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Predicting Movement from Multiunit Activity
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Previous studies have shown that intracortical activity can be used to operate prosthetic devices such as an artificial limb. Previously used
neuronal signals were either the activity of tens to hundreds of spiking neurons, which are difficult to record for long periods of time, or
local field potentials, which are highly correlated with each other. Here, we show that by estimating multiunit activity (MUA), the
superimposed activity of many neurons around a microelectrode, and using a small number of electrodes, an accurate prediction of the
upcoming movement is obtained. Compared with single-unit spikes, single MUA recordings are obtained more easily and the recordings
are more stable over time. Compared with local field potentials, pairs of MUA recordings are considerably less redundant. Compared with
any other intracortical signal, single MUA recordings are more informative. MUA is informative even in the absence of spikes. By
combining information from multielectrode recordings from the motor cortices of monkeys that performed either discrete prehension or
continuous tracing movements, we demonstrate that predictions based on multichannel MUA are superior to those based on either
spikes or local field potentials. These results demonstrate that considerable information is retained in the superimposed activity of
multiple neurons, and therefore suggest that neurons within the same locality process similar information. They also illustrate that
complex movements can be predicted using relatively simple signal processing without the detection of spikes and, thus, hold the
potential to greatly expedite the development of motor-cortical prosthetic devices.
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Introduction
Considerable efforts are being made to decipher brain activity
recorded with multiple electrodes, with an aim to replace mal-
functioning organs (Wessberg et al., 2000; Serruya et al., 2002;
Taylor et al., 2002; Carmena et al., 2003; Musallam et al., 2004;
Hochberg et al., 2006). Research in this area has concentrated on
operating a robotic arm in real time (Wessberg et al., 2000; Car-
mena et al., 2003; Hochberg et al., 2006), using closed-loop feed-
back to improve predictions (Serruya et al., 2002; Taylor et al.,
2002; Carmena et al., 2003; Hochberg et al., 2006), devising effi-
cient algorithms to extract information from neural activity
(Shpigelman et al., 2005; Kim et al., 2006), and developing com-
pact recording and signal-processing modules (Moxon et al.,
2001; Schwartz et al., 2006).

The neuronal signal used in most studies was the simulta-
neous activity of spiking neurons [single units (SUs)]. Extracting
spiking activity involves complex signal processing that, in turn,
requires a high power supply and devices that are at present too
large to be implanted (Hochberg et al., 2006). Moreover, it was
estimated that tens to hundreds of SUs would be needed to enable

accurate performance (Wessberg et al., 2000; Serruya et al., 2002;
Taylor et al., 2002; Carmena et al., 2003; Hatsopoulos et al., 2004;
Musallam et al., 2004; Hochberg et al., 2006; Kim et al., 2006).
Local field potentials (LFPs) have also been used to predict move-
ment (Pesaran et al., 2002; Mehring et al., 2003; Rickert et al.,
2005; Scherberger et al., 2005). Compared with SUs, LFPs are
easier to record and maintain a steadier flow of information over
time, thus, potentially reducing the frequency of surgical opera-
tions required to relocate the electrodes that pick up the brain
signals. However, nearby electrodes pick up highly correlated
LFPs and, therefore, the number of independent measurements
that can be obtained from a given brain area is low.

Figure 1A illustrates four different signals that can be ex-
tracted from a microelectrode recording. Sharp peaks (�1 ms)
represent multiple spikes (MSPs), which can be sorted by shape
and size into several SUs, representing putative neurons (Abeles
and Goldstein, 1977; Lewicki, 1998). By low-pass filtering the raw
trace, typically below 100 Hz, the LFP is obtained (Mitzdorf,
1985). By computing the root mean square (RMS) in the fre-
quency band of 300 – 6000 Hz, one obtains the MUA (see Fig.
1B), reflecting spiking activity on the order of 100 �m away from
the recording electrode (Buchwald et al., 1965; Buchwald and
Grover, 1970; Legatt et al., 1980). Here we show, for the first time,
that the MUA computed without explicit spike detection can be
used to predict arm movements. Using neural activity recorded
from the premotor cortices of monkeys that performed prehen-
sion movements, we illustrate that MUA-based predictions of
reach direction and grasp type are more accurate than predictions
based on either spikes or LFPs. We then use neural activity re-
corded from the macaque primary motor or premotor cortex
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during tracing movements to demonstrate the potential of MUA
to predict continuously changing parameters.

Materials and Methods
Animals. Three monkeys (female Macaca fascicularis; D, F, and J; 2.5, 3.5,
and 3.2 kg, respectively) were used in this study. All animal-handling
procedures were in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals (1996), complied with
Israeli law, were approved by the Ethics Committee of the Hebrew Uni-
versity, and were supervised by a veterinarian.

Prehension task. Two monkeys (D and J) were trained to perform
unconstrained prehension movements with their right hand (Stark et al.,
2007). A touch pad with three buttons arranged in a row, each with a
tricolor light-emitting diode (LED), was located in front of the monkey at
chest level (see Fig. 1C). A trial was initiated after the LED of the central
button was illuminated in green and the monkey was required to press
that button only (“Ready”). After a short period (500 –1000 ms), a ro-
botic arm transported an object to one of six locations, equally spaced in
a circle around the central button. During each session, two objects were
used for a total of 12 task conditions, ordered pseudorandomly. If the
monkey continued pressing the button, illumination conditions changed
so the target object was briefly visible through a half-mirror (“Cue”).
After a delay, all LEDs were illuminated in orange (“Go Signal”) until the
button was released (“Movement Onset”). Thus, during the delay and
movement, the monkey could not see its hand or the object. A trial was
considered successful if the monkey grasped the object in the intended
manner for 580 –1000 ms (“Correct Grasp” to “Hold End”); two micros-
witches were installed in each object to assure correct and continuous
grasp. Successful trials were reinforced by a juice reward and only these
trials were analyzed. Each session lasted �2 h (median, 109 min; range,
50 –173 min; 41 sessions), during which monkeys completed 379 trials
(median; range 164 –585).

Tracing task. A third monkey (F) was trained to perform continuous
curved movements with its preferred left hand by operating a two-joint
low-friction planar manipulandum (Stark et al., 2006). A horizontal

opaque screen, mounted at chest level, blocked view of manipulandum
and hand, and a yellow cursor indicating hand end-point was projected
on the screen (see Fig. 1 D). The monkey traced given paths at its own
pace. During each session, 40 different paths were used, each generated
by cubic spline interpolation of 10 randomly chosen points and consist-
ing of 64 –125 points (median, 90; 0.4 cm apart). At the beginning of a
trial, one path was randomly selected and its origin was shown as a green
circle. After the monkey placed the cursor inside the origin, the entire
path was shown, path points as partially overlapping gray circles and the
first eight points as green circles. As the monkey moved the cursor into
the second green circle, the circle changed color to gray and the subse-
quent gray circle in the path turned green, a process repeated until the
entire path was traced. A trial was considered successful and the monkey
was rewarded if the entire path was traced without pausing for �800 ms
between successive circles; otherwise, the trial was aborted. In this task,
an ample range of speeds was covered and all directions were sampled
(Rao’s test of uniformity, p � 0.05 for all sessions). The monkey perform-
ing this task completed 392 trials per session (median; range, 218 – 487;
11 sessions), each 3.4 s long (median; 95% range, 2–5.9 s).

Recording procedures. During prehension sessions, up to 16 glass-
coated tungsten microelectrodes were used (exposed tip size, 15–20 �m;
impedance, 0.2–2 M� at 1 kHz). Electrodes were arranged in two circu-
lar guide tubes lowered down to �1 mm above the dura mater (eight
electrodes in each guide tube; minimal interelectrode spacing within
tube, 250 �m; Double MT; Alpha-Omega, Nazareth, Israel). During each
session, one set of electrodes was aimed toward arm-related (shoulder or
elbow) regions of the dorsal premotor cortex (PMd) and another toward
finger-related regions of the ventral premotor cortex (PMv). The border
between PMd and PMv was defined as the arcuate spur, identified during
magnetic resonance imaging (MRI) scans. Forelimb relations were de-
termined using threshold intracortical microstimulation (ICMS; 0.2 ms
biphasic pulses at 330 Hz for 90 ms at currents of 5–90 �A) at the end of
each recording session (Stark et al., 2007). At the beginning of a session,
each electrode was lowered through the dura independently (electrode
positioning system 1.31; Alpha-Omega) until spiking activity was en-

Figure 1. Experimental procedures. A, Extracellular voltage measured by a single microelectrode yields several signals. MSPs are detected and sorted into SUs (different colors). LFPs and MUA are
obtained by low- and high-pass filtering, respectively. Spikes are fast (�1 ms) high amplitude (�100 �V) events, LFPs capture slow fluctuations (�100 Hz), and MUA recordings reflect energy in
high frequencies (300 – 6000 Hz). B, MUA is estimated by bandpass filtering and taking the RMS. For details, see Materials and Methods. C, Prehension task. The time sequence of a single trial is
illustrated. Gray bar, Extent of analysis period (see Materials and Methods). In each trial, an object was briefly presented in one of six locations arranged in a virtual circle around the central button
of a touch pad. Grasps were drawn from video recordings of monkeys performing the task. D, Tracing task. In each trial, a path was shown in gray. As the monkey moved the yellow cursor along the
path, the green marker was advanced indicating the immediate path the monkey had to follow. This task yielded a rich sampling of movement parameters; histograms show data from one session.
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countered, inserted an additional distance into the cortex (median, 0.58
mm), and left in position for the entire session. The signal from each
electrode was amplified (10 k), bandpass filtered (300 – 6000 Hz), and fed
to template-matching devices (multispike detector; Alpha-Omega) to
isolate the activity of up to three SUs per electrode in real time. The
amplified signal was also bandpass filtered (1–10,000 Hz), sampled at 25
kHz (Alpha-Map 5.4; Alpha-Omega), and stored on disk for off-line
processing.

Recording procedures during tracing sessions differed from those de-
scribed above in three ways. First, a single guide tube (eight microelec-
trodes) was used. Second, electrodes were inserted into arm-related re-
gions of the right primary motor cortex (M1) or PMd. The border
between M1 and PMd was estimated on the basis of sulcal landmarks
obtained during MRI scans and verified by histology (regions where the
density of large pyramidal cells changed) (Weinrich and Wise, 1982).
Arm relations were assessed by passive limb manipulations and ICMS at
the end of each session. Third, hand position was sampled at 100 Hz and
low-pass filtered (8 Hz). Horizontal and vertical hand velocities were
computed by numerical differentiation.

Signal processing. Off-line, we detected spikes in the 25 kHz traces
(Stark et al., 2007) and sorted them into SUs in the environment of
Alpha-Sort (4.0; Alpha-Omega). LFP was computed by bandpass filter-
ing the same traces (1–100 Hz; two-pole Butterworth) and down-
sampling to 500 Hz. For frequency domain analyses of LFP, we estimated
power in four frequency bands (Hanning window, 128 point fast Fourier
transform): alpha (1–13 Hz), beta (13–30 Hz), gamma (30 – 60 Hz), and
higher gamma (60 –100 Hz). MUA was estimated by bandpass filtering
(300 – 6000 Hz, three-pole Butterworth), clipping extreme values (larger
or smaller than the mean �2 SDs), and computing the sample-by-
sample RMS (square, raising to the second power; mean, low-pass filter-
ing at 100 Hz, down-sampling to 500 Hz; root, taking the square root)
(see Fig. 1 B).

Data analysis: general. SUs were included in analyses if they were (1)
well isolated (determined by the homogeneity of spike waveforms, sepa-
ration of the projections of spike waveforms onto principal components
during spike sorting, and clear refractory periods in interspike interval
histograms), (2) fired at least 0.5 spikes/s during the period from Cue On
until Correct Grasp (prehension) or during the entire movement period
(tracing), and (3) recorded for at least 10 trials per task condition (pre-
hension task) or a total of 50 trials (tracing task) exhibiting stationary
activity (determined by visual inspection of mean firing rates and raster
plots of individual trials). MSPs, LFPs, and MUA recordings were in-
cluded in analyses if (1) the mean firing rate of MSP on the recording
electrode was �1 spikes/s (although MSPs were included in analyses even
if no SU fired �0.5 spikes/s, a higher firing rate threshold was set for
MSPs than for SUs because typically more than one SU was isolated from

each electrode) (see Results), and (2) the total number of trials was, as for
SUs, at least 10 trials per prehension task condition or a total of 50 tracing
trials. LFP and MUA outliers were detected and removed using moving
average RMS (20 ms long, threshold of 2.58 SDs). When only task-
modulated channels [determined using Kruskal–Wallis (KW) nonpara-
metric one-way ANOVA] (Musallam et al., 2004; Sanchez et al., 2004)
were analyzed, single-channel prediction accuracies were typically (and
trivially) higher than those obtained for all channels that passed the
above criteria. However, multichannel predictions were almost identical
for the two sets and, thus, results reported below are based on channels
that were not preselected according to any form of task dependency.

The signal-to-noise ratio (SNR) of each signal type was computed on a
sample-to-sample basis (1 ms for SU and MSP, and 2 ms for LFP and
MUA) in a 2000 ms window starting 1600 ms before movement onset
(see Fig. 4C). Before this computation, the data in each trial were
smoothed by a Gaussian kernel (SD, 15 ms) to avoid division by zero. The
SNR is defined as the signal variance divided by the noise variance, SNR
� �2

signal/�
2

noise. In this definition, the signal is the mean neural activity
over all trials of each of the 12 task conditions and the noise is the difference
between the single trial activity and the signal (Gawne and Richmond, 1993)
(see Fig. 4E). We also computed separate signals during the first and second
chronological halves of available trials; the correlation coefficient (CC)
between these two served as a stability measure (see Fig. 4 D).

Decoding analysis: prehension task. To decode reach direction and
grasp type, we first quantized neural activity in every trial to a compact
representation. We used 11 bins, each 200 ms long, covering the period
between 50 ms after cue onset and 400 ms after movement onset (see Fig.
1C, gray bar) (because event times varied between trials, each bin was
anchored to an event: the first six bins were sequential and followed the
Cue On event; the next two bins were anchored to the Go Signal event,
starting 400 and 200 ms before it, respectively, and the last three bins were
anchored to Movement Onset, the first starting 200 ms before it). For
each channel separately we then counted the number of spikes (for SU
and MSP) or estimated the mean activity (for LFP and MUA) in each bin,
without any smoothing. For instance, for eight simultaneously recorded
MUA recordings, we obtained one 88-element activity vector for every trial.
Next, we trained a classifier using 10-fold cross-validation (Efron and Tib-
shirani, 1993). Available trials were randomly divided into 10 parts (“folds”):
nine folds were used to train a support vector machine (SVM) with a radial
basis function kernel (Vapnik, 1995; Hsu et al., 2003) and the 10th for testing
the classifier. The procedure was repeated 10 times so that all trials were
classified based on models learned from other trials. To test classifier perfor-
mance, we built a confusion matrix where the i,jth element counts the
number of times task condition i was classified as j. The fraction of trials
for which i equaled j gives the prediction accuracy, and 1 minus this

Figure 2. Multichannel predictions. A, Neural activity was recorded from PMd and PMv (monkey J) during 188 prehension trials using 13 microelectrodes and 18 SUs. Multichannel activity was
used to predict reach direction and grasp type. In each confusion matrix, there are 12 rows and columns, corresponding to six directions per grasp type (1, right, power grip; 2, right, precision grip;
3, top right, power grip. . . ). The i,jth element measures the probability that the ith behavior will be classified as j. Each row adds up to 1; correct predictions are on the diagonal. B, Multichannel
prediction accuracies for reach direction (left) and grasp type (right) were averaged over 41 prehension sessions. Horizontal lines, Chance levels (17 and 50%); error bars indicate SEM. C, For each
session, the MUA-based prediction accuracy, combined for reach direction and grasp type (chance, 8%), was plotted versus the best non-MUA-based prediction; these measures were correlated (R 2

� 0.7). MUA-based predictions were more accurate in almost all sessions.
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fraction is the prediction error. Using the same matrix, we also estimated
prediction accuracies for reach direction and grasp type separately.

Because there were six reach directions and two grasp types, and be-
cause direction and object assignments to trials were randomized, theo-
retical chance levels were 16.7 and 50%, respectively. To determine em-
pirical chance levels, considering actual data distributions and possible
classifier bias, we repeated classification with random shuffling of task
conditions between activity vectors. Using these data, the mean predic-
tion accuracies for single/multiple channels were 15.4/14.4% (reach) and
50.4/50.5% (grasp), and there were no significant differences between
signals (SU, MSP, LFP, MUA, and spikeless MUA; four KW tests, p �
0.05 in all cases), indicating that classification was essentially unbiased.

We also tested other standard classification algorithms, including
Fisher’s linear discriminant analysis, Poisson probability density estima-
tion (Sanger, 1996) (assuming conditional independence between bins
and channels), and two versions of artificial neural networks: learning
vector quantization (Kohonen, 2000) (with two hidden units per task
condition) and scaled conjugate gradient descent back-propagation
(Moller, 1993) (with 24 hidden hyperbolic units and 12 output linear
units). None of these algorithms performed consistently better than
SVM. However, using all classifiers, MUA recordings gave the most ac-
curate predictions.

In other runs, we varied the data used for classification and used a
“perimovement” window (from 400 ms before until 400 ms after Move-
ment Onset) (see Fig. 5A–C), a moving 400 ms window consisting of
eight bins, each 50 ms (see Fig. 5D), or frequency domain LFPs in six 400
ms bins (see Fig. 3). MUA recordings consistently yielded the best clas-
sification in all cases.

Decoding analysis: tracing task. To reconstruct horizontal and vertical
hand velocities during single tracing trials we first quantized neural ac-
tivity and movement data into distinct 100 ms bins. Neural activity was
subsequently expanded to account for possible time lags between neural
activity and movement. For each trial and channel, we generated an
activity matrix with five columns, corresponding to five lags (400, 300,
200, 100, and 0 ms before movement). Matrices of different channels
were combined (Warland et al., 1997). For instance, eight MUA record-
ings, recorded simultaneously during a 3 s trial, yielded a combined
activity matrix consisting of 26 rows (30 minus the four last bins) and 40
columns. We divided available trials into 10 folds and performed support
vector (SV) regression (Smola and Scholkopf, 2004) of the horizontal

and vertical velocities separately on training data consisting of tip-to-tail
concatenated activity matrices of training trials. We then tested the re-
gression model on each of the test trials separately using 10-fold cross-
validation. Reconstruction quality was measured by the coefficient of
determination (R 2) between the actual and predicted velocities in each
trial and averaging over all test trials.

To determine chance reconstruction, we reversed the temporal order
of the sampled movement in each trial and repeated the regression. The
R 2 values obtained using this procedure ranged from 0.029 to 0.066 (four
signals, 11 sessions; median, 0.042) and there were no significant differ-
ences between reversed signals (KW test, p � 0.05). R 2 values obtained
without reversing were 7.6 times higher (median; range, 2.4 –14.6) than
the corresponding reversed estimates.

We also tested other algorithms including Wiener filtering (least-
squares linear regression) and artificial neural networks (a separate net-
work for each parameter, each containing 10 hyperbolic hidden units and
one linear output unit, with a scaled conjugate gradient descent back-
propagation learning rule) (Moller, 1993). No algorithm performed con-
sistently better than SV regression and MUA yielded the most accurate
predictions regardless of the algorithm.

For detailed reconstruction of hand velocities (see Fig. 6 A), we re-
peated the regression with 10 ms quantization.

Results
Two monkeys were trained to perform unconstrained prehen-
sion movements (Fig. 1C). To initiate a trial, the monkey was
required to press the central button of a touch pad (Ready). Dur-
ing each trial, one of three objects requiring distinct types of grasp
was briefly shown (Cue) in one of six directions relative to the
button; only two objects were used in each session. After a delay
of at least 1 s, a go signal appeared and the monkey was required
to reach and grasp the target object. Successful trials were rein-
forced by a juice reward. During each recording session, neural
activity was recorded from PMd and PMv simultaneously, using
up to 16 microelectrodes (median, 12; range 4 –16; 41 sessions).
Off-line, the signal recorded from each electrode was processed
to yield LFPs, MUA recordings, and MSPs, which were subse-
quently sorted into SUs (mean, 1.3 SUs per electrode; range, 0 –5;
471 electrodes).

Multiple MUA recordings provide an accurate prediction of
reach and grasp
All four signals can be used to decipher the upcoming movement.
When used to decode reach direction or grasp type, the MUA
recorded from up to 16 electrodes was able to predict movement
parameters with �90% accuracy (Fig. 2A), significantly higher
than what could be obtained by any other intracortical signal
(Fig. 2B) (41 sessions; two KW tests, for reach direction and for
grasp type, each corrected for multiple comparisons, p � 0.001
for both cases).

Combining information about reach and grasp, prediction
errors using multichannel MUA recordings were 4.49 � 0.75
times lower than when using LFPs recorded by the same elec-
trodes (mean � SEM of 41 sessions), 2.5 � 0.24 times lower than
SUs, and 2.15 � 0.13 times lower than when using MSPs. Sessions
for which MUA-based predictions tended to be particularly ac-
curate also yielded accurate predictions based on other signals
(Fig. 2C) (linear regression, R2 � 0.7; F test, p �� 0.001). However,
MUA yielded the most accurate predictions in almost all (93%)
tested sessions and MUA-based prediction errors were about two
times lower than with using the best other prediction (1.92 � 0.14,
mean � SEM of 41 sessions; Mann–Whitney U test, p � 0.001).

Previous studies suggested that LFPs may provide predictions
as accurate as SUs (Pesaran et al., 2002; Mehring et al., 2003;
Andersen et al., 2004; Rickert et al., 2005; Scherberger et al.,

Figure 3. Predictions based on LFPs in the frequency domain. A, Single-channel prediction
accuracies were averaged over 471 channels. LFP multiband-based prediction accuracies
(green) were higher than single-band predictions (here in red hues; significant only for reach
direction, p �� 0.001), and time-domain LFP predictions were more accurate than frequency-
domain predictions (significant only for grasp type, p � 0.001). MUA-based prediction accura-
cies were the highest. B, Multichannel prediction accuracies, averaged over 41 prehension
sessions. Error bars indicate SEM. MUA-based predictions were the most accurate.
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2005). We obtained similar results for multichannel predictions
of grasp type (Fig. 2B) (median prediction accuracies of grasp
type, SUs, 73%; LFPs, 73%; 41 sessions; post hoc U test, p � 0.81),
but predictions of reach direction based on SUs were more accu-
rate that those based on LFPs (SUs, 72%; LFPs, 56%; p � 0.0013).
We found, however, that MUA recordings provide considerably
more accurate predictions than LFPs in the time domain, as
shown in Figure 2B. To further evaluate the properties of the two
latter signals, we also estimated prediction accuracies using LFPs
in the frequency domain (Fig. 3). Although single-channel alpha
bands yielded predictions that were significantly more accurate
than predictions based on any other LFP band (Fig. 3A) (471
LFPs; KW tests, corrected for multiple comparisons, p �� 0.001
for both reach direction and grasp type), this property disap-
peared for multiple channels (Fig. 3B) ( post hoc U test comparing
multichannel alpha to higher gamma; reach, p � 0.74; grasp, p �
0.53). Predictions using multichannel MUA recordings were consis-
tently and significantly more accurate than those using LFPs, both
for single frequency bands (alpha, beta, gamma, or higher
gamma) and multiple bands (KW tests, corrected for multiple
comparisons, p �� 0.001 for both reach direction and grasp
type).

Properties of MUA during reach and grasp
The high prediction accuracy achieved by multiple MUA re-
cordings can be attributed to several single-channel proper-
ties. First, the MUA recorded by a single electrode typically
varied with reach direction, grasp type, or both. For instance,
the MUA in Figure 4 A enabled prediction of reach direction

with 42% accuracy and grasp type with
75% accuracy. Over the entire sample of
single MUA recordings, reach and grasp
were predicted correctly in 42 and 62%
of the cases, respectively (medians, 471
MUA recordings) (Fig. 4 B). Predictions
based on single MUA recordings were
significantly more accurate than those
based on any other signal (two KW tests,
corrected for multiple comparisons, p
�� 0.001). Moreover, the MUA was in-
formative even when no spikes could be
detected (Fig. 4 B, rightmost bars) (69
spikeless MUA recordings; Jarque-Bera
goodness-of-fit tests to Gaussian distri-
butions, reach, p � 0.4; grasp, p � 0.34;
one-tailed t tests comparing to chance
levels, p �� 0.001). To compare the in-
formation content of MUA recordings
based on neural activity with and with-
out spikes, we analyzed data from four
sessions as follows. For each raw record,
we replaced all detected spikes with
high-frequency noise (the difference
between a spike and a five-point mov-
ing-average smoothed spike) and then
repeated MUA estimation and predic-
tions. For reach direction, the median
single-channel prediction accuracy for
the original MUA recordings was 40%
(49 channels), whereas for the “de-
spiked” MUA recordings it was 38%.
Over the four sessions, the median mul-
tichannel prediction accuracy of reach

direction was 92% for raw MUA recordings and 88.4% for the
despiked MUA recordings. Similar results were obtained for
grasp type predictions. Thus, undetected (distant) spikes
clearly contributed to the information in MUA recordings.

Second, MUA recordings provided information before the
actual movement. Before the onset of movement, the SNR (the
signal variance divided by the noise variance) of MUA record-
ings was higher than the SNR of other signals (Fig. 4C) (KW
test, corrected for multiple comparisons, p �� 0.001). From
106 ms until 400 ms after movement onset, SNRs of LFPs were
significantly higher than the SNRs of all other signals, but
SNRs of MUA recordings were higher than the SNRs of SUs or
MSPs (KW test, corrected for multiple comparisons, p ��
0.001).

Third, MUA recordings retained encoding properties over the
course of a single session to a higher degree than any other signal
(Fig. 4D) (KW test, corrected for multiple comparisons, p ��
0.001). Thus, of the four intracortical signals examined, MUA
recordings had the highest single-channel capacity, provided the
highest information before movement, and retained encoding
properties over time.

MUA recordings also had low interchannel redundancy. Pairs
of MUA recordings recorded at the same time were essentially
uncorrelated, as were MSPs (Fig. 4E) (median CCs of 2866 chan-
nel pairs, MUA, 0.0083; MSPs, 0.0101; U tests, p � 0.05 for four of
five distance bins). This is in contrast to pairs of LFPs recorded by
distinct electrodes, which were highly correlated (median CC, 0.28;
U test comparing CCs of MUA recordings and LFPs, p �� 0.001).

Figure 4. Signal properties. A, Modulation of the MUA illustrated in Figure 1 A (recorded from PMd) during prehension. The
monkey was required to reach in six directions and grasp an object using a power (left) or a precision (right) grip. Data are shown
from 1600 ms before movement onset (vertical red lines) until 400 ms after. Horizontal lines, 6 �V. Each panel shows the MUA
obtained by smoothing single trials (Gaussian kernel, SD, 30 ms) and averaging over 15 trials (�1 SEM). Activity is strongest for
reaches in the top right direction regardless of grip type and for a power grip regardless of reach direction. Bottom, The MUA was
used to predict reach and grasp. B, Single-channel prediction accuracies. Averages are shown for 615 SUs, 471 MSPs, LFPs, and MUA
recordings, and 69 spikeless MUA recordings. The accuracy of single-channel MUA is higher than the accuracy of any other signal. C,
Single-channel SNRs. Vertical red line, Movement onset; bands around each line, SEM. Before movement, the SNR of MUA is highest. D,
Single-channel stability. Error bars indicate SEM. The MUA is the most stable signal. E, Channel-pair noise-correlations. A total of 2866
simultaneously recorded MSP, LFP, and MUA pairs (and 5700 SU pairs) were divided into five distance bins, each containing
573–574 sample points (1140 for SUs), and correlations (mean � SEM) were computed separately for each bin. MUA correlations
are of the same order of magnitude as MSP correlations and an order of magnitude lower than LFP correlations.
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Dependence of predictions on recording conditions and
decoding specifics
We assessed the decoding potential of MUA recordings as a func-
tion of sample size and temporal specifics. For all signal types,
predictions improved when more trials (Fig. 5A), or when more
channels (Fig. 5B) were available, but MUA recordings yielded
the most accurate predictions at all sample sizes (two-way KW
tests, signal type by number of trials or channels, p �� 0.001 for
both cases). MUA recordings provided more accurate predic-
tions of movement parameters than any other signal regardless of
the temporal resolution (Fig. 5C) (KW test, corrected for multi-
ple comparisons, p � 0.005), both before and during movement
(Fig. 5D) (KW test, corrected for multiple comparisons, p �
0.001 for both cases).

Prediction accuracies were higher when the recording elec-
trode had higher impedance, but did not depend on the record-
ing depth (Table 1, first two rows). MUA-based single-channel
predictions varied little with anatomy: for reach direction, me-
dian prediction accuracies were 40 and 42% in PMd and PMv,
respectively (U test, p � 0.02), whereas for grasp type the corre-
sponding values were 62 and 63% ( p � 0.4). Although a plateau
was approached at �10 electrodes (Fig. 5B), multichannel pre-
dictions were influenced by the number of electrodes used (Table
1, third row). Prediction accuracy was uncorrelated with elec-
trode separation within a region (PMd/PMv), but was negatively
correlated with the distance between the sampled regions (Table
1, last two rows).

Regarding the decoding algorithm, all results reported above
were obtained using SVM classification, which consistently
yielded the best results (median MUA-based multichannel pre-
diction accuracies of 90.9% and 85% for reach and grasp, respec-
tively). However, a linear classifier (Fisher’s linear discriminant
analysis) yielded only slightly lower predictions (median predic-
tion accuracies of 87.7% and 83.9% for reach and grasp, respec-
tively; U tests comparing to SVM results, p � 0.43 and p � 0.38).

Prediction of continuously changing movement parameters
MUA recordings can also be used to predict continuously chang-
ing movement parameters. To this end, we trained a third mon-
key to trace complex planar paths (Fig. 1D) and recorded motor
cortical activity using eight microelectrodes at the same time (see
Materials and Methods). Based on neural activity that occurred
in the 400 ms period before movement, we then reconstructed
the hand’s horizontal and vertical velocities on a trial-to-trial
basis (Fig. 6A). As in the prehension task, MUA-based recon-
structions were consistently more accurate than reconstructions
based on any other signal (Fig. 6B). Reconstructions of the veloc-
ity vector using MUA recordings were 2.34 � 0.53 (mean � SEM
of 11 sessions) times more accurate than when using LFPs re-
corded by the same electrodes, 2.5 � 0.27 times higher than SUs,
and 1.44 � 0.11 times higher than when using MSPs. Moreover,
MUA recordings yielded the most accurate predictions in all
tested sessions (Fig. 6C) (1.32 � 0.05 times higher than the next
best prediction, mean � SEM of 11 sessions; U test, p � 0.0035).

Combining information in MUA recordings with informa-
tion in other intracortical signals may further improve predic-
tions. To illustrate this, we reconstructed hand velocities based on
LFP and MUA, obtaining predictions which were significantly
more accurate than those based on any non-MUA single signal
(Fig. 6B, rightmost bars) (11 sessions; KW tests corrected for
multiple comparisons, p � 0.01 for horizontal and p � 0.005 for
vertical velocities). Whereas CCs between actual and predicted
horizontal and vertical velocities using only MUA recordings
were 0.71 � 0.026 and 0.75 � 0.023, respectively (means � SEMs
over 11 sessions), the additional consideration of LFPs increased
these values to 0.77 � 0.023 and 0.8 � 0.015 ( post hoc U test
comparing MUA-based to combined MUA- and LFP-based pre-
dictions, p � 0.045).

As in the prehension task, the pre-eminence of MUA-based
predictions over other intracortical signals during tracing was
independent of sample size and temporal specifics. For all sample
sizes, MUA-based predictions were more accurate than those
based on other signals (Fig. 6D, E) (two-way KW tests, signal type
by number of trials or by number of channels; p �� 0.001 for both
cases). Reconstruction improved without reaching a plateau for
up to eight MUA recordings (Fig. 6E) (linear regression, R 2 �
0.97; F test, p �� 0.001). Finally, MUA recordings yielded the
most accurate predictions at all temporal resolutions (Fig. 6F)
(KW test, p � 0.001).

Discussion
We have demonstrated that the superimposed activity of many
neurons around the recording electrode (MUA) can be used to
predict movement parameters with high accuracy. Multiple
MUA recordings yielded predictions that were more accurate
than those obtained using multiple SUs, MSPs, or LFPs recorded
by the same microelectrodes. These findings were obtained for
multiple data sets (brain regions and behavioral tasks), multiple
parameters (reach, grasp, and horizontal and vertical hand

Figure 5. Sample size and temporal dependencies. Neural activity was recorded from PMd
and PMv (monkey D) by 14 microelectrodes and 14 SUs during 283 trials. Prediction accuracy,
combined for reach direction and grasp type, was estimated. MUA recordings provided the most
accurate predictions at all tested numbers of trials, numbers of channels, bin sizes, and window
locations. A, Number-of-trials dependency. For each sample size, 20 subsets of distinct trials
were randomly sampled and the average predictions plotted with 99% Gaussian confidence
limits (2.58 SEM). B, Number-of-channels dependency. Random subsets of distinct channels
were sampled 20 times for each sample size. Predictions based on LFP were similar to those
based on SU or MSP for up to six channels and then approached a plateau. C, Bin-size depen-
dency. For each trial, neural activity in an 800 ms window centered on movement onset was
divided into 1–200 bins (4 – 800 ms long) and prediction accuracies were estimated. D, Tem-
poral window dependency. Predictions were based on neural activity in a 400 ms window,
moved in 50 ms increments from 1600 ms before movement onset (vertical red line) until 400
ms after.
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velocities), using a wide variety of standard classification and
reconstruction algorithms, and regardless of sample size or tem-
poral specifics. Thus, MUA recordings appear to be considerably
more informative signals than either spikes or LFPs.

All results were acquired by processing
data off-line. Predictions may be im-
proved by using more sophisticated algo-
rithms, providing closed-loop feedback in
real time (Serruya et al., 2002; Taylor et al.,
2002; Carmena et al., 2003; Hochberg et
al., 2006), or recording from more chan-
nels (Figs. 5B, 6E). Because any processing
of the raw neuronal signal necessarily leads
to information loss (data processing in-
equality) (Cover and Thomas, 1991), pre-
dictions made by an ideal observer based
on other derivatives of the raw signal may
be more accurate than those based purely
on MUA. We tested the effect of combin-
ing information from LFPs and MUA re-
corded from the same electrode for reach
and grasp, but because predictions based
on MUA were already highly accurate, the
gain from the additional consideration of
LFP was negligible (median prediction ac-
curacies for reach, 90.9 (MUA) and 90.2%
(LFP�MUA); post hoc U test, p � 0.97; for
grasp, 85 and 84.8%; U test, p � 0.95).
However, we have shown that by combin-
ing information from different signals
(LFPs and MUA) recorded from the same
electrode during tracing, predictions were
significantly improved (Fig. 6).

Obviously, the high information con-
tent of MUA recordings does not imply
their use by the brain. The MUA may be
considered a tool for the experimentalist,
or for the engineer, to view brain activity,
just like LFPs (Mitzdorf, 1985), functional
MRI (Logothetis et al., 2001), or other in-
direct measures of spiking or synaptic ac-
tivity. Nevertheless, the study of MUA may
provide insights into brain mechanisms
(Buchwald et al., 1965; Eckhorn et al.,
1988; Bauer et al., 1995). MUA recordings
represent a weighted average of neural ac-
tivity around the electrode tip in a region
smaller than LFP, but larger than SUs (Le-
gatt et al., 1980; Mitzdorf, 1985) (Fig. 4E).
The present finding showing that single
MUA recordings retain movement-related
information to a larger extent than any
other intracortical signal suggests that mo-
tor cortical neurons within the specific
range of MUA spatial averaging tend to
process similar information.

SUs (and MSPs) are difficult to record,
sort, and maintain over long durations,
and are not very informative individually.
However, they are practically uncorrelated
when recorded from distant brain sites
and, therefore, information from multiple
SUs does accumulate. LFPs are relatively

easy to measure and individually are as informative as SUs. In
studies attempting to decode movement-related information
from multiple LFPs, channels recorded on different occasions are
often combined, making the assumption of interchannel inde-

Table 1. Influence of recording conditions on MUA-based prediction accuracy

Parameter Median 95% range Sample size CCa p value (t test)

Electrode depth 0.58 mm 0 – 4 mm 471 0.044 0.17
Electrode impedance 0.9 M� 0.35–1.8 M� 471 0.13 0.003
Electrodes per session 12 4 –16 41 0.39 0.008
Within-region separationb 0.81 mm 0.35–1.1 mm 82 �0.004 0.49
Inter-region separationc 8.02 mm 2.6 –14.1 mm 41 �0.45 0.002
aCCs were computed between each parameter and the overall prediction accuracy.
bFor each session, prediction accuracies and mean pairwise interelectrode distances were computed separately for MUAs recorded by each guide tube, aimed
toward PMd and PMv (see Materials and Methods).
cFor each session, distances were computed between the centers of each of the two sampled regions.

Figure 6. Multichannel predictions during tracing. A, Reconstructions of horizontal (top) and vertical (middle) hand velocities during
a single tracing trial (colored lines). Dotted black lines show actual velocities and numbers below each trace measure reconstruction quality
(R 2). Reconstructions were based on the neural activity shown at the bottom (recorded from PMd during one trial and standardized for
illustration purposes). B, Reconstruction quality, measured by the coefficient of determination (R 2) between actual and predicted veloci-
ties, was averaged over 11 tracing sessions, separately for horizontal (left) and vertical (right) velocities. Horizontal lines, Chance R 2 values
(see Materials and Methods). Error bars indicate SEM. MUA was the best single predictor, although combined information from MUA and
LFPs provided the most accurate predictions. C, The MUA-based R 2 was plotted versus the highest non-MUA-based R 2. Reconstructions
basedonMUArecordingsweremoreaccurateinallsessions.D–F,R 2sbetweentheactualandpredictedvelocityvectorwereestimatedfor
asingletracingsessioninwhichneuralactivitywasrecordedbyeightmicroelectrodes(andsevenSUs)duringthesame96trials. Inallcases,
MUA recordings yielded more accurate predictions than the other signals, while combined LFP and MUA predictions were the most
accurate. D, Number-of-trials dependency. Conventions are the same as in Figure 5A. E, Number-of-channels dependency. F, Bin-size
dependency. For each tracing trial, neural activity in a 400 ms window immediately before movement was divided into 1– 40 bins
(10 – 400 ms long) and the R 2 of each signal type estimated.
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pendence (Mehring et al., 2003; Scherberger et al., 2005) and
leading to the contention that the information in multiple LFPs
may accumulate as in multiple SUs. However, because even dis-
tant LFP channels are highly correlated (Fig. 4E), the information
in multiple LFP channels quickly reaches a plateau (Fig. 5B). In
contrast, MUA recordings do not require the isolation of spikes,
are easy to measure, stable over time (Buchwald and Grover,
1970; Super and Roelfsema, 2005) (Fig. 4D), individually infor-
mative, and essentially uncorrelated between distant sites. There-
fore, MUA recordings obtained from multiple electrodes, when
considered in unison, yield substantially more accurate predic-
tions of movement parameters than any other intracortical signal
considered.

The present study demonstrated that by using �12 MUA re-
cordings from PMd and PMv, reach and grasp can be predicted
with �90% accuracy, and by using only 8 motor cortical MUA
recordings the correlation between actual and predicted hand
velocities is �0.75. These values are similar to (or higher than)
values reported using tens to hundreds simultaneously recorded
neurons or LFPs (Wessberg et al., 2000; Serruya et al., 2002; Tay-
lor et al., 2002; Carmena et al., 2003; Mehring et al., 2003; Hatso-
poulos et al., 2004; Musallam et al., 2004; Shpigelman et al., 2005;
Hochberg et al., 2006; Kim et al., 2006). In conclusion, if a single
intracortical signal must be chosen for operating motor-cortical
neuroprostheses, MUA appears to be the method of choice. Still,
improved prediction can be obtained by combining signals (e.g.,
MUA with LFP). We therefore expect that motor-cortical neural
prosthetic devices that use the MUA signal will perform better
than devices that do not.
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