1993; Li and Young, 1993; Miller and Wang, 1993;
Zhang et al., 2001) and modeled, for example, by a second, very
long, time constant for the recovery process during the RRP (Car-
ney, 1993; Miller and Wang, 1993; Zhang et al., 2001). Such re-
fractory properties, however, are not supported by the direct
measurements (Brown, 1994; Dynes, 1996; Cartee et al., 2000;
Miller et al., 2001; Shepherd et al., 2004; Morsnowski et al., 2006).

Probing model II
We fitted model II (Eq. 14) to the empirical CDFs of the 186
samples of stable spontaneous activity containing at least 400
spikes. Parameters �R and �E were constrained as above. Param-
eter b was constrained to values between 0 and 1, whereas tD was
unconstrained.

Figures 2i and 3i show the results of this fit for the same
high-SR fibers as before. As can be seen from an inspection of
these panels, model II provided excellent fits to the CDFs over
their entire extents. Unlike with models Ia and Ib, we found no
evidence for systematic deviations of model II from the data
(Figs. 2j, 3j) (see below). Even the very short ISIs were captured
extremely well (Figs. 2i, 3i, subsets).

Model II therefore also fitted the PDFs and the HFs very
nicely. In particular, and unlike model Ia, model II captures well
the supralinear fall-offs of the PDFs for long ISIs (Figs. 2k, 3k). It
also captures well the monotonic increase of the HFs, which is
initially steep and then shallow and continues out to the longest
ISIs recorded (Figs. 2l, 3l). The parameters estimated by this
model will therefore be scrutinized more carefully than for the
other models. This will be done further below. First, we compare
the three models more quantitatively.

Quantitative comparisons of the models
Goodness-of-fit
Figure 5a– c show histograms allowing a gross comparison of the
relative goodness-of-fit of the three different models across the
186 samples of stable spontaneous activity. In Figure 5a, the mea-
sure of goodness-of-fit is the sum of the squared vertical differ-
ences between a given sample CDF and the model CDF; in b, it is
the maximum vertical difference; and in c, it is the cost function
minimized during the fitting procedure (see Materials and Meth-
ods). For each sample, the measures for models Ib and II have
been normalized with respect to those for model Ia. The vertical
bars represent the median, and the vertical lines represent the
interquartile range. It can be seen that for all three measures of
goodness-of-fit, there is a considerable improvement with model
Ib relative to Ia and a further, although slight, improvement with
model II. The improvement is most pronounced for the cost
function (a factor of �4), followed by the sum of the squared
vertical differences (a factor of �2) and the maximum difference
(a factor of �1.3). The finding that the improvement for the cost
function is approximately twice that of the sum of the squared
vertical differences results from the facts that the cost function
contains that sum as one of two factors and that the other factor,
the weighted sum of the squared horizontal differences, was
closely correlated with that of the vertical differences (data not
shown). The improvements in the measures of goodness-of-fit
with model Ib and II relative to Ia are even more pronounced
when the comparisons are restricted to the top 10% (n � 19) of
samples with respect to the number of ISIs (not with respect to
goodness-of-fit), where the fits can be considered most reliable.
The medians for this subgroup are represented by thick horizon-
tal lines in Figure 5a– c.

Importantly, the considerable improvements in goodness-of-
fit with model Ib and model II relative to model Ia are not attrib-
utable to the fact that models Ib and II have four free parameters,
whereas model Ia has only three. Instead, they are caused by a
change in the meaning of parameters. This fact is established by
Figure 5, d and e. Figure 5d plots the costs of model Ib normalized
to those of Ia against the ratio of the estimates of �E and �R. When
the latter two estimates are identical (within the constraints set
for the fitting procedure), so that their ratio is (close to) 1, model
Ib has essentially only three parameters, just as model Ia. Never-
theless, the improvements relative to model Ia in these 83 cases
are considerable; they are even more pronounced than in the 103
cases in which the estimates of �E and �R differ (Fig. 5d, open
triangle and square, which represent the medians across these two
subgroups). As discussed above, the fact that an optimal solution
of model Ib is frequently obtained with identical �E and �R sug-
gests that 1/�R should not be interpreted as an RRP. Instead, that
solution would be better interpreted as indicating a mixture of an
exponential and a gamma distribution of IEIs, both of intensity
�E � �R, modified by an ARP. In essence, this constitutes a sim-
plified version of model II, one without an RRP and thus with
only three parameters, just as with model Ia. To further empha-
size the point that it is the change in model rather than the addi-
tion of another free parameter, which leads to an improvement in
the goodness-of-fit, we fitted all 186 samples with this simplified
version of model II. Figure 5e plots, along the abscissa, the ratio of
the costs of this simplified three-parameter version of model II to
the costs of model Ia. It can be seen that the ratio is smaller than
1, indicating a better fit of the simplified model II, in 137 of 186
samples (data points left of vertical dashed line), a highly signif-
icant proportion (
 2 test, 
 2 � 21.99; p � 0.0001) (Sachs, 2002).
The median and interquartile range of this ratio is also plotted in
Figure 5c and for the other two measures of goodness-of-fit in
Figure 5, a and b [right column labeled II(3)]. These panels
clearly show the substantial improvements in the goodness-of-
fits achieved by replacing the time constant of the RRP, parame-
ter 1/�R in model Ia, with a proportion of gamma-distributed
IEIs, parameter b, in the simplified model II. This improvement
results, if the idea of a proportion of gamma-distributed IEIs is
correct, because b can influence short and long ISIs, whereas 1/�R

exerts a noticeable influence mainly on short ISIs only. The ad-
dition of 1/�R as a fourth free parameter in the full version of
model II leads to further improvements in most cases (Fig. 5e)
(data points falling below the diagonal), but overall the added
improvement is much less than the improvement achieved with
the change in parameter meaning (Fig. 5a– c, compare differences
in the heights between the two right-most bars with those be-
tween the left-most and the right-most bars).

The goodness-of-fit of the three models was further quantified
by the mean vertical differences between sample and model CDFs
averaged across all samples (see Materials and Methods). This
averaging reduces the noise and randomness in the individual
samples and emphasizes any systematic differences between
model and sample CDFs. Figure 6a– c show these functions, as
well as those for �2 SEM (confidence functions), for model Ia,
Ib, and II. For model Ib, the sum of the squared vertical differ-
ences of the mean residuals is 8.7%, and for model II, the sum is
only 3.5% of that for model Ia. The latter percentage corresponds
to an improvement in this measure of the goodness-of-fit by a
factor of �30 relative to model Ia. Because of the noise-reducing
effect of averaging, this factor is much larger than the factor of
two derived from the median improvement across the individual
samples (compare Fig. 5a).
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Randomness-of-fit
The randomness of the fit of a given model
was examined based on the shape of the
functions relating the mean vertical differ-
ences between sample and model CDFs to
the cumulative probability (Fig. 6a– c). For
model Ia (Fig. 6a), the mean residuals
show a pronounced M-shape pattern, just
as would be expected from the M-shape
pattern relating the residual probabilities
to ISI in individual samples (compare Figs.
2b, 3b). The function for the mean residu-
als is much smoother, of course, because
the effects of randomness and noise in in-
dividual samples have primarily averaged
out so that the systematic differences be-
tween data and model dominate the func-
tion. The mean function exceeds the con-
fidence interval considerably and does so
nearly everywhere except near the three
points at which it crosses the baseline (at
probabilities of �0.06, 0.34, and 0.74).
Note that at these points, the confidence
interval is conspicuously narrow (Fig. 6,
arrowheads), indicating that the baseline
transitions of the residuals occur at similar
probabilities in all individual samples.

For model Ib (Fig. 6b), the mean resid-
uals are much smaller than for model Ia
(see above) but nevertheless frequently ex-
ceed the associated confidence interval
(Fig. 6b). The positive peak of the mean
residual function at low probabilities re-
flects the fact that model Ib underesti-
mates the proportion of short ISIs (com-
pare Figs. 2e,f and 3e,f).

For model II (Fig. 6c), the mean resid-
uals are much smaller still, and the mean
residual function is primarily contained
within the confidence interval, although
some possibly systematic differences from
zero remain. In particular, at the very low
probabilities, the function exhibits a sharp
negative peak and exceeds the confidence
interval considerably (Fig. 6c, leftward
pointing arrowhead and inset), a feature
with a significance that will be discussed
below in light of the results obtained with
simulations.

Prediction of mean ISI, SD, and coefficient
of variation
The parameters returned by the fits of the
three models can be used to calculate esti-
mates of, or predictions for, the mean ISI,
the SD, and the CV (the ratio between the
SD and the mean ISI) of a given sample.
The predictions for the mean ISI are de-
rived by equations 6, 13, and 16 for models
Ia, Ib, and II, respectively, and of SD by
Equation 7. These predictions can then be
compared with the values determined di-
rectly from the empirical data.

Figure 6. Assessments of the goodness- and randomness-of-fit. a– c, Mean and confidence intervals (�2 SEM) of the vertical
differences (residual probability) between the observed probability and that predicted by the best fits of models Ia (a), Ib (b), and
II (c) plotted as a function of the observed probability. Observed probabilities were obtained at 10,000 points, equally spaced along
the abscissa, by linear interpolation, and mean residuals at these points were obtained by averaging the residuals across the 186
samples of stable spontaneous activity. In this way, unsystematic residuals primarily average out, whereas systematic differences
remain. Note the large systematic residuals of model Ia and the much smaller residuals of model II. The goodness-of-fit, as
assessed by the sum of the squared vertical (sqd. vert.) differences, is �30 times better for model II than for Ia, and 2.5 times
better than for Ib. Arrowheads point to conspicuous features of the mean function or of the confidence limits, as explained in the
Results. d–f, Analogous plots obtained from fits of models Ia (d), Ib (e), and II (f ) to 186 simulated data samples generated
according to model II and with fixed values of tD, 1/�R, and b, tD � 0.59 ms, 1/�R � 0.65 ms, and b � 0.43 and with numbers of
ISIs as in the real data. Note the striking similarities with the estimates obtained from the real data. The light gray smooth
M-shaped function in f represents the mean residuals obtained from fits to 162 such simulated sets of 186 samples each. It likely
reflects the residuals inherent in the fitting procedure when confronted with random data. g–i, Differences between the mean
vertical differences in the real data (a– c, black lines) and the procedure-inherent residuals (light gray function in f ) and associated
confidence interval. For model II (i), these corrected residuals are very small and confined within the 95% confidence interval,
except at very low probabilities (inset). See Results for details.
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Figure 7 provides such a comparison.
The top row plots the ratio between the
mean ISI derived from the data and that
predicted from the parameters of the fit
against the sample mean ISI. The second
and third rows show analogous plots for
the SD and the CV. The bottom row plots
the prediction errors for SD against those
for the mean ISI.

The results for model Ia are shown in
the left column of Figure 7. This model
systematically overestimates the mean ISI
and the SD. The prediction errors of mean
ISI and SD are highly correlated (r 2 �
0.941; n � 186), but the slope of a straight-
line fit through the data points is much
larger than 1 (3.38). Consequently, the
model also overestimates the CV; in 159 of
the 186 samples (85%), the CV estimated
by the model was greater than that in the
data, a highly significant proportion (
 2 �
53.44; p � 0.00001). These findings are
strengthened by a separate analysis of the top
10% (n � 19) of samples with respect to the
largest numbers of ISIs, where the fits can be
considered most reliable. For this subgroup,
the median ratios were 0.982 for mean ISI,
0.940 for SD, and 0.957 for CV (Fig. 7a–c,
dotted lines, d, open square).

For model Ib, analogous plots are
shown in the center column of Figure 7. In
comparison with model Ia, the ratios be-
tween the mean ISI derived from the data
and that predicted from the parameters of
the fit, and also those between the corre-
sponding SDs, were considerably closer
to 1. Consequently, the CVs predicted
from the parameters returned by the fits
of model Ib also capture the CVs in the
data more closely than model Ia, al-
though still not correctly: in 127 of the
186 samples (68%), the CV predicted by
model Ib was greater than that in the
data, a significant proportion (
 2 �
12.83; p � 0.0005). Again, these findings
are confirmed by a separate analysis of
the top 10% of samples with respect
to the number of ISIs. For this subgroup,
the median ratios were 0.994 for mean
ISI, 0.980 for SD, and 0.985 for CV (Fig.
7e– g, dotted lines, h, open square).

Finally, analogous plots for model II
are shown in the right column of Figure
7. The ratios between the mean ISI de-
rived from the data and those predicted
from the parameters of the fit, and also
those between the corresponding SDs,
are very close to and scatter rather sym-
metrically around 1. Consequently, the CVs predicted from
the parameters returned by the fits of model II also closely
capture the CVs in the data; the CVs predicted from the pa-
rameters returned by the fits were higher than the CVs in the
data in only 108 of the 186 samples (58%), a nonsignificant pro-

portion (
2 � 2.43; p � 0.1) (Fig. 7k). This was also the case in a
separate analysis of the top 10% of samples with respect to number
of ISIs. For this subgroup, the median ratios were 1.000 for mean ISI,
0.997 for SD, and 0.997 for CV (Fig. 7i–k, dotted lines, l, open
square).

Figure 7. Comparison of the mean ISI, SD, and CV of the 186 samples of spontaneous activity with those predicted by the best
fit of the different models. a–l, The left (a– d), center (e– h), and right columns (i–l ) show the comparisons for models Ia, Ib, and
II, respectively. The top row plots the ratio of the mean ISI in the data to that predicted by each model as a function of ISI; the
second and third rows are the corresponding plots for SD and CV. The bottom row plots the ratio of the SDs against that of the
means to illustrate their close correlations with slopes �1. The dashed lines mark ratios of 1 (i.e., data and predictions are
identical). The dotted lines in the top three rows and the open squares in the bottom row represent the medians obtained from the
top 19 of the 186 samples when ranked according to number of ISIs. Note that models Ia and Ib systematically overestimate mean
ISI, SD, and CV, whereas model II does not. The results of 
 2 tests for CV are listed in the third row.
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Estimates of parameters returned by model II
Given that model II, unlike models Ia and Ib, fits the entire ISI
distributions accurately, and hence also accurately predicts the
mean, SD, and CV of the ISI distributions, it is instructive to
examine the parameters estimated from the fits of model II more
closely. The estimates of the ARP and of the time constant of the
RRP appear very plausible, in light of independent estimates
available through other studies (Parkins, 1989; Brown, 1994;
Dynes, 1996; Cartee et al., 2000; Miller et al., 2001; Shepherd et
al., 2004; Morsnowski et al., 2006) and in addition were rather
narrowly distributed. The estimates of the ARP, tD, had a median
of 0.59 ms and an interquartile range of 0.40 – 0.78 ms and a
mean � SD of 0.65 � 0.62 ms. These estimates were shorter than
the minimum ISI in the corresponding sample in 172 of 186 cases
(92%). Thus, the ARP estimated with model II can generally
account for the very short ISIs observed. The estimates of the time
constant of the RRP, 1/�R, had a median of 0.65 ms and an inter-
quartile range of 0.24 –1.08 ms and a mean � SD of 1.00 � 1.30
ms. The estimates of b had a median of 0.430 and were also
narrowly distributed with an interquartile range of 0.319 – 0.512
and a mean � SD of 0.392 � 0.173. The estimates of the ARP, of
the RRP, and of b were independent of the CF and spontaneous
discharge rate of the fiber (see also below).

These findings and the narrow distributions raise the possibil-
ity that the true values, rather than the estimates, of the parame-
ters tD, 1/�R, and b might be relatively constant across the popu-
lation of AN fibers (or a vast majority thereof). This issue is
explored in the next sections.

The ARP, RRP, and b might be rather constant across the vast
majority of fibers
The idea that tD, 1/�R, and b might be relatively constant across
the population of AN fibers is not only supported by the narrow
distributions of their estimates but also by the observation that
the widths of the distributions decreased systematically as the
number of ISIs in the sample increased (Fig. 8a– c). For large
numbers of ISIs, the estimates of each of these parameters tended
to converge on a value near the median of the estimates of each
parameter. Furthermore, Equation 16 predicts that if tD, 1/�R,
and b were constant across samples, the mean ISI would be a
linear function of 1/�E, with slope (1 � b) and intercept (tD �
1/�R) (i.e., the mean refractory period). Figure 8d provides such a
plot. Note that the data points scatter relatively closely around the
dashed line in Figure 8d, which represents the calculation of this
function with the medians of the estimates of tD, 1/�R, and b
across the 186 samples. Additional support for the idea that tD,
1/�R, and b might be relatively constant despite the observed
variability of their estimates comes from the observation of pos-
sibly compensatory relationships between the estimates of tD,
1/�R, and b. Figure 9a illustrates the strong inverse relationship
between tD and 1/�R for estimates of 1/�R exceeding �0.1 ms, and
if some samples with very long estimates of the mean refractory
period (tD � 1/�R � 3 ms) are excluded. Figure 9b illustrates a
similar inverse relationship between the estimates of b and 1/�R.
Given the randomness of AN fiber spike trains, the optimal fit of
model II to a given ISI distribution might require different com-
binations of the estimates of these parameters, and the inverse
relationships may reflect trade-offs between the estimates of tD

and 1/�R, or b and 1/�R, in optimizing the fit to a given data set.
To examine more directly the possibility that the ranges of the

estimates of tD, 1/�R, and b seen across our samples might be
explained by a single value for each parameter across fibers, the
estimates of which vary because of the stochastic firing behavior

of AN fibers, we performed extensive simulations, as described
below.

Simulations support the view that ARP, RRP, and b can be
considered constant across fibers
ISI distributions that would result from model II for particular
values of tD, �R, �E, and b can be simulated in at least two different
ways. One way is to produce each ISI from a single random num-
ber, between 0 and 1, which is used as the cumulative probability.
The corresponding ISI is found via the inverse of Equation 14.
Another way is to produce each ISI as the sum of a fixed ARP, an
RRP drawn from a random exponential distribution with mean
1/�R, and one (for the fraction of exponentially distributed ISIs)
or two (for the fraction of gamma distributed ISIs) intervals
drawn from random exponential distributions with mean 1/�E

(compare Eq. 16). The exponentially distributed intervals are eas-

Figure 8. The true values of parameters tD, 1/�R, and b might be very similar across the
population of AN fibers. a– c, Plots of the estimates of tD (a), 1/�R, (b), and b (c) obtained from
fits of model II against the number of ISIs in each sample. Note that with increasing number, the
widths of the distribution become narrower and converge on values near the medians of the
estimates across the 186 data samples (tD, 0.59 ms; 1/�R, 0.65 ms; b, 0.43; dashed lines). d,
Scatterplot of the mean ISI against the estimate of 1/�E. The data points scatter closely around
the line predicted if tD, 1/�R, and b were constant across all fibers and were tD 0.59 ms, 1/�R 0.65
ms, and b 0.43 (dashed line). e– h, Analogous plots obtained from fits of model II to simulated
data generated with fixed values of tD, 1/�R, and b, tD 0.59 ms, 1/�R 0.65 ms, and b 0.43. Note
the striking similarities with the estimates obtained from the real data. See Results for details.
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ily computed from the random number r; the RRP, for example,
as �1/�R ln(1�r). The parameter b can also be randomized
around its expected value by drawing another random number
and generating the simulated ISI as a sum of either four or three
intervals, depending on whether that random number is smaller
or larger than the expected value of b. In extensive tests with
thousands of simulations, we determined that the two methods
yield indistinguishable results. Here, we show those obtained
with the second method. We generated ISI distributions, keeping
tD, 1/�R, and the expected value of b fixed at the medians obtained
from the fits of model II to the real data, tD � 0.59 ms, 1/�R � 0.65
ms, and b � 0.43 for all simulations. We first simulated each of
the 186 real samples of spontaneous activity only once using that
value for �E (calculated by the method-of-moments from Eq. 16)
that would be expected to yield a mean ISI identical to that of the
data sample to be simulated. Furthermore, each simulated data
set contained the same number of ISIs as the sample of real data to
be simulated. Each simulated data set was then fitted with model
II (and with models Ia and Ib), exactly as described above for the
real data.

The medians of the estimates of tD, 1/�R, and b obtained from
the fits of model II to these 186 simulated data sets were tD � 0.61
ms, 1/�R � 0.59 ms, and b � 0.42, and thus only a few percent off
the values used to generate the data (2.9, �9.3, and �3.1%, re-
spectively). Figure 8e– g show plots of the estimates of tD, 1/�R,
and b derived from the fits of model II to the simulated data
against the number of ISIs in the simulated data set. These panels
show that the estimates of each parameter are distributed around
the values used to generate the data (dashed horizontal lines) and
that the widths of these distributions narrowed with increasing
number of ISIs. Comparison with the corresponding panels for
the real data (Fig. 8a– c) reveals their striking similarities, both
with respect to the absolute widths of the distributions and with
respect to the dependence on the number of ISIs. Only the few
very long estimates of tD (�1.2 ms) in the real data are not repro-
duced by these simulations, suggesting that for these AN fibers,
the true ARPs might be considerably longer than 0.59 ms. Figure
8h plots, for the simulated data, the mean ISI against the estimate
of 1/�E. Again, the data points scatter around the line predicted
from the values used to generate the data (dashed line) in a man-
ner very similar to the points obtained for the real data (compare
Fig. 8d).

Figures 9, c and d, shows that the estimates of tD, 1/�R, and b
obtained from the simulated data show compensatory trade-offs
just as the corresponding estimates obtained from the real data
(compare Fig. 9a,b).

Also, the absolute values of the maximum vertical differences
between sample and model CDFs (multiplied by the square root
of the number of ISIs in the sample to eliminate the dependence
of that difference on the number of ISIs) obtained from the real
data and from the simulated data show indistinguishable distri-
butions (Fig. 9e).

Finally, as shown in Figure 6, d and e, the fits of these simu-
lated data with models Ia, Ib, and II produced functions relating
the mean vertical differences between simulated sample and
model CDFs to the cumulative probability, and confidence inter-
vals, that were strikingly similar to those obtained from the real
data (compare Fig. 6a– c). Only the sharp negative peak at the
very low probabilities seen in the fits with model II to the real data
(Fig. 6c) is not reproduced by the simulations (Fig. 6f).

The mean function in Figure 6f also displays an M-like shape,
suggesting that these residuals might reflect some systematic er-
ror of the fitting procedure when applied to stochastic data. [The
residuals of fits to theoretical CDFs (see Materials and Methods)
were two orders of magnitude smaller and would have been in-
visible when plotted in Fig. 6f.] To determine the procedure-
inherent residuals more accurately, we generated 162 sets of 186
simulated samples, fitted each of the �30,000 samples with
model II and averaged the vertical differences, as described above.
The resulting residuals, which are procedure-inherent, are shown
by the light gray line in Figure 6f. The bottom row of the panels in
Figure 6 shows the differences between the residuals in the real
data and these procedure-inherent residuals as well as the associ-
ated confidence intervals for the three models. For model II (Fig.
6i), the procedure-corrected residuals are very small. The sum of
their squares is only 1.5% of that for model Ia (and 21% of that of
model Ib). This corresponds to an improvement in this measure
of the goodness-of-fit relative to model Ia by a factor of �70,
nearly two orders of magnitude.

Together, these results provide strong support for the notion
that parameters 1/�R and b may be considered constant across
AN fibers. This may also be true for tD, at least for the vast ma-

Figure 9. The true values of parameters tD, 1/�R, and b might be very similar across the
population of AN fibers, but estimates show compensatory trade-offs. a, b, Plots of the esti-
mates of tD against 1/�R (a) and of b against 1/�R (b), obtained from fits of model II to the data.
Note the inverse relationships. c, d, Analogous plots obtained from fits of model II to simulated
data generated with fixed values of tD, 1/�R, and b, tD, 0.59 ms, 1/�R 0.65 ms, and b 0.43. Note
the striking similarities with the estimates obtained from the real data. e, Distributions of the
absolute values of the maximum vertical differences between sample and model CDF (and
multiplied by the square root of the number of ISIs in each sample) obtained with fits of model
II to real or simulated data. Each distribution contains 186 points. The distributions are not
significantly different.
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jority of AN fibers, whereas a small minority of fibers may be
characterized by somewhat longer ARPs.

An explanation for an occasionally observed early
nonmonotonic peak in the hazard function
Several studies have reported the occasional occurrence of a sharp
nonmonotonic peak in the hazard functions near the end of the
ARP, the origin of which is rather enigmatic (Gray, 1967; Gau-
mond et al., 1982; Young and Barta, 1986; Li and Young, 1993;
Miller and Wang, 1993; Prijs et al., 1993). Our data suggest that
this peak is an artifact resulting from the recording technique.
The function representing the mean procedure-corrected resid-
uals for model II (Fig. 6i) hovers irregularly around 0 and is
primarily confined within the 95%-confidence interval, with one
notable exception. The lower confidence line is exceeded at very
low probabilities (�0.01), and the upper confidence line is ex-
ceeded at probabilities between �0.01 and 0.05 (Fig. 6i, inset).
The sharp negative peak at the very low probabilities means that
ISIs marginally longer than the ARP occur more rarely, and
slightly longer ISIs occur more frequently, than predicted by
model II. This mismatch is likely to be a consequence of the fact
(as explained in the rationale for model Ib) (Gaumond et al.,
1982) that the reduced amplitude of the second spike at short ISIs
leads to a slight delay in the time at which the electrode reaches
the trigger threshold so that the true ISI is overestimated. Conse-
quently, the observed probability of very short ISIs, just above the
ARP, is less than the true probability and that of slightly longer
ISIs is higher than the true probability. Hence, the recorded CDF
tends to fall below the true CDF at ISIs just above the ARP and to
rise more steeply than the true CDF at slightly longer ISIs. The
resulting shoulder in the recorded CDF translates into a non-
monotonic peak in the hazard function.

Model II can explain the tight relationship between SD and
mean ISI with constant values of tD, 1/�R, and b across fibers
Here, we demonstrate that model II with the assumption of con-
stant values of tD, 1/�R, and b can successfully describe the tight
relationship between the SD and the mean ISI across fibers that
has been reported for spontaneous as well as for sound-evoked
steady-state activity [Geisler et al. (1985), their Fig. 9; Li and
Young (1993), their Fig. 3]. As noted by Li and Young (1993), it is

not possible to explain this relationship
with constant refractory parameters, when
the excitation is assumed to be provided by
a Poisson point process (model Ia) (Eq. 9).
These authors therefore hypothesized that
the time constant of the RRP might de-
crease as mean ISI decreased. This as-
sumption is counterintuitive, as one
would expect the refractory period to, if
anything, increase at high spike rates re-
sulting from accumulation of refractory
effects (Stein, 1967; Li and Young, 1993).

To derive good estimates of the as-
sumed constant values of tD and 1/�R in a
way that allows a fair comparison with the
performance of model Ia, we fitted model
II to the CDFs again, but this time kept b
fixed for each sample at the median value
obtained from the previous fits, 0.430.
These fits are thus comparable with those
of model Ia in the sense that both have
three free parameters, whereas b is fixed at

0.43 for model II and at 0 for model Ia. Across the 186 samples,
these fits of model II yielded medians of 0.58 ms for tD and of 0.91
ms for 1/�R, values very similar to those obtained from the fits
with b free (0.59 ms for tD and 0.65 ms for 1/�R) (see above).

Figure 10 (red line) shows the dependence of SD on mean ISI
that results with these constants (tD � 0.58 ms; 1/�R � 0.91 ms;
b � 0.43). For comparison, the dependence expected with model
Ia (Eq. 9), with the constants (tD � �0.02 ms; 1/�R � 2.45 ms;
b � 0) derived in the analogous way, is also shown (Fig. 10, blue
line). At first glance (Fig. 10a, log axes), both models seem to
describe the data (black and white circles) well, but magnification
(Fig. 10b, linear axes) shows that model II is clearly superior; the
SD values scatter closely around the line for model II, whereas
they tend to fall below that for model Ia. This difference becomes
even more obvious when the predictions for the CV are examined
(Fig. 10c). Model II captures the data well, whereas model Ia
systematically overestimates the CV.

There are a few data points in Figure 10 that deviate more
substantially from the line predicted by model II. The four that
deviate most stem from a single AN fiber (CF, 0.5 kHz) and are
shown by connected open circles. Despite its high spontaneous
activity (�100 spikes/s), the shortest ISIs recorded from this fiber
were rather long (�1.4 ms). Consequently, the CVs of the ISI
distributions were considerably lower (0.5– 0.7) than those of any
other sample, even from fibers with comparable SRs (�0.75–
0.85). The fiber displayed one-tone suppression for a frequency
of 2.5 kHz (i.e., well above CF) but not for any of the other
frequencies tested (ranging from 1 octave below to one-fourth
above CF). One-tone suppression to tones with frequencies well
above CF has been observed occasionally in a subpopulation of
mammalian AN fibers (Rupert et al., 1963; Schmiedt and Zwis-
locki, 1980; Henry and Lewis, 1992). Finally, the maximum
driven firing rates of this fiber to high-SPL tones were by far the
highest recorded in this animal and more than twice as high as the
fiber with the next highest driven rate. It is interesting in this
context that Liberman et al. (1990) reported in the cat the occa-
sional presence of more than one synaptic body per radial fiber.
The few other data points that deviated more substantially from
the predictions of model II with tD, 1/�R, and b constant also had
relatively long minimum ISIs (�2 ms) but were inconspicuous
otherwise.

Figure 10. Constant values of tD, 1/�R, and b can explain the tight relationship between SD and mean ISI across fibers. a,
Scatterplot of the SD versus the mean ISI for 186 samples of spontaneous (spont) activity with �400 ISIs. b, Same as a, but with
linear axes and restricted to values of SD and mean �45 ms for higher resolution. c, Plot of CV against mean ISI. In all three panels,
the red and blue lines show the relationships expected with models II and Ia, respectively, if tD, 1/�R, and b were constant across
AN fibers and were as identified in a. The two yellow data points are from the study of cat AN fibers by Li and Young (1993) and
represent the fibers with the highest driven rates to CTs or STBs, respectively. Note that model II, but not model Ia, predicts these
points correctly and fits the data from the present study very well. Four data points from a single, extraordinary AN fiber with
relatively long minimum ISI (open circles) deviate conspicuously from the tight relationship between SD and mean ISI formed by
the others (black circles). See Results for details.
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Figure 10 also shows two data points (yellow circle and
square) from the study of cat AN fibers by Li and Young (1993),
obtained from the responses of the fibers to best frequency tones
at relatively high SPLs. The points were selected because they
represent the responses with the highest driven spike rates ob-
served across all AN fibers and stimulus levels in that study for
two types of stimuli. Responses were recorded to either “contin-
uous tones” (CTs) (115 s duration; response measures obtained
from 100 s, starting 15 s after tone onset; one repetition) or to
“short tone bursts ” (STBs) (100 ms duration; 400 repetitions).
Note that both data points fall very close to the lines relating SD
(Fig. 10a,b) or CV (Fig. 10c) to mean ISI as predicted by model II
with tD, 1/�R, and b constant. In fact, they fall slightly above those
lines, a result expected if the driven spike rates are not stationary
(e.g., because of persisting adaptation), yielding higher SDs than
would stationary rates with the same means. In contrast, for
model Ia, the SD, and hence also the CV, are smaller than pre-
dicted, particularly those of the STB data point.

In summary, Figure 10 provides additional support for the
assumption that parameters tD, 1/�R, and b are, apart from a few
possible exceptions, relatively constant across AN fibers and pos-
sibly even across stimulus conditions, and that �E is variable.

Discussion
The stochastic excitatory process of model II
We have shown here, using real and simulated data, that all fea-
tures of the distributions of ISIs from the spontaneous activity of
cat AN fibers can be very well explained by the assumption of a
simple and realistic refractory function operating on a homoge-
neous stochastic process, which provides the excitation to the
fibers, where the distribution of intervals between excitatory
events is a mixture of an exponential and a gamma distribution
with shape factor � � 2 and a common scaling factor �E (model
II). The ISI distributions cannot be explained if the excitation
were provided by a Poisson process, as assumed in previous stud-
ies (for review, see Delgutte, 1996; Mountain and Hubbard,
1996).

This mixture of distributions can emerge from a primary ho-
mogeneous Poisson point process with rate �E, if some of the
primary events are removed by a subsequent process, or fail to
trigger secondary events further down a cascade of precursor
steps that might be required to produce the ultimate excitatory
events, if the rule is obeyed: never remove two or more consecu-
tive events. Primary events cannot simply be removed at random,
because the distribution of secondary events would then also be
exponential, merely with a smaller scaling factor. A gamma dis-
tribution (� � 2) could emerge from an exponential distribution
via a perfect integrator that needs to integrate over n � 2 input
events before reaching threshold and being reset to zero (Stein,
1965; Koch, 1999). Threshold fluctuations between n � 1 and
n � 2 of this integrator would produce a mixture of gamma (� �
2) and exponentially distributed intervals between its output
events with a common scaling factor. However, this scenario re-
quires the input events to have negligible decay. Because EPSCs
and potentials in the peripheral dendrites of AN fibers are very
brief (Glowatzki and Fuchs, 2002; Keen and Hudspeth, 2006),
fluctuations in the threshold for spike initiation (Bruce et al.,
1999a) are unlikely to be the physiological mechanism. It is also
unlikely that the gamma component is caused by activity of lat-
eral olivocochlear efferent neurons. Although their activity can
suppress (but also increase) the firing rates of AN fibers (Guinan,
1996, 2006; Ruel et al., 2001, 2007; Oestreicher et al., 2002; Puel et

al., 2002; Le Prell et al., 2003), the detailed anatomy of this system
(Warr, 1992) rules it out as a candidate.

These considerations strongly suggest that the mixture of
gamma and exponentially distributed intervals between excita-
tory events is present at the level of transmitter release by the
ribbon synapses of the IHC. Transmitter-containing vesicles un-
dergo a series of steps, including trafficking to the active zone,
docking with the membrane of the cell, and a priming step, before
they finally fuse with the cell membrane and release their trans-
mitter (Prescott and Zenisek, 2005). The intervals between events
on an early (primary) level in such a cascade might have Poisson
statistics. For example, Prescott and Zenisek (2005) have sug-
gested that at ribbon synapses, the replenishment of vesicles at the
ribbon occurs through Brownian vesicle motion leading to ran-
dom collision of vesicles with the ribbon. If the transitions from
such a primary level to the next in the maturational cascade of
transmitter release were to fail with probability b, but happen the
next time an event at the primary level occurred, the distribution
of the intervals between the secondary events would automati-
cally be a mixture of a gamma distribution with � � 2 and frac-
tion b and an exponential distribution with fraction 1-b, where
both have the same scaling factor. Of course, the average rate of
the secondary events is lower than that of the primary events. This
scenario is consistent with the suggestions that rate-limiting steps
are the binding of vesicles to docking sites on the plasma mem-
brane beneath the ribbon, rather than the “stock-piling” of vesi-
cles by the ribbon (Fuchs, 2005), or the calcium-dependent trans-
mitter release, rather than refilling (Schnee et al., 2005). We do
not know at which level of the cascade the fraction b originates,
but our observation that b can be considered relatively constant
across fibers, independent of their firing rates (Figs. 8c, 9b, 10),
would indicate that the different ribbon synapses of a given IHC
and of different IHCs operate in a similar manner, just at differ-
ent rates.

The refractory function
The shape of the refractory function (Eq. 2) (Fig. 1) of our suc-
cessful model (model II) and the brief estimates of the ARP and
RRP agree very well with results of direct measurements after
electrical stimulation of the AN (Brown, 1994; Dynes, 1996; Car-
tee et al., 2000; Miller et al., 2001; Shepherd et al., 2004; Mor-
snowski et al., 2006). Furthermore, our data and simulations sug-
gest that the ARP and the time constant of the RRP might be
similar for most fibers, despite anatomical variation (Liberman,
1982; Liberman and Oliver, 1984; Gleich and Wilson, 1993). For
the ARP, this notion is supported by other studies (Manley and
Robertson, 1976; Li and Young, 1993; Miller et al., 2001). The
assumption of constant values for the ARP and RRP, together
with a constant fraction b of gamma-distributed IEIs, provides an
excellent description of the tight relationship between SD and
mean ISI across fibers (Fig. 10) (Geisler et al., 1985; Li and Young,
1993). The rather counterintuitive assumption of a decrease in
RRP with an increase in discharge rate (Li and Young, 1993) is
not necessary to explain that relationship.

The interaction between excitation and refractoriness
In line with many other studies, we modeled spontaneous AN
fiber spike trains resulting from a renewal process in which the
ISIs are statistically independent random variables and the prob-
ability of the occurrence of a spike depends on the time since the
last spike. An assumption that is commonly made when model-
ing spike trains resulting from such a process is that its intensity
h(t) is separable into two independent, extrinsic and intrinsic,
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components and that h(t) is given by their product. The extrinsic
component, s(t), is thought to depend on the stimulus and thus
on “absolute” time, whereas the intrinsic component, r(t-t�1), is
thought to reflect the refractory properties of the neuron and thus
depend on the time since the previous discharge (t-t�1) (for re-
view, see Delgutte, 1996; Johnson, 1996). Because s(t) is thought
to represent the excitation of the fiber by the stimulus, it is as-
sumed to be constant in the case of spontaneous activity (Li and
Young, 1993; Prijs et al., 1993; Johnson, 1996).

However, our analyses suggest that even in the case of spon-
taneous activity, s(t) is not constant but rather increases mono-
tonically with time since the last excitatory event (Fig. 1, hazard
function for excitation of model II). Only if excitation was pro-
vided by a homogeneous Poisson point process would s(t) be
constant (and equal to �E). But even then, the resulting hazard
function would be quite complicated. For example, with the re-
fractory function given by Equation 2, the hazard function is as
follows (Li and Young, 1993):

hISI	t
 �
�R � �E � 	e��R�	t�tD
 � e��E�	t�tD



	�E � e��R�	t�tD
 � �R � e��E�	t�tD


fort 	 tD

hISI	t
 � 0 fort 
 tD .

(17)

Equation 17 can not be expressed as the product of a term that
only depends on �E (in the simplest case the constant �E) and one
that only depends on �R. This is possible only in the special case
when �R is infinite [i.e., when the RRP is 0, and hISI(t) � �E for t 	
tD and hISI(t) � 0 for t � tD. Thus, the simple formula h(t) �
s(t)�r(t � t�1) can only be a rather crude approximation and
might not be very useful for more accurate modeling approaches.

Conclusions
The unique constellation in the peripheral mammalian auditory
system, where a single ribbon synapse primarily determines the
activity of an afferent neuron, offers the opportunity of deriving
information about the mode of operation of the synapses from
analyses of spike trains of these neurons. We have shown that a
physiologically plausible, homogeneous, stochastic, but non-
Poisson process of transmitter release from that synapse, com-
bined with simple refractory properties, describes very accurately
(one to two orders of magnitude better than current models) the
ISI distributions of AN fibers during their spontaneous activity. It
is conceivable that, with respect to these release statistics, ribbon
synapses in other sensory systems, such as vision and balance,
might operate in similar ways. This may be true even for other
synapses, given that the active zones of all synapses might be
organized according to a common principle, differing only in the
degree to which their morphologically and functionally distinct
components are expressed (Zhai and Bellen, 2004). Our results
will likely also lead to a better understanding of the conversion of
the representation of time-varying acoustic stimuli at this syn-
apse from a graded receptor potential to spike trains and thus of
the fundamentals of temporal coding in the auditory pathway.
Finally, our model may also be useful as an element of more
comprehensive models of peripheral auditory processing and for
the development of more natural stimulation protocols for co-
chlear implants.
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