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Flexible Coding for Categorical Decisions in the
Human Brain
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Despite the importance of visual categorization for interpreting sensory experiences, little is known about the neural representations that
mediate categorical decisions in the human brain. Here, we used psychophysics and pattern classification for the analysis of functional
magnetic resonance imaging data to predict the features critical for categorical decisions from brain activity when observers categorized
the same stimuli using different rules. Although a large network of cortical and subcortical areas contain information about visual
categories, we show that only a subset of these areas shape their selectivity to reflect the behaviorally relevant features rather than simply
physical similarity between stimuli. Specifically, temporal and parietal areas show selectivity for the perceived form and motion similar-
ity, respectively. In contrast, frontal areas and the striatum represent the conjunction of spatiotemporal features critical for complex and
adaptive categorization tasks and potentially modulate selectivity in temporal and parietal areas. These findings provide novel evidence
for flexible neural coding in the human brain that translates sensory experiences to categorical decisions by shaping neural representa-

tions across a network of areas with dissociable functional roles in visual categorization.
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Introduction

Our ability to group diverse sensory events into meaningful cat-
egories is a cognitive skill critical for adaptive behavior and sur-
vival in a dynamic, complex world (Miller and Cohen, 2001).
Extensive behavioral work on visual categorization (Nosofsky,
1986; Schyns et al., 1998; Goldstone et al., 2001) has involved a
strong debate between the traditional view suggesting that the
brain solves this challenging task by representing physical simi-
larity between low-level features and the diagnostic-feature view
suggesting that the representations of visual feature are shaped by
their relevance for categorical decisions. Converging evidence
from neurophysiology suggests that the prefrontal cortex repre-
sents the behaviorally relevant stimulus features for categoriza-
tion and modulates their processing in sensory areas (Miller,
2000; Duncan, 2001; Miller and D’Esposito, 2005). Isolating this
flexible code for sensory information in the human brain is lim-
ited at the typical functional magnetic resonance imaging (fMRI)
resolution that does not allow us to discern selectivity for features
represented by overlapping neural populations. As a result, im-
portant questions about the neural representations that mediate
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categorical decisions in the human brain remain open. Which
human brain areas contain information about diagnostic features
that define visual categories and the rules that guide the observ-
ers’ categorical decisions? Is neural selectivity in human visual
areas shaped by frontal circuits suggested to encode the behav-
ioral relevance of visual features for categorical judgments?

We addressed these questions using combined psychophysical
and fMRI measurements. We used complex movement se-
quences (i.e., artificial skeleton models defined by dots and ani-
mated with sinusoidal movements) (see Fig. 1A) (supplemental
information, available at www.jneurosci.org as supplemental
material) that differed parametrically in their spatial configura-
tion (e.g., closer to prototype A vs B) and temporal profile (i.e.,
slow—fast, fast—slow). We trained participants to categorize these
stimuli based on two different rules (see Fig. 1B): (1) a simple
(one-dimensional) rule based on the spatial similarity of the
stimuli, and (2) a complex (two-dimensional) rule (Ashby and
Maddox, 2005) that entailed taking into account both the spatial
configuration and the temporal profile of the stimuli.

To determine human brain regions that carry information
about the diagnostic stimulus features for the different categori-
zation tasks (Nosofsky, 1986; Schyns et al., 1998; Goldstone et al.,
2001), we exploited the sensitivity of multivoxel pattern analysis
(MVPA) methods (Cox and Savoy, 2003; Haynes and Rees, 2006;
Norman et al.,, 2006) that take advantage of information across
spatial patterns in the brain. We reasoned that signals from brain
areas encoding behaviorally relevant information would be de-
coded more reliably when we classify brain responses for stimulus
categories based on the categorization rule used by the observers
rather than a rule that does not match the perceived stimulus
categories. Consistent with this prediction, we demonstrate that



12322 - J. Neurosci., November 7, 2007 - 27(45):12321-12330

the temporal and parietal areas encode the perceived form and
motion similarity, respectively. In contrast, frontal areas and the
striatum represent task-relevant conjunctions of spatiotemporal
features critical for complex and adaptive categorization tasks
and potentially modulate selectivity in temporal and parietal ar-
eas. These findings provide novel evidence that flexible coding is
implemented in the human brain by shaping neural representa-
tions in a network of areas with dissociable roles in visual
categorization.

Materials and Methods

Observers

Six students from the University of Birmingham participated in the ex-
periments. All observers had normal or corrected-to-normal vision and
gave written informed consent. The study was approved by the local
ethics committee.

Stimuli

Articulated movement stimuli were generated by linear interpolation
and time warping between prototypical trajectories (Giese and Lappe,
2002; Giese and Poggio, 2003; Jastorff et al., 2006) (for more details on
the generation and properties of the stimuli, see supplemental informa-
tion, available at www.jneurosci.org as supplemental material). We gen-
erated movies (21 frames/1.3 s) of artificial point-light skeleton models
(9.4 X 6.1° of visual angle) that were animated by sinusoidal movements.
We tested two sets of prototypical stimuli (A and B, C and D) that
differed in their kinematics, i.e., their segment lengths and the offsets of
their joint angles. Half of the participants were tested on each stimulus
set. To create a stimulus space that could be separated into different
categories based on different stimulus dimensions, we manipulated the
spatial similarity of the stimuli by spatial morphing and the temporal
motion profile by time warping. In particular, by morphing between
pairs of stimuli, we generated stimuli that differed in their spatial config-
uration: closer to A versus B or closer to C versus D. By time warping
these morphs, we generated stimuli that differed in their temporal pro-
file: slow—fast (i.e., the stimulus movement speed changed from slow to
fast) and fast—slow (i.e., the stimulus movement speed changed from fast
to slow).

Design and procedure

All observers participated in four fMRI sessions (two mapping and two
MVPA sessions). Each of these sessions was preceded by psychophysical
training with feedback outside the scanner, and the participants’ perfor-
mance was matched across tasks and scanning sessions.

Psychophysical training. Participants were trained to categorize the
stimuli based on two different rules: (1) a simple rule based on the sim-
ilarity of the stimuli to the kinematics of the prototype movements (spa-
tial similarity rule), and (2) a complex rule based on similarity in two
stimulus dimensions: kinematics and temporal profile. Based on the sim-
ple categorization rule, category 1 comprised stimuli closer to A, whereas
category 2 comprised stimuli closer to B for this pair of prototypes. Based
on the complex categorization rule, category 1 comprised stimuli closer
to A slow—fast and closer to B fast—slow, whereas category 2 comprised
stimuli closer to A fast—slow and closer to B slow—fast (Fig. 1 B). Similar
category groupings were used for prototypes C and D.

Training comprised several sessions consisting of multiple training
runs. To control for stimulus-specific training effects and ensure gener-
alization of the learnt categories, we partitioned the stimulus spaces into
two stimulus sets: stimuli for training and stimuli for scanning (i.e.,
one-quarter of the stimuli presented during scanning were not presented
during training). At the beginning of the session, participants were in-
structed which categorization rule to use in each session and were trained
on this rule based on a self-paced procedure with audio error feedback.
Ninety-six stimuli randomly selected from the training stimulus set were
presented in each training run. Stimuli were presented for 1.3 s, and the
participants were instructed to indicate in which category the stimulus
belonged by pressing one of two keys. Observers were trained until they
reached 85% correct responses in two consecutive training runs and after
a test run. The training runs were preceded and followed by test runs
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Figure 1. Stimulus space and behavioral responses. 4, Stimuli: five sample frames of a pro-

totypical stimulus. B, Stimulus space and categorization tasks. Stimuli were generated by ap-
plying spatial morphing (steps of percentage stimulus B) between prototypical trajectories
(e.g., A-B) and temporal warping (steps of time warping constant). Stimuli were assigned to
one of four groups: A fast—slow (AFS), A slow—fast (ASF), B fast—slow (BFS), and B slow—fast
(BSF). For the simple categorization task (left), the stimuli were categorized according to their
spatial similarity: category 1 (red dots) consisted of AFS, ASF; category 2 (blue dots) consisted of
BFS, BSF. For the complex task (right), the stimuli were categorized based on their spatial and
temporal similarity: category 1 (red dots) consisted of ASF, BFS; category 2 (blue dots) consisted
of AFS, BSF. €, Behavioral data. Average response accuracy (percentage correct responses)
across all blocks included in the multivoxel pattern analysis and participants.

(without feedback) that used the same protocol as the categorization task
scans to assess the overall training and generalization effects. This train-
ing ensured that the performance of the participants in the scanner was
similar across categories and tasks. Response accuracy and time did not
differ significantly between categorization rules and stimulus categories
during fMRI scanning. No significant (repeated-measures ANOVA) ef-
fects of stimulus category (F, 5, = 0.14; p = 0.73) or categorization task
(F(1 5 = 4.3; p = 0.09) were observed for response accuracy. Similarly,
for response times, no significant effects of categorization rule (F, 5, =
0.024; p = 0.88) or stimulus category (F, 5 = 0.505; p = 0.51) were
observed.

fMRI measurements

All observers participated in four scanning sessions: two for mapping
regions of interest and two MVPA sessions (one for the simple and one
for the complex categorization task).

Region of interest mapping sessions. We identified areas involved in
visual categorization, retinotopic areas, and areas involved in motion
[human middle temporal area (hMT+/V5); kinetic occipital area (V3b/
KO)] and form [lateral occipital complex (LOC)] processing based on
standard mapping procedures (supplemental information, available at
www.jneurosci.org as supplemental material). We identified areas in-
volved in the categorization of movement sequences by comparing fMRI
responses when participants performed categorization versus spatial dis-
crimination tasks on the same stimuli (rotated and not rotated). In the
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categorization task, participants judged whether the stimuli belonged to
category 1 or 2 or neither of the two categories based on the spatial
similarity or the complex rule (Fig. 1B). In the spatial discrimination
task, participants judged whether the stimuli were rotated to the left or to
the right or not rotated. Stimuli were presented in epochs (blocked de-
sign) of 32 s. Each block started with written instructions (2 s) about the
task to be performed during the block (categorization or spatial discrim-
ination task) and continued with 12 experimental trials of 2.5 s (1.3 s
stimulus presentation, 1.2 s fixation, and response interval). Each exper-
imental run comprised four categorization and four spatial discrimina-
tion task blocks in counterbalanced order and interleaved fixation blocks
(20's) after every four blocks. We collected data from four to eight exper-
imental runs for each categorization task (simple and complex).

MVPA sessions. Participants were scanned on eight runs in each ses-
sion. Each run started with a fixation period of 20 s and continued with 16
blocks of 10 trials (1.3 s stimulus presentation, 0.7 s fixation, and re-
sponse interval). All stimuli presented during one block were drawn
randomly without replacement from one quadrant of the stimulus space
(Fig. 1 B), except for two stimuli, which were presented randomly during
the block and were chosen from a different category than the rest of the
stimuli. The four different block types relating to the four stimulus space
quadrants (A fast-slow, B fast-slow, A slow—fast, and B slow—fast) were
presented sequentially in four sets of four blocks (each set was followed
by a fixation period of 20 s), and their order was counterbalanced across
runs. This ensured that the participants could not predict the order of the
stimuli within or across blocks and had to pay attention to each individ-
ual stimulus to achieve high performance at the categorization task. Par-
ticipants performed the simple or the complex categorization task on the
same stimuli but in different scanning sessions.

fMRI data acquisition

The experiments were conducted at the Birmingham University Imaging
Centre (3T Achieva scanner; Philips, Eindhoven, The Netherlands). Echo
planar imaging (EPI) and T1-weighted anatomical (1 X 1 X 1 mm) data
were collected with an eight-channel SENSE head coil. EPI data (gradient
echo-pulse sequences) were acquired from 33 slices (whole brain cover-
age; repetition time, 2000 ms; echo time, 35 ms; flip angle, 80° 2.5 X 2.5
X3 mm resolution).

fMRI data analysis

fMRI data were processed using Brain Voyager QX (Brain Innovations,
Maastricht, The Netherlands). Preprocessing of functional data included
slice-scan time correction, head movement correction, temporal high-
pass filtering (three cycles), and removal of linear trends. Spatial smooth-
ing (Gaussian filter; full-width at half maximum, 6 mm) was performed
only for mapping cortical areas involved in categorization across partic-
ipants (group analysis) but not for data used for the multivoxel pattern
classification analysis. The functional images were aligned to anatomical
data under careful visual inspection, and the complete data were trans-
formed into Talairach space. In addition, anatomical data were used for
three-dimensional cortex reconstruction, inflation, and flattening.

Mapping regions of interest. We identified categorization-related re-
gions that showed significantly [p < 0.05, Bonferroni corrected; g <
0.001, false discovery rate (FDR)] higher activations for the simple or
complex categorization task than the spatial discrimination task across
participants.

MVPA. We selected voxels (gray matter only) that were activated sig-
nificantly stronger during the categorization task than fixation baseline
(p < 0.05, uncorrected) in both MVPA sessions for each individual
subject in regions defined based on independent data for each partici-
pant: categorization-related regions, retinotopic areas, LOC, hMT+/V5,
and V3b/KO. As in previous MVPA studies (Kamitani and Tong, 2005),
we ranked the voxels in these regions (based on t values for stimulus vs
fixation). Each voxel time course was z-score normalized for each exper-
imental run separately. We generated the data patterns for MVPA by
shifting the fMRI time series by 4 s to account for the hemodynamic
delay. We then averaged the volumes for which the participants re-
sponded correctly in each block (Kamitani and Tong, 2005). This average
signal per block comprised a training pattern resulting in a total of 16
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training patterns per run. We used a linear support vector machine
(SVM) and an eightfold cross-validation procedure (leave-one-run-out)
for classification of these data (supplemental information, available at
www.jneurosci.org as supplemental material). In particular, we trained
the SVM on seven runs (112 training patterns per subject) and tested on
the data from one run (16 patterns). We repeated this procedure eight
times and calculated the prediction accuracy of the SVM (number of
correct predictions/number of total predictions) for each cross-
validation and then averaged across cross-validations to obtain an overall
prediction accuracy value for the classification for each region of interest.
We trained the SVM on 1-200 voxels in each area (if the number of voxels
in the area was <200, we used the total number of voxels in the area).
Prediction accuracy across brains areas improved with increasing num-
bers of voxels (supplemental Fig. 1, available at www.jneurosci.org as
supplemental material) and reached an asymptote at a maximum of 100
voxels, allowing us to use the same number of voxels for comparison of
pattern classification across areas.

Results

Identifying areas involved in visual categorization

We first identified human brain areas involved in the visual cat-
egorization of articulated movement stimuli. After training (i.e.,
when participants were above 85% correct for both categoriza-
tion tasks) (Fig. 1C) (supplemental Fig. 2, available at www.
jneurosci.org as supplemental material), participants were
scanned (two mapping sessions) while performing a categoriza-
tion task (simple or complex task) and a spatial discrimination
task in which they judged the direction of rotation of the stimuli
in the plane of the screen (Vogels et al., 2002). Consistent with
previous imaging studies that have used a variety of categoriza-
tion tasks and stimuli (for review, see Keri, 2003; Ashby and
Maddox, 2005), we observed significantly stronger activations for
the categorization than the spatial discrimination task in a net-
work of temporal, parietal, and frontal cortical areas, as well as
subcortical regions (thalamus and striatum) (Fig. 2) (supplemen-
tal Table 1, available at www.jneurosci.org as supplemental ma-
terial). This procedure allowed us to identify independently in
each individual participant areas involved in the categorization of
articulated movements. We further identified regions in the oc-
cipital and temporal cortex known to be involved in the process-
ing of basic visual features (retinotopic areas), global patterns and
shapes (LOC), and motion (V3b/KO and hMT+/V5) based on
standard procedures (supplemental information, available at
www.jneurosci.org as supplemental material).

fMRI pattern classification: decoding simple versus complex
categorization rules

We asked whether activation patterns in human brain areas in-
volved in visual categorization reflect the rule that observers use
when making categorical decisions (i.e., the behaviorally relevant
stimulus dimensions for each categorization task) rather than
simply the physical similarity of the stimuli. We used MVPA
methods (Cox and Savoy, 2003; Haynes and Rees, 2006; Norman
etal., 2006) to discern activation patterns across voxels for differ-
ent perceptual categories. These advanced methods for the anal-
ysis of fMRI data provide a sensitive tool for investigating the
neural representations of features in the human brain that are
encoded at a higher spatial resolution than the typical resolution
of fMRI and thus cannot be distinguished when considering sin-
gle voxels in isolation. Pattern classification analyses have been
previously used successfully for decoding neural selectivity for
basic visual features (e.g., orientation) (Haynes and Rees, 2005;
Kamitani and Tong, 2005), motion direction (Kamitani and
Tong, 2006), and object categories (Haxby et al., 2001; Hanson et
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al., 2004; O’Toole et al., 2005; Williams et al., 2007) in the human
brain. Here, we use multivoxel pattern classification for the first
time to determine whether neural selectivity for visual features in
areas involved in categorization changes depending on the be-
havioral relevance of these features for simple and complex cate-
gorization tasks.

Specifically, for each participant, we collected fMRI measure-
ments when participants performed the simple or complex cate-
gorization task (two MVPA sessions for each participant). We
tested whether we could predict the perceived stimulus categories
(Fig. 1B, category 1 vs category 2) for each categorization task
from fMRI data in all regions of interest (visual areas and
categorization-related regions). Critically, we compared the pre-
diction accuracy of two different classification schemes (spatial
similarity MVPA rule and complex MVPA rule) in discerning
stimulus categories from fMRI data for each categorization task.
We reasoned that brain areas encoding the relevant dimensions
for the categorization task would show higher prediction accu-
racy when the MVPA rule matched the rule used by observers for
categorization and lower accuracy when the MVPA rule differed
from the relevant categorization rule. That is, we tested for inter-
actions in the prediction accuracy across categorization tasks for

different MVPA rules rather than differences in the absolute ac-
curacy that may vary across brain areas depending on their re-
sponsiveness (supplemental Fig. 3, available at www.jneurosci.
org as supplemental material).

In particular, we used a linear SVM classifier (supplemental
information, available at www.jneurosci.org as supplemental
material) and an eightfold cross-validation procedure (leave-
one-run-out). For each region of interest, we averaged the vol-
umes for which the participants responded correctly in each
block (Kamitani and Tong, 2005) to generate training and test
patterns for the pattern classification. We trained the pattern
classifier on data from seven scanning runs (112 training pat-
terns, 16 patterns per run) and tested on independent data from
one run (16 test patterns) in the same session for eight times.
After this procedure, we tested classification between activation
patterns evoked by the two stimulus categories (Fig. 1B, category
1 vs category 2) for each categorization task. For the spatial sim-
ilarity MVPA rule, training patterns for category 1 were evoked
by stimuli closer to prototype A (A fast—slow and A slow—fast),
whereas for category 2 training patterns were evoked by stimuli
closer to prototype B (B fast—slow and B slow—fast). For the com-
plex MVPA rule, training patterns for category 1 were evoked by
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stimuli closer to A slow—fast and B fast—slow, whereas for cate-
gory 2 training patterns were evoked by stimuli closer to A fast—
slow and B slow—fast. Importantly, only one of these two schemes
matched the rule used by the observers in each of the two catego-
rization tasks. For the simple task, the spatial similarity MVPA
rule matched the rule used by the observers, whereas the complex
MVPA rule assigned the stimuli in different categories than the
observers. In contrast, for the complex task, the complex MVPA
rule matched the rule used by the observers for stimulus catego-
rization based on both the spatial and temporal profile, whereas
the spatial similarity MVPA rule performed the classification
based only on the spatial similarity of the stimuli.

Results of this analysis showed significant interactions (sup-
plemental Table 2, available at www.jneurosci.org as supplemen-
tal material) in prefrontal [dorsolateral prefrontal cortex
(DLPFC)] and temporal [left posterior LOC, consistent with left
lateralization for category knowledge in the temporal cortex
(Seger et al., 2000; Grossman et al., 2002)] areas and the striatum,
indicating neural representations that are selective for the behav-
iorally relevant stimulus dimensions. As shown in Figure 3, when
participants categorized stimuli based on spatial similarity (sim-
ple categorization task), prediction accuracy was high for the

MVPA methods in decoding feature selec-
tivity from multivariate brain patterns
across voxels. Finally, no significant inter-
actions in prediction accuracy across cat-
egorization tasks for different MVPA rules
were observed in retinotopic and parietal
areas (supplemental Table 2, available at
www.jneurosci.org as supplemental material). Prediction accu-
racy in these areas was highest for the simple MVPA rule inde-
pendent of the categorization task, indicating activation patterns
that reflect differences in the physical stimulus properties (aver-
age Euclidean distance of stimulus trajectories between different
categories, 1.04).

Figure 4 (for individual subject data, see supplemental Fig. 5,
available at www.jneurosci.org as supplemental material) sum-
marizes the data across all brain areas of interest by means of an
accuracy interaction index. We computed this index by calculat-
ing for each categorization task the normalized difference in pre-
diction accuracy for the two MVPA rules implemented for the
analysis of the fMRI data. When computing this index, we nor-
malized prediction accuracies for the two MVPA rules to accu-
racy for the shuffling rule (baseline prediction accuracy) that was
computed by randomly assigning category labels to the activation
patterns. This procedure ensured that the classification results
could not be simply attributed to random statistical regularities
in the data and/or the high efficiency of the classification algo-
rithm used. An index higher than zero indicates higher prediction
accuracy when the MVPA rule matched the rule used by the
observers for categorization than when the MVPA rule did not
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ALl — Ss — Cs Ce = Sc
T\S+ Cs+R;  Se+ Co+ Re

) X 100,

where S, C, and R refer to the accuracies obtained for the spatial similarity (S), complex ( €), and
shuffling ( R) MVPA rules, and the subscript indices denote the respective categorization task (S,
simple; C, complex). The mean All is plotted across observers. Error bars indicate SEM across
participants.

match the rule used by the observers. These differences in
prediction accuracy between tasks were higher in frontal, tem-
poral cortex, and striatum than in retinotopic and parietal
areas, suggesting distinct functional roles for these areas in
visual categorization.

Next, we tested whether we could decode the temporal profile
dimension that was behaviorally relevant for the complex catego-
rization task. We compared prediction accuracies for MVPA clas-
sification based on the spatial similarity rule and a temporal sim-
ilarity rule (i.e., similarity of the stimuli in their temporal profile,
slow—fast vs fast—slow). For the spatial similarity MVPA rule,
training patterns for category 1 were evoked by stimuli closer to
prototype A (A fast—slow and A slow—fast), whereas for category
2 training patterns were evoked by stimuli closer to prototype B
(B fast—slow and B slow—fast). For the temporal similarity MVPA
rule, training patterns for category 1 were evoked by stimuli
closer to fast-slow (A and B), whereas for category 2 training
patterns were evoked by stimuli closer to slow—fast.

Figure 5 shows significant interactions for MVPA prediction
accuracies across tasks (simple and complex tasks) for frontal
(DLPFC), lateral occipitotemporal (left posterior LOC) areas,
and the striatum, providing additional evidence that activation
patterns in these areas reflect the stimulus dimensions that are
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behaviorally relevant for categorical decisions. The overall high
prediction accuracy in prefrontal areas and the striatum for the
temporal similarity MVPA rule may reflect involvement of work-
ing memory processes in matching labels (slow—fast vs fast—slow
movement) to category members (Ashby and Maddox, 2005) or
attention (Duncan and Owen, 2000) to the unique stimulus di-
mension (i.e., the temporal profile because spatial similarity was
relevant for both categorization tasks). Interestingly, we observed
increased prediction accuracy in inferior—parietal areas for the
temporal similarity MVPA rule in the complex categorization
task and interactions between tasks for the spatial and temporal
similarity MVPA rules. In contrast, prediction accuracy in the
LOC for the temporal similarity MVPA rule did not increase in
the complex categorization task. These findings suggest involve-
ment of parietal rather than temporal areas in the categorical
representation of temporal movement properties, consistent
with recent neurophysiological findings (Freedman and Assad,
2006). A control experiment (supplemental Fig. 6, available at
www.jneurosci.org as supplemental material) in which partici-
pants performed the simple categorization task based on the sim-
ilarity of the stimuli in their temporal profile (i.e., participants
judged whether the stimuli moved fast—slow or slow—fast) cor-
roborated these findings. We compared prediction accuracy for
two orthogonal MVPA rules (i.e., spatial vs temporal similarity)
when participants performed the simple categorization task
based on one of two stimulus properties (i.e., participants cate-
gorized the stimuli based on similarity in their spatial configura-
tion or temporal profile). Prediction accuracy in frontal, parietal
areas and the striatum was higher for the temporal similarity
MVPA rule when participants categorized stimuli based on their
temporal than spatial similarity, suggesting that neural represen-
tations in these areas reflect the behavioral relevance of motion
properties for categorical judgments.

Is it possible that MVPA prediction accuracies for the sim-
ple and complex categorization tasks relate to the participants’
motor responses rather than the relevant dimensions for cat-
egorization? Although our experimental design does not allow
us to separate fMRI signals for the stimulus from signals for
the participants’ responses, this hypothesis could not explain
prediction accuracy higher than baseline when the classifica-
tion scheme and the rule used by the participants for the cat-
egorization task did not match, for example, when predicting
spatial similarity (Fig. 3) or temporal similarity (Fig. 5) from
fMRI data for the complex categorization task. These findings
suggest classification based on the relevant stimulus dimen-
sions for the categorization task rather than the participants’
motor response (supplemental Fig. 6, available at www.jneurosci.
org as supplemental material). Furthermore, our findings could
not be simply attributed to differences in eye movements, atten-
tion, or task difficulty. Our MVPA analysis compared prediction
accuracy for the classification of two stimulus categories rather
than fMRI signals across categorization tasks. Participants were
trained with feedback to a high level of performance (above 85%
correct) in both tasks, and their performance during scanning
was similar between categories and tasks (Fig. 1C) (supplemental
Fig. 2, available at www.jneurosci.org as supplemental material).
Eye movement measurements did not differ significantly across
sessions (supplemental Fig. 7, available at www.jneurosci.org as
supplemental material), suggesting that fMRI findings could not
be significantly confounded by differences in eye movements
across sessions.
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MVPA based on the spatial similarity and temporal similarity rule
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(Fz) = 6.29; p = 0.13). Furthermore, we
compared mean prediction accuracy be-
tween small and large distances within cate-
gory. Significant differences were observed
in V1 (F, 5y = 142.36; p < 0.01), consistent
with physical differences between the stim-
uli. However, no significant differences were
observed in DLPFC (F, ,, = 4.07;p = 0.18),
PMd (F, 5, = 1.28; p = 0.37), PMv (F,, 5, =
2.26;p = 0.27), LO left hemisphere (F, ,) <
1;p = 0.50), DIPS (F, 5, < 1;p = 0.67), or
the striatum (F, ,y = 2.41; p = 0.26), sug-
gesting generalization of responses in these
areas to stimuli from the same perceptual
category.

These results are consistent with previ-
ous studies showing fMRI-selective adap-
tation in human frontal cortex for percep-
tual categories (Jiang et al., 2007) (i.e.,
higher fMRI responses for stimuli be-
tween than within categories) and classifi-
cation accuracy in discriminating between
different objects that decreased as visual

similarity between objects increased
(O’Toole et al., 2005). Because our study
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fMRI pattern classification: decoding categorical membership
We further investigated whether human brain areas involved in
visual categorization contain information about categorical
membership by testing for classification performance within cat-
egories and across the categorical boundary. We reasoned that
prediction accuracy would be lower for the classification of acti-
vation patterns related to stimuli that are members of the same
category than stimuli that belong to different categories. We per-
formed this pattern classification analysis on fMRI data obtained
when observers categorized stimuli using the spatial similarity
rule, allowing us to quantify the physical (one-dimensional) sim-
ilarity and identify the categorical boundary between stimuli.
This analysis showed that primarily in frontal areas [DLPFC,
F(1 ) = 283.97, p < 0.01; dorsal premotor area (PMd), F, ,, =
125.12, p < 0.01; and ventral premotor area (PMv), F,,, =
361.64, p < 0.01] perceptual differences between stimuli from
different categories could be predicted with significantly higher
accuracy than differences between stimuli from the same cate-
gory (Fig. 6). In contrast, no significant differences were observed
for small stimulus distances close to the boundary and small dis-
tances within category in LO left hemisphere (F, ,, = 2.08; p =
0.28), dorsal intraparietal sulcus (DIPS) (F(, ,y < 1; p = 0.60), the
striatum (F(, ,y = 2.81; p = 0.23), or primary visual cortex (V1)

was not designed to directly test for cate-
gorical membership, we only tested a
small number of morphing steps around
the boundary and did not evaluate percep-
tual discriminability between stimuli from
the same versus different categories. De-
spite this, the analysis provides supporting
evidence for the role of human frontal cor-
tex in representing perceptual rather than
physical differences between members of
different categories while generalizing
among members of the same category.

Discussion

Our study provides novel evidence that
the human brain uses a flexible code
across stages of processing to translate sensory experiences to
categorical decisions. Our findings advance our understanding of
the neural representations that mediate categorical decisions in
several respects. First, previous behavioral work on categoriza-
tion has involved a long-standing debate between two views on
the representation of visual categories: the traditional view that
visual stimuli are represented based on physical similarity and the
diagnostic-feature view that visual representations are shaped to
reflect behavioral relevance for categorical decisions. The role of
learning in shaping visual categories within these two frame-
works is radically different: either tuning for low-level differences
(traditional view) or flexible tuning for diagnostic features that
are critical for categorical judgments (diagnostic features view).
Dissociating the predictions of these two approaches regarding
the neural mechanisms that mediate categorical decisions is not
trivial, and, as a result, the neurobiological basis of diagnostic
features in the human brain has remained essentially unknown.
The conjunction of our experimental design and analysis meth-
ods allowed us to dissociate these approaches and provide novel
evidence that flexible coding is implemented in the human brain.
In particular, unlike previous imaging studies that typically use
familiar object categories, we were able to dissociate physical (i.e.,
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the Euclidean distance between motion trajectories) and percep-
tual (categorical) similarity using novel stimulus patterns defined
in a two-dimensional space. Furthermore, unlike simple catego-
rization rules that separate physically different stimuli in different
perceptual categories, the complex categorization rule used in
our study necessitated that physically disparate stimuli be
grouped into the same perceptual category, allowing us to distin-
guish between physical and perceptual stimulus similarity. Fi-
nally, using advanced analysis methods (pattern classification),
we provide the first insights into the changes of neural represen-
tation for visual categories as a result of learning and, critically,
provide strong evidence for the representation of diagnostic
stimulus features in the human brain.

Second, previous neuroimaging studies have identified a large
network of cortical and subcortical areas involved in visual cate-
gorization (Keri, 2003; Ashby and Maddox, 2005) and have re-
vealed a distributed pattern of activations for object categories in
the temporal cortex (Haxby et al., 2001; Hanson et al., 2004;
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O’Toole et al., 2005; Williams et al., 2007). Our study extends
significantly beyond the localization of areas involved in catego-
rization; it characterizes their neural representations and discerns
their functional roles. In particular, we show that, although acti-
vation patterns in the network of human brain areas involved in
categorization contain information about visual categories, only
in prefrontal, lateral occipitotemporal, inferior—parietal areas,
and the striatum do these distributed representations mediate
categorical decisions. That is, neural representations in these ar-
eas are shaped by the behavioral relevance of sensory features and
previous experience to reflect the perceptual (categorical) rather
than the physical similarity between stimuli. These flexible rep-
resentations reflect selectivity for diagnostic stimulus features
that determine the rule that observers use for categorization
(Nosofsky, 1986; Schyns et al., 1998; Goldstone et al., 2001; Sigala
etal., 2002; Palmeri and Gauthier, 2004; Smith et al., 2004) rather
than features fixed by low-level processes (i.e., similarity in the
physical input).

Third, our findings reveal distinct neural representations and
functional roles for the different human brain areas involved in
visual categorization. In particular, activation patterns in LOC
and intraparietal sulcus (IPS) reflect selectivity for visual features
(form and motion, respectively) that is modulated by the percep-
tual similarity of the stimuli in their spatial or temporal proper-
ties. In contrast activation patterns in retinotopic areas reflect
physical similarity in the sensory input. These findings suggest
that categorization based on visual form (spatial configuration)
shapes processing in the LOC, whereas categorization based on
visual motion (temporal profile of movement) shapes activations
in the IPS. Furthermore, these findings are highly relevant to the
contested role of temporal cortex in categorization. Previous
neurophysiological studies have proposed that the temporal cor-
tex represents primarily the visual similarity between stimuli and
their identity (Op de Beeck et al.,, 2001; Thomas et al., 2001;
Freedman et al., 2003), although other studies show that it rep-
resents diagnostic dimensions for categorization (Sigala and
Logothetis, 2002; Mirabella et al., 2007) and is modulated by task
demands (Koida and Komatsu, 2007) and experience (Miyashita
and Chang, 1988; Logothetis et al., 1995; Gauthier et al., 1997;
Booth and Rolls, 1998; Kobatake et al., 1998; Baker et al., 2002;
Kourtzi et al., 2005; Op de Beeck et al., 2006). Our results in the
human are consistent with findings in support of flexible repre-
sentations of diagnostic features in the monkey inferotemporal
cortex (Sigala and Logothetis, 2002; Mirabella et al., 2007). How-
ever, our experimental design allows us to draw a firm distinction
between physical and categorical similarity, extending our find-
ings beyond these previous studies. In particular, we show that
the neural representations of form-related features in temporal
cortex are shaped by their relevance for categorization and reflect
the perceptual rather than physical similarity between visual
stimuli.

Fourth, these feature-based representations in temporal and
parietal areas contrast with responses in the frontal cortex and the
striatum, the only brain areas in which activation patterns were
shaped by categorization based on complex rules that depend on
the conjunction of spatiotemporal features. These findings are
consistent with the role of these areas in adaptive behavior and
abstract rule learning (Duncan and Owen, 2000; Miller and Co-
hen, 2001; Moore et al., 2006). In particular, there is accumulat-
ing evidence proposing that the prefrontal cortex plays a funda-
mental role in adaptive neural coding (Duncan, 2001). The
prefrontal cortex has been suggested to resolve the competition
for processing of the plethora of input features in complex scenes
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by guiding visual attention to behaviorally relevant information
(Desimone and Duncan, 1995; Desimone, 1998; Reynolds and
Chelazzi, 2004; Maunsell and Treue, 2006), representing the task-
relevant features and shaping selectivity in sensory areas accord-
ing to task demands (for review, see Miller, 2000; Duncan, 2001;
Miller and D’Esposito, 2005). Our findings are consistent with
the role of prefrontal cortex in controlling feature-based atten-
tion and selectivity in the visual cortex, providing novel insights
in understanding the mechanisms for adaptive neural coding in
the human brain. Specifically, previous imaging studies have
shown that selective attention to visual features and objects en-
hances responsiveness in areas involved in their processing (Rees
etal., 1997; Kastner et al., 1998; O’Craven et al., 1999; Kanwisher
and Wojciulik, 2000; Corbetta and Shulman, 2002; Saenz et al.,
2002). Recent fMRI studies using multivariate approaches (Ka-
mitani and Tong, 2005, 2006; Serences and Boynton, 2007) have
extended this work showing that attention shapes selectivity for
visual features encoded at a finer scale than the typical fMRI
resolution within visual areas specialized for their analysis (e.g.,
orientation in V1 and motion direction in hMT+/V5). However,
the challenge of studying adaptive coding in the prefrontal cortex
is that information about multiple visual features (e.g., orienta-
tion, motion, color, etc.) is potentially represented in a distrib-
uted manner across overlapping neural populations (Duncan,
2001). Our study provides the first evidence that, using multivar-
iate methods for the analysis of neuroimaging data, we can de-
code selectivity in the human prefrontal cortex for multiple visual
features (i.e., temporal and spatial movement profile) that is
shaped by task context and feature-based attention (i.e., whether
the observers attend and categorize the stimuli based on one or
both stimulus features). Furthermore, the enhanced selectivity
observed for form similarity in temporal areas and for motion
similarity in parietal areas is consistent with the proposal that
prefrontal cortex shapes neural representations in sensory areas
specialized for the analysis of these features in a top-down
manner.

Thus, our findings provide insights important for under-
standing the interactions within the neural circuit that mediates
categorical decisions in the human brain. Although fMRI mea-
surements are limited in temporal resolution and do not allow us
to discern bottom-up from top-down processes, our findings are
consistent with neurophysiological evidence for recurrent pro-
cesses in visual categorization. It is possible that information
about spatial and temporal stimulus properties in temporal and
parietal cortex is combined with motor responses to form asso-
ciations and representations of meaningful categories in the stri-
atum and frontal cortex (Toni et al., 2001; Muhammad et al,,
2006). In turn, these category formation and decision processes
modulate selectivity for perceptual categories along the behavior-
ally relevant stimulus dimensions in a top-down manner (Freed-
man et al., 2003; Smith et al., 2004; Rotshtein et al., 2005; Mira-
bella et al.,, 2007), resulting in enhanced selectivity for form
similarity in temporal areas but temporal similarity in parietal
areas.

Finally, our study provides the first insights into the neural
mechanisms that mediate our ability to assign meaning to artic-
ulated movements and perceive categories of actions. Recent
findings provide evidence for categorical representations during
the planning of action sequences in the monkey lateral prefrontal
cortex (Shima et al., 2007). Our work demonstrates a flexible
neural code for the visual categorization of movement sequences
in the human brain that is fundamental for understanding the
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neural mechanisms that translate our everyday sensory experi-
ences into perceptual decisions and social interactions.
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