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Mini-Review

Understanding Neural Coding through the Model-Based
Analysis of Decision Making

Greg Corrado' and Kenji Doya?
IStanford University, Stanford, California 94305, and 20kinawa Institute of Science and Technology, Okinawa 904-2234, Japan

The study of decision making poses new methodological challenges for systems neuroscience. Whereas our traditional approach linked
neural activity to external variables that the experimenter directly observed and manipulated, many of the key elements that contribute
to decisions are internal to the decider. Variables such as subjective value or subjective probability may be influenced by experimental
conditions and manipulations but can neither be directly measured nor precisely controlled. Pioneering work on the neural basis of
decision circumvented this difficulty by studying behavior in static conditions, in which knowledge of the average state of these quantities
was sufficient. More recently, a new wave of studies has confronted the conundrum of internal decision variables more directly by
leveraging quantitative behavioral models. When these behavioral models are successful in predicting a subject’s choice, the model’s
internal variables may serve as proxies for the unobservable decision variables that actually drive behavior. This new methodology has
allowed researchers to localize neural subsystems that encode hidden decision variables related to free choice and to study these variables

under dynamic conditions.
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Classic correlative approach

Over the past 50 years, the dominant approach in systems neu-
roscience has been correlative: manipulate a variable of interest,
compare neural responses across conditions, and attribute ob-
served differences to changes in functional processing. This par-
adigm enjoys extremely broad applicability, forming the core of
analyses ranging from the plotting of tuning curves in single-unit
electrophysiology to the use of statistical parametric maps in
functional magnetic resonance imaging. In the simplest case,
when studying early sensory processing, neural activity can be
correlated directly with the sensory stimuli presented by the ex-
perimenter. For example, Hubel and Wiesel (1959) observed that
the firing of neurons in primary visual cortex (V1) covaried with
the orientation of a bar stimulus, and so discovered columnar
orientation tuning V1.

In higher-level sensory processing, however, neural activity
might depend not only on the physical stimuli presented, but on
the subject’s perceptual experience of those stimuli. Thus, re-
searchers realized the need to sort neural data both by stimulus
condition and by a subject’s behavioral response to the stimulus.
For example, Newsome and colleagues trained animals to report
the direction of motion of a noisy stimulus with an eye movement
and then showed that the firing rates of the neurons in area MT
were correlated with the reported perception of motion, even in
cases in which the visual stimulus itself was ambiguous and iden-
tical (Newsome et al., 1989; Britten et al., 1996). This classic cor-
relative paradigm has even proven useful in the study of simple
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decision variables related to sensory discriminations. For exam-
ple, in a similar motion discrimination task, Shadlen and col-
leagues have shown that the evolving activity of neurons in the
lateral intraparietal area (LIP) reflects the accumulated sensory
evidence in favor of one or the other alternative (Shadlen and
Newsome, 1996; Huk and Shadlen, 2005).

Search for neural correlates of subjective variables

How can we extend this correlative paradigm to search for neural
correlates of decision making, beyond the simple case of sensory
discrimination? In general, decisions are guided by internal sub-
jective variables whose state cannot be directly measured or con-
trolled by the experimenter. Instead, these variables reflect the
history of a subject’s actions, reward experience, and perhaps
even innate individual differences. And although an experi-
menter may hope to shape these variables over time by pairing
stimuli or actions with outcomes (i.e., classical and operant con-
ditioning), the impact that these manipulations have on a trial-
by-trial basis is not immediately obvious.

Under some conditions, these internal variables are posited to
be relatively constant. For example, when asked to choose be-
tween familiar food or liquid rewards, an animal’s expressed pref-
erences can be used to infer the relative value of the options.
Using this approach, several groups have shown that neural ac-
tivity in orbitofrontal cortex is correlated with the subjective
value of offered or chosen goods (Tremblay and Schultz, 1999;
Padoa-Schioppa and Assad, 2006). But how can we establish neu-
ral correlates under the more common (and potentially more
interesting) scenario that a decision variable is changing over
time?

The most obvious solution is to construct an explicit model of
the decision process within the context of a given experimental
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Figure 1. A, Left, The classical paradigm directly correlates neural data with stimuli or behavior. Center, The “model-in-the- ~ parameter space, we can find a set of pa-

middle” approach instead uses a mechanistic model as an intermediary, on the one hand constraining the model to describe
behaviorand on the other correlating internal variables of the model with neural data. Right, Two examples of triplets of behavior,
model, and neural data, one from Sugrue et al. (2004) and another from Daw et al. (2006). B, The basic scheme for using models
as intermediaries. Top, Mechanistic models of choice generally take as input the history of past choices and rewards and render a
prediction of future choice as an output. Center, Internal variables computed by the model can be extracted and used as proxies for
subjective decision variables hidden from the experimenter. Bottom, These proxy variables can be used to identify specific neural
representations of the decision variable of interest within the brain areas supporting decision making.

task. In this way, the impact of each successive action and rein-
forcer on the internal decision variables can be estimated via the
behavioral model. If the model is able to capture the dynamics of
the subject’s actual decisions, the internal variables of this model
may be suitable to serve as proxies in the search for correlates of
subjective variables in neural data. Thus, breaking with the clas-
sical paradigm in which neural data are correlated directly with
stimuli and behavior, in this new approach neural data are instead
correlated with the internal variables of an intermediary behavioral
model (Fig. 1A).

The spectrum of decision-making models

Some of the most influential decision models from psychology
and economics deal only with average behavior [e.g., Herrn-
stein’s Matching Law (Herrnstein, 1961) or Nash Equilibria
(Nash, 1950)]. These models describe the aggregate properties of
choice in a wide variety of circumstances but do not specify how
these choice patterns are realized. To be useful for our purposes,
however, models must be mechanistic, meaning that they explic-
itly detail how internal variables are updated and used to render
choices on each trial. Fortunately, aggregate models can often be
made mechanistic with a few simple extensions [e.g., the “Local”
Matching Law (Sugrue et al., 2004)].

Another important axis of variation among decision models is
descriptive versus normative. Descriptive models seek only to
describe the behavior as it appears in the data (e.g., Herrnstein’s
Matching Law), whereas normative models prescribe a pattern of
behavior that realizes some form of optimality, such as the max-
imization of cumulative rewards (e.g., Nash Equilibria). Of
course, the optimality of these prescriptions depends critically on
the assumptions used to derive them, which may not align well
with the constraints imposed by natural environments. This is
one of several reasons that the use of normative models is not
stressed in this context.

Perhaps the most popular type of model used as intermediar-
ies are those derived from Reinforcement Learning Theory (Sut-
ton and Barto, 1998; Doya, 2007). These models are both norma-
tive and mechanistic and have great flexibility in their
applicability. Rather than assuming any particular prior knowl-
edge, these models detail a method for how an initially ignorant
subject should update simple internal variables to ultimately
achieve optimal performance.

rameters and associated time course of de-
cision variables that best explains the sub-
ject’s behavior. It is also possible to apply
more sophisticated estimation methods,
such as Bayesian inference (e.g., Samejima
et al.,, 2004), which allow estimation of
time-varying parameters under certain
conditions. Often there are several models
that fit the behavior reasonably well, and in these cases the ulti-
mate performance of a model in extracting neural correlates is the
best metric of its utility.

Neural recording experiments

Samejima et al. (2005) provide an example of how a computa-
tional model can be used to construct proxy variables for corre-
lation with neural responses. The crux of the methodology is to
compute an internal variable derived from an intermediary be-
havioral model and then leverage that variable to search for
decision-related correlates in the nervous system (Fig. 1 B). The
decision variable of interest to Samejima et al. (2005) was action
value, the subjective expectation of reward for a particular action.
Action value is a prime example of a variable whose exact state is
not immediately obvious from observable experimental param-
eters but can be inferred using a mechanistic behavioral model.
Samejima et al. (2005) computed action values on each trial by
applying a standard reinforcement learning model, Q-learning,
to the history of actions and outcomes that the animal had expe-
rienced before that trial. They found that firing rates of many
striatal neurons were well correlated with the computed action
values, suggesting a role for this area in representing the values of
competing alternatives during decision making.

The true usefulness of this paradigm, however, is most appar-
ent when the model uncovers effects that would otherwise have
gone unnoticed. In the previous study, the blockwise design of
the task was such that the central result could have been described
even without the use of a model. The clearest example of a case in
which an intermediary model was essential to understanding
neural signals comes from recent attempts to identify value-
related signals in area LIP. Platt and Glimcher (1999) showed that
LIP firing rates seemed to vary with reward expectation in an
instructed saccade task. However, in a free-choice task, almost no
variation of LIP firing rates can be seen with changing reward
contingencies when data are combined across trials in the tradi-
tional way (Dorris and Glimcher, 2004; Sugrue et al., 2005). In
contrast, combining these same data based on proxy variables
computed by value-based decision models reveals strong value-
related modulations in LIP (Sugrue et al., 2004) (see also Dorris
and Glimcher, 2004). Although the magnitude of these effects
rivals well known modulations of LIP activity by saccade plan-
ning and spatial attention [for review, see Andersen (1995) and
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Colby and Goldberg (1999)], these value-related signals would be
nearly undetectable without the use of intermediary behavioral
models to direct the search.

Neuroimaging experiments

The utility of this approach extends to studies of decision making
in humans using functional magnetic resonance imaging. Early
examples by O’Doherty et al. (2004) used a temporal-difference
(TD) learning model to estimate the reward prediction errors
that subjects should have experienced and found correlates of
action-independent and action-dependent learning in the ventral
and dorsal striatum, respectively. Tanaka et al. (2004) took a set
of TD learning models with different temporal discounting pa-
rameters and found ventrodorsal maps of prediction time scales
in the striatum and the insular cortex. More recently, Daw et al.
(2006) investigated the neural mechanisms governing the explo-
ration—exploitation tradeoff, a decision-making challenge com-
mon in uncertain and dynamic environments. To do so, they
followed the now familiar program of first selecting a computa-
tional model among several competing possibilities based on its
ability to fit a subject’s overt behavior and then using the model’s
hidden variables to classify each of the subject’s decisions as either
exploratory or exploitative. This classification allowed the au-
thors to localize brain areas whose activity was specifically corre-
lated with exploratory behavior.

What is required of intermediary behavioral models

There are two essential requirements for a model to be useful in
this capacity. First, and most obviously, the model must contain
an internal variable that operationalizes the decision variable un-
der study. Second, the model must comprise a sufficient descrip-
tion of the choice behavior in the experiment. This sufficiency
should be assessed according to two separate, but equally impor-
tant, criteria: first, the ability of the model to predict the subject’s
next choice given the history of events that preceded the current
trial, and second, the ability of the model to generate realistic
patterns of choice in simulation, independent of the history of the
subject’s actions (Corrado et al., 2005).

It is worth noting the conspicuous absence of general “biolog-
ical plausibility” as a requisite property of the type of behavioral
model that we are proposing. The essential function of the model
here is not necessarily to serve as an explicit hypothesis for how
the brain makes a decision, but only to formalize an intermediate
decision variable. Thus, even if a model that contains some com-
ponents that seem unlikely to be literally implemented in the
brain (e.g., infinite memories or perfect Bayesian inference), the
resulting proxy variables may prove useful if they correctly cap-
ture the essential concept that the researcher wishes to study.

Conclusion

The generality of this new approach and the success that it has
enjoyed to date bode well for its continued use in cognitive neu-
roscience, within the field of decision making and beyond. How-
ever, in designing future research programs around this method-
ology, we should be mindful of certain caveats. Detecting neural
activity correlated with an internal variable of a particular model
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does not necessarily mean that the brain literally implements that
same computational algorithm. Finding such correlates does,
however, help us to focus on a particular area of the brain or type
of neuron in guiding decisions. Ultimately, to clarify the actual
computational mechanisms at play and to establish causal rela-
tionships with behavior, this approach should be complemented
by rigorous, falsifiable hypothesis testing and possibly intrusive
manipulations of neural function.
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