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Abstract

Bronchopulmonary dysplasia (BPD) is a chronic inflammatory lung disease that affects thousands 

of newborns and infants every year. Although it is accepted that BPD results from lung damage 

and inflammation triggered by mechanical ventilation and hyperoxia, the causes and molecular 

events leading to lung damage and arrested development remain unknown. While recent advances 

in neonatal care have improved the survival of very low-weight infants, the rates of BPD have not 

improved accordingly. This is mainly due to our limited understanding of the disease’s 

pathogenesis and the effective therapeutic options available. Current therapeutics for BPD involve 

ventilation management, steroid treatment, and administration of various agents, such as 

pulmonary surfactant, caffeine, vitamin A, nitric oxide, and stem cells. However, the efficacy of 

these agents in preventing and ameliorating BPD symptoms varies depending on the populations 

studied and the disease stage. As the field moves towards personalised therapeutic approaches, this 

review summarises clinical and experimental studies conducted in various models, aiming to 

increase understanding of the cellular and molecular mechanisms by which these agents can 

prevent or treat BPD. Due to the increasing number of extremely premature infants, it is 

imperative that we continue to work towards understanding the mechanisms of BPD pathogenesis 

and generating more effective therapeutic options.
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INTRODUCTION

Bronchopulmonary dysplasia (BPD) is a chronic inflammatory lung disease of prematurely 

born infants characterised by impaired lung development and requiring mechanical 
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ventilation with supplemental oxygen. The disease was initially defined by Northway et al.1 

in 1967 as a disorder resulting from the combined effects of oxygen exposure and 

mechanical ventilation in premature infants with severe respiratory distress syndrome. This 

initial definition was based on time spent on ventilatory support and oxygen concentration, 

which were thought to induce damage to the lung epithelium, smooth muscle hyperplasia, 

atelectasis, and vascular hypertension, resulting in an immature and surfactant-deficient 

lung. As a result of significant improvements in neonatal care, including the use of antenatal 

steroids, ventilation, and nutritional management, the definition of BPD has been modified 

in the past few decades to include additional criteria reflecting symptoms of arrested 

alveolar and vascular lung development, fibrosis, and chronic inflammation.2–4 Despite 

these changes, some investigators still argue that a definition based on the disease’s 

pathophysiology should be developed.5

Moreover, recent studies using a variety of biomarkers have provided additional information 

that could complement current diagnostic strategies and help in the development of a more 

comprehensive definition.6 The current National Institute of Child Health and Human 

Development (NICHD) and National Heart, Lung, and Blood Institute (NHLBI) criteria for 

the BPD definition encompasses gestational age (GA), supplemental oxygen requirement, 

and chest X-ray changes, categorising BPD by degree of severity.7 A summary of the current 

diagnostic criteria for BPD severity is presented in Table 1. According to the NICHD and 

NIH guidelines, BPD is defined as mild, moderate, or severe. In infants with a GA <32 

weeks, mild BPD is considered when there is a requirement for at least 28 days of 

supplemental oxygen, together with termination of supplemental oxygen or discharge by 36 

weeks post-menstrual age (PMA). Mild BPD is also considered if termination of ventilation 

or discharge is achieved by 56 days postnatal age in infants with a GA >32 weeks. In 

contrast, moderate BPD is considered in infants with a GA ≤32 weeks when there is a 

requirement of at least 28 days of supplemental ventilation with <30% oxygen at 36 weeks 

PMA, or by 56 days postnatal age (in infants with a GA ≥32 weeks). In the case of severe 

BPD, the diagnosis is defined as requiring >30% supplemental oxygen for at least 28 days at 

36 weeks PMA or at discharge (for infants with a GA <32 weeks), or at 56 days postnatal 

age or discharge (for infants with a GA ≥32 weeks).

However, experts argue about the practicality of the current definition of BPD, which fails to 

consider the newer modes of ventilation adopted in current practice. They also advocate for 

a more subjective grading of the severity of BPD that would justify interventions with higher 

risk–benefit profiles for babies predicted to develop more severe cases of BPD or more 

severe respiratory morbidity after discharge.8 The field is moving towards developing an 

updated definition of BPD based on prior definitions and current care practices. Recent 

research has shown that the best predictability of lung disease and neurodevelopmental 

injury at 18–21 months are oxygen requirement levels and/or respiratory support status at 40 

weeks. Despite these considerations, there is still inconsistency among the definitions of 

BPD currently used for clinical trials and studies examining long-term outcomes.7
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PATHOPHYSIOLOGY OF BRONCHOPULMONARY DYSPLASIA

BPD is the most common respiratory morbidity in preterm infants, affecting >10,000 babies 

in the USA each year.2 The aetiology of BPD is multifactorial and involves exposure to 

antenatal and/or postnatal factors that disrupt pulmonary development.9,10 In addition, the 

disease’s pathogenesis involves a complex interplay between environmental and host factors, 

including respiratory infections, genetic predispositions, intrauterine growth restriction, 

chorioamnionitis, oxidative stress, pulmonary fluid overload, and postnatal nutritional 

deficits.5 Both low GA and birth weight (BW) are commonly associated with higher rates of 

BPD. Patients who develop BPD are usually low BW infants (BW <2,500 g), very low BW 

(VLBW) infants (BW <1,500 g), or extremely low BW (ELBW) infants (BW <1,000 g). 

Hyperoxia, mechanical ventilation, nosocomial infection, male sex, patent ductus arteriosus, 

and congenital conditions are also risk factors for BPD. Some of these are known to induce 

lung injury, activation of inflammatory gene expression, and induction of the regulatory 

pathways involved in alveolar and vascular development.6

Understanding the pathogenesis and factors involved in BPD development is of significant 

importance in neonatal care, not only to design better preventative strategies for the disease 

but also because BPD is often associated with several comorbidities, which range from 

severe complications to conditions that significantly increase the disease mortality risk; these 

include complications such as retinopathy of prematurity, impaired bone growth, 

intraventricular haemorrhage, periventricular leukomalacia, and neurodevelopmental 

abnormalities,11–15 as well as pulmonary hypertension of the newborn, which occurs most 

often in infants with severe BPD and increases the mortality risk by almost 40%.16–19

EXPERIMENTAL THERAPEUTICS: UPDATE ON ANIMAL STUDIES

Multiple studies involving large (sheep, lambs, pigs, and nonhuman primates) and small 

(rabbits, rats, and mice) animal models have been conducted to date.20 These have provided 

useful information on the disease’s pathogenesis and potential therapeutic targets.21,22 

Although there is currently no standardised single model that fully captures disease 

pathogenesis, several animal models using a variety of lung injury stimuli through exposure 

to hyperoxia, activation of the inflammatory response, and/or mechanical ventilation appear 

to be widely accepted.23 These have been used to identify key players in the mechanisms 

leading to the disease’s development and progression, identify genetic and epigenetic 

contributions, and to test potential therapeutic targets.24–29

Effective experimental therapeutics reported to date in animal models range from maternal 

diet supplementation using lipids (e.g., omega-3/6 polyunsaturated fatty acids [PUFA w-3, 

PUFA w-6]), which confer prevention against hyperoxia-induced inflammation and 

pulmonary hypertension in a rat model,30 to nutritional interventions in mechanically 

ventilated newborn animals (Table 2).30–37 Among these experimental therapeutics, 

parenteral treatment with lipid emulsion preparations, including SMOFlipid® (Fresenius 

Kabi, Bad Homburg, Germany) and Intralipid® (Fresenius Kabi) (which vary in PUFA w-6 

content), have been proposed in clinical studies. However, in a BPD model consisting of 

hyperoxia-exposed newborn guinea pigs, SMOFlipid administration induced greater 
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oxidation and had pro-apoptotic effects, indicating the need for additional studies before its 

adoption in the clinical setting.31

Regarding natural products such as flavonols, which are compounds derived from fruits and 

vegetables that possess anti-oxidant and anti-inflammatory properties, a recent study of 

postnatal intraperitoneal administration of the flavonoid quercetin in mice showed it 

conferred protection to hyperoxia-induced lung injury via reduction of inflammation and 

oxidative stress marker expression, and improved alveolarisation outcomes, indicating the 

potential therapeutic value of flavonoids in BPD.32

Treatment with vitamin D has also proven effective at preventing BPD in a rat model.33 A 

study using intra-amniotic lipopolysaccharide (LPS) administration in pregnant rats, which 

is known to induce BPD in pups, showed that treatment with vitamin D for 7 days starting at 

postnatal Day 0 alleviated structural alveolar lung simplification induced by BPD and 

suppressed LPS-induced lung and spleen inflammatory gene expression, particularly IFN-γ.
33 This study also explored the association of maternal vitamin D exposure during 

pregnancy and neonatal IFN-γ levels in a prospective birth cohort, finding a similar trend to 

that observed in the animal model.

Regarding pharmacological treatments, aerosolised administration of the iron-chelating drug 

deferoxamine for 2 weeks resulted in improved weight gain, reduced BPD severity, 

increased hypoxia-inducible factor-1α expression, and activation of vascular endothelial 

growth factor (VEGF)-induced angiogenesis in a mouse model of hyperoxia-induced BPD.
35 Similarly, a combination of the peroxisome proliferator-activated receptor-gamma (PPAR-

γ) agonist pioglitazone with a synthetic lung surfactant mix effectively accelerated lung 

maturation and prevented hyperoxia-induced lung injury when nebulised in a mouse model 

of hyperoxia-induced BPD.34 Experimental studies have also revealed that rosiglitazone 

(PPAR-γ) treatment can enhance pulmonary vascular development, restore alveolar 

function, and combat pulmonary hypertension by affecting VEGF and its receptor. PPAR 

belong to the superfamily of nuclear receptors; these are ligand-regulated transcription 

factors that control gene expression by binding to specific response elements within 

promoters and regulate energy homeostasis, lipid and glucose metabolism, and 

inflammation. PPAR-γ is predominantly found in white adipose tissue and has a role in 

storing triglycerides and fatty acids; however, the role of PPAR in pulmonary hypertension 

and alveolar function is still not known.

Finally, more recent experimental strategies to prevent and treat BPD have incorporated cell 

therapeutic approaches, including administration of mesenchymal stem cells (MSC), and 

cell-free therapeutics, such as the use of extracellular vesicles, including exosomes.37–44 For 

example, a recent study of postnatal intraperitoneal injection of amniotic fluid stem cells in a 

rabbit model of hyperoxia-induced BPD showed attenuated inflammation and improvement 

in parenchymal and vascular structure and function, particularly when using cells in which 

VEGF expression was upregulated.36 A more recent study used exosomes purified from 

human MSC culture media in a murine model of BPD and showed significant improvement 

in the lung inflammatory phenotype and pulmonary hypertension.37 Taken together, these 

recent studies indicate that BPD management and prevention could potentially be achieved 
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by a combination of nutritional, pharmacological, and cellular therapeutic approaches, with 

promising results. Future work on the characterisation of mechanisms associated with the 

observed outcomes in animal models will help in the design of new clinical studies assessing 

the effectiveness of these experimental agents and/or nutritional management strategies in 

preventing or ameliorating BPD symptoms.

EXPERIMENTAL THERAPEUTICS: RECENT CLINICAL STUDIES

In the past few years, a number of prospective and retrospective clinical studies aimed to 

prevent and treat BPD have been conducted using a variety of agents and ventilation 

management approaches. A summary of the most recent studies using these compounds and 

the most significant outcomes are shown in Table 3.45–59 These studies have provided useful 

information on the effectiveness and pharmacological properties of various therapeutic 

agents, as well as other treatments for sepsis, inflammation, and concurrent infection in BPD 

patients.57,58,60 Of the most frequently used therapeutic agents for BPD management, the 

two most common compounds are caffeine and vitamin A. These are used either alone or in 

combination with ventilation management strategies, inhaled nitric oxide administration, 

systemic corticosteroid treatment, and other nutritional interventions.

Caffeine is one of the most widely used drugs in the neonatal intensive care unit. Initially 

used as a potent respiratory stimulant to treat apnoea of premature infants, as well as 

intermittent hypoxaemia and complications of extubation in mechanically ventilated infants, 

caffeine has been used to treat BPD and patent ductus arteriosus for many years. In addition, 

multiple studies have shown that its use has a positive effect on BPD outcomes due to its 

anti-inflammatory and diuretic properties, resulting in a shorter duration of mechanical 

ventilation.61 However, evidence regarding the timing of caffeine treatment initiation is 

unclear, since several observational studies have reported differential outcomes resulting 

from early and late caffeine use.46 For example, early caffeine use is considered a 

controversial practice because the benefits are limited to observational data, and associations 

of cerebellar injury with high-dose caffeine started early after birth have been reported.62 In 

contrast, late caffeine use has been associated with refractory respiratory failure, increased 

duration of mechanical ventilation, and increased requirement of postnatal steroids.45 

Common current practice involves starting caffeine therapy in preterm infants early, often 

before the second day after birth.47 This practice may reduce extubation failure and the 

incidence of adverse neurodevelopmental outcomes.63 However, the dosage should be 

considered carefully, as caffeine use outside of the therapeutic range has also resulted in 

proinflammatory pulmonary outcomes.47 In the absence of concrete evidence, the optimal 

timing and dosage of caffeine administration for maximal benefit remain unclear.

Either alone or in combination with caffeine treatment, vitamin A supplementation has also 

been used as a preventative practice against BPD due to its proposed role in lung maturation. 

Its use is also often justified because preterm infants are particularly predisposed to vitamin 

A deficiency, and evidence from in vitro studies has showed vitamin A can promote DNA 

repair and alveolarisation. However, despite initially promising results, vitamin A 

supplementation is not currently widely implemented due to recent concerns regarding 

sepsis, discomfort (from repeated intramuscular administration), and necrotising 
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enterocolitis (in small-scale studies).64,65 Although the most recent Cochrane review on the 

topic showed a modest reduction in the risk of BPD in VLBW infants,52 evidence from a 

nationwide decline in vitamin A supplementation during a recent drug shortage showed that 

BPD rates remained stable, thus leading investigators to question its efficacy.66 In this 

regard, the ongoing multicentre trial NeoVitaA53 aims to assess the ability of high-dose oral 

vitamin A supplementation to reduce BPD rates in infants weighing <1,000 g at birth and 

treated for 28 days. The results from these trials will hopefully provide clarification on the 

use of oral vitamin A as an effective treatment to prevent BPD in small, preterm infants.

Regarding postnatal corticosteroid therapy, including dexamethasone and budesonide, the 

evidence remains controversial. While recent clinical trials have shown that when 

administered systemically corticosteroid use results in significant improvements in short-

term lung function and a reduction of BPD in infants at increased risk,51 these results have 

only been repeated in combination with surfactant therapy in a separate cohort,50 or showed 

no significant improvement in other studies.48,49 Moreover, systemic corticosteroid 

administration has also been associated with serious short and long-term adverse effects,67 

making this practice less appealing due to safety concerns. Therefore, additional multicentre 

randomised controlled trials with proper follow-up studies are needed to further validate the 

benefits of prophylactic or therapeutic corticosteroid use in BPD patients.

Nutritional supplementation therapies have also been implemented in BPD clinical trials. In 

a recent review and meta-analysis of 31 randomised controlled trials and observational 

studies, investigators found that administration of donor human milk conferred protection 

against BPD in VLBW preterm infants.56 This meta-analysis had several limitations, 

including the observational nature of many of the studies included; that the studies displayed 

substantial heterogeneity in duration of intervention, timing of initiation, and population; 

and that none of the included randomised controlled trials were powered to detect the effects 

of donor human milk (HM) on BPD. In a prospective study of very preterm infants who 

received HM-derived cream, it was found that those receiving a HM-derived cream 

supplement were discharged earlier than the control group and, among them, infants with 

BPD benefitted the most.68 In another cohort study, it was found that increased doses of the 

mother’s own milk reduced the odds of BPD in VLBW infants.69 This notion has also been 

supported by a meta-analysis of multiple studies showing breast milk feeding in VLBW 

infants lowers the risk of BPD and associate comorbidities.70 On the other hand, vitamin D 

supplementation remains controversial in its efficacy and dosage recommendation from 

various contradictory studies,54,55 although deficiency of this vitamin has been directly 

associated with increased severity of BPD in an African-American preterm cohort.71 

Furthermore, ongoing clinical studies evaluating the effectiveness of lipid formulations, such 

as SMOFlipid, in parenteral nutrition for preterm infants have shown anti-inflammatory 

properties that can benefit BPD patients,59,72,73 although recent animal studies have 

indicated a potential pro-apoptotic and pro-oxidant effect of these preparations.31 Finally, as 

promising preclinical studies have shown effective therapeutic potential of various 

preparations of mesenchymal stem cells to reduce the risk and severity of BPD,38 at least 

three ongoing early Phase I clinical trials (,74 ,75 and 76) are exploring their effectiveness in 

the prevention and treatment of BPD in various prematurely born infant cohorts.
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CONCLUSION AND FUTURE DIRECTIONS

The effective management and prevention of BPD continues to be challenging despite 

significant advances in neonatal care, and the information obtained from animal models and 

clinical studies remains controversial. In addition, the efficacy of currently available 

therapeutic and preventative strategies varies depending on the populations studied and 

disease stage. Work conducted in animal models shows promising results on the potential 

use of pharmacological interventions, ventilation and nutritional management, and stem cell 

therapeutics to prevent and treat BPD. These studies have also provided information that 

could help identify the mechanisms behind the disease development and progression. As the 

results from clinical studies on the most commonly used BPD therapeutics remain 

contradictory and ambiguous, additional randomised controlled trials, together with 

longitudinal evaluation of potential beneficial or negative effects, are essential to optimise 

disease management and preventative strategies. As the rates of BPD continue to increase 

due to increased survival of VLBW preterm infants, it is imperative that we continue to 

investigate the mechanisms of BPD pathogenesis as well as alternative approaches for its 

treatment and prevention.
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