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Abstract

Social instability in primate groups has been used as a model to understand how social stress 

affects human populations. While it is well established that individual cercopithecines have 

different temperaments or personalities, little is known about how temperament mediates the 

experience of social instability in large, naturalistic groups. Here, we report findings from a study 

tracking a newly formed group of captive rhesus macaques (Macaca mulatta). We examine 

whether inter-individual differences in temperament during infancy affect physiological responses 

to new group formation years later, measured through hair cortisol nine months after the group 

was formed. Our results show that early-life measures of temperament characteristics predict later-

life hypothalamic-pituitary-adrenal activity following new group formation, though not always in 

the directions we predicted. Individuals with higher blood cortisol concentrations in response to a 

novel stressor and lower blood cortisol concentrations following a Dexamethasone Suppression 

Test in infancy had lower hair cortisol values following new group formation later in life. 

Individuals characterized in infancy as more emotional or more active exhibited lower hair cortisol 

profiles nine months after group formation. We suggest that these two temperament 

characteristics, emotionality and activity, may represent two different mechanisms leading to low 

hair cortisol values. That is, the physiological measure of low hair cortisol may have two different 

meanings depending on temperament characteristics of the individual. Our results demonstrate that 

temperament and physiological responsiveness measures in infancy can predict individual 

responses to a new group formation years later.
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Introduction

Cercopithecine primate social groups are known for their stable cores of adult females and 

associated offspring (Silk, 2009). However, these groups can undergo periods of instability 

for myriad reasons, such as when a male immigrates into a group, a matriline becomes 

fragmented or declines in size, or two groups fuse (Alberts, Sapolsky, and Altmann 1992; 

Beisner, Jackson, Cameron, and McCowan, 2011; Brotcorne, Fuentes, Wandia, Beudels-

Jamar, and Huynen, 2015; Samuels, Silk, and Altmann, 1987). Extreme social instability 

also occurs in captive cercopithecine primate groups (e.g., Anderson, Weladji, and Paré, 

2016; Beisner et al., 2011; Gygax, Harley, and Kummer, 1997) and has been used as a model 

to understand the effects of social stress in humans (e.g., Beaulieu, Mboumba, Willaume, 

Kappeler, and Charpentier, 2014; Capitanio and Cole, 2015; Wilson, 2016).

It is well established from captive studies that individuals have different temperaments or 

personalities, and can respond in different ways to stressors based on temperament (e.g., 

Capitanio, Mendoza, Mason, Maninger, 2005; Rommeck, Capitanio, Strand, and McCowan, 

2011; Hennessy, McCowan, Jiang, and Capitanio, 2014). Temperament is defined as stable 

traits of individuals manifested in consistent behavioral and associated physiological 
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responses to circumstances encountered by the individual (Capitanio, 2011; Réale, Reader, 

Sol, McDougall, and Dingemanse, 2007). In primates, most work on temperament has used 

rhesus macaques (M. mulatta) as subjects (Freeman and Gosling, 2010). Previous studies of 

rhesus macaques have identified a number of health and social outcomes that differ for 

individuals based on temperament measures, such as infant weight gain, infant leukocyte 

sensitivity to cortisol, social relationships of yearlings, long-term and cross-situational 

behavior, and depressive-like behavior (Capitanio, 1999; Capitanio, Mendoza, and Cole, 

2011; Hennessy et al., 2014; Hinde et al., 2015; Weinstein and Capitanio, 2008). Studies 

have also found links between infant temperament and HPA axis activity. For example, in 

captivity, rhesus macaques with more reactive temperaments also have higher hair cortisol 

concentrations, meaning they have experienced greater chronic activation of the HPA axis 

over the period of hair growth (Hamel et al., 2016). Captive juvenile rhesus macaques placed 

in novel peer groups respond differently depending on temperament: more reactive 

individuals have higher heart rates and higher levels of corticotropin and cortisol, hormones 

involved in the HPA axis (Suomi, 1997). Some primate temperament studies have examined 

responses to alteration in the social environment, but none to our knowledge has examined 

the responses to social instability in large social groups approximating wild populations in 

size and composition. Therefore, little is known about the ways in which individual 

temperament mediates the experience of social stress in these large, naturalistic groups.

Coping has been defined in various ways in the literature (Wechsler, 1995), and here we 

define it as individual responses to aversive stimuli that remove or attenuate deleterious 

physiological effects. One common view of coping puts individuals on a gradient from 

active coping style to passive coping style (Koolhaas et al., 1999), but here we use the term 

more broadly to consider other axes on which individuals may vary in their ability to avoid 

deleterious effects of stressors. For example, individuals can vary in emotional reactivity 

independent of variation in their active vs. passive coping styles, and this variation affects 

their susceptibility to depressive behavior and anxiety (Hennessy et al., 2014; Steimer, la 

Fleur, and Schulz, 1997). The effectiveness of different coping styles might depend on the 

context in which the stressor occurs, but within a given context such as captivity, differences 

among individuals in health, reproductive, and behavioral outcomes can indicate whether a 

particular coping strategy is effective. For example, among captive adult male rhesus 

macaques relocated from outdoor social groups to indoor housing, those who were more 

emotionally reactive in infancy exhibit more depressive-like behaviors, which indicates they 

have not coped as well with the stressor as other, less emotionally reactive, individuals have 

(Hennessy et al., 2014). Thus, in the context of captivity, certain temperament traits appear 

to index coping styles that can be viewed as comparatively better for dealing with the types 

of stressors an individual is likely to encounter. We might therefore expect individuals with 

different temperaments to experience different outcomes depending on the effectiveness of 

their coping styles during a period of social instability, such as the formation of a new group 

in captivity.

Here we examine whether inter-individual differences in early-life measures of 

biobehavioral organization, including temperament and HPA-axis organization, are 

associated with physiological and social responses to social instability caused by new group 

formation at the California National Primate Research Center (CNPRC). Our main outcome 
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variable is hair cortisol concentration, which reflects long-term activity of the HPA axis 

(Davenport, Tiefenbacher, Lutz, Novak, and Meyer, 2006), a physiological system involved 

in the stress response.

The CNPRC’s ongoing BioBehavioral Assessment program assesses temperament traits via 

behavioral observation and HPA-axis organization via blood cortisol samples. This program 

has assessed the temperament and HPA-axis organization of many individual rhesus 

macaques, offering an opportunity to track how these traits affect patterns of individual 

behavior and physiological responses to various life events in captivity. Here, we use data 

from the BioBehavioral Assessment program to examine how these early-life measures of 

temperament and physiological responsiveness relate to HPA axis activity months to years 

later (range: 0.6 to 11 years after assessment), measured by hair cortisol concentrations 

before and after the formation of a new social group. We are interested in whether early-life 

traits predict later hair cortisol concentrations, and more specifically, whether the 

relationship between hair cortisol concentrations and temperament is altered during a period 

of social instability.

A number of temperament traits are measured in the BioBehavioral Assessment, and we 

narrow our focus here to four measures that previous work suggests might be particularly 

relevant to the experience of group formation. The first two are Activity and Emotionality 

scores thought to reflect different patterns of behavioral responsiveness to novel stressors 

(Capitanio et al., 2017). During BioBehavioral Assessment, infants are separated from their 

mothers and other familiar conspecifics for a 25-hr period. Initially, most individuals are 

behaviorally inhibited (showing low activity) and may overcome this inhibition as time 

passes. Some, but not all, infants are initially highly emotionally reactive, and emotionality 

generally decreases over time. Despite these broad patterns, individuals vary for each 

measure on both the first and second day of testing. In the context of the captive 

environment, higher Activity scores toward the end of the BioBehavioral Assessment 

demonstrate at least some adaptability to the novel stressor and are generally seen as 

indexing a more successful coping strategy, while higher Emotionality scores, particularly 

early during the BioBehavioral Assessment, indicate a more negative response to the 

stressors of separation and testing (Capitanio et al., 2017; Hennessy et al., 2014). If these 

traits are stable and occur generally in response to novel stressors, we expect both to affect 

coping with the stressor of group formation years later. The third temperament measure we 

examine is Nervous temperament, previously shown to lead to increased negative emotional 

responses to stressors and glucocorticoid desensitization (Capitanio et al., 2011). Nervous 

temperament might therefore also affect how individuals respond to the novel stressor of 

group formation later in life. Fourth, we examine Preference for Novelty, previously shown 

to predict high vs. low sociability in juveniles (Sclafani et al., 2016). Individual tendencies 

for high or low sociability might mediate differences in the experience of stress during social 

instability, as has been found in an experimental setting (e.g., Capitanio et al., 2008). 

Activity, Emotionality, Nervous temperament, and Preference for Novelty comprise the four 

early-life measures of behavioral responsiveness we examine as predictors of later-life 

responses to new group formation.
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We also examine early-life variation in HPA-axis organization as a predictor of later-life 

responses to group formation. In addition to temperament measurements, the BioBehavioral 

Assessment program includes a series of blood samples over the course of testing to 

examine blood cortisol levels. We use two of these blood cortisol measurements, taken in 

infancy during BioBehavioral Assessment, as predictors of later-life responses to new group 

formation. High blood cortisol levels in response to novel stressors during BioBehavioral 

Assessment might predict higher hair cortisol concentrations following new group formation 

later in life. Similarly, more extreme declines in blood cortisol concentrations following 

Dexamethasone Suppression Tests (DST) might suggest increased sensitivity to down-

regulating HPA axis mechanisms, and might predict low hair cortisol levels following new 

group formation.

We are interested in whether these measures of temperament and HPA axis organization 

have different relationships with hair cortisol values in the socially unstable period than they 

do in the socially stable period. We predict that high Activity, low Emotionality, low 

Nervous temperament, and high Preference for Novelty will be associated with lower hair 

cortisol concentrations following new group formation, because we believe these 

temperament traits reflect more successful coping with novel stressors. In addition, we 

predict individuals with low blood cortisol concentrations in infancy, both in Afternoon 

Response and DST, will have lower hair cortisol concentrations following group formation 

because they may continue to produce low levels of cortisol following social stressors.

Methods

Study Site and Subjects

The study was conducted at the CNPRC in Davis, CA. A new social group (NC 21-B) was 

formed on 7 May, 2012, as part of the CNPRC’s management practices for their outdoor 

breeding colony. The 0.2 ha field cage contained multiple perches and swings, and A-frame 

structures for protection from rain and wind. Behavioral management staff monitored the 

new group, which initially consisted of 111 individuals. Animals were sometimes 

temporarily or permanently removed from the field cage for medical treatment or 

management purposes. Our subjects included all individuals who were present in the field 

cage both times we collected hair samples for cortisol analysis and whose temperaments had 

previously been thoroughly profiled in infancy in the BioBehavioral Assessment program (N 

= 24). Data on individuals’ ages were obtained from CNPRC records (range: 0.9 to 11 

years). We did not examine rank in relation to both BioBehavioral Assessment 

measurements and hair cortisol because we had rank data for only 17 of the 24 individuals, 

and because individuals in the new group formation came from different housing conditions, 

including indoor, solitary housing; consequently, rank could not meaningfully be compared 

across individuals under baseline conditions. A preliminary examination of the effects of 

rearing history indicated that none of the rearing conditions (indoor mother-rearing, rearing 

in small outdoor groups, or rearing in large outdoor field groups) significantly predicted hair 

cortisol values at nine months after the group formation (all P>0.75). For this reason, rearing 

history was not included in our subsequent analyses.
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All procedures were approved by the Animal Care and Use Committee of the University of 

California, Davis. Hair samples were collected under IACUC-approved protocol #18090, 

and the BioBehavioral Assessments were conducted under various protocol numbers over 

the 16 years of the program, most recently IACUC-approved protocol #18588. All 

procedures adhered to the legal requirements of the United States of America, and to the 

American Society of Primatologists’ Principles for the Ethical Treatment of Primates.

BioBehavioral Assessment Data Collection

We used data collected from CNPRC’s BioBehavioral Assessment program, an ongoing, 

long-term project on behavioral and physiological responsiveness that has been described in 

detail elsewhere (see, e.g., Capitanio, 2017; Capitanio et al., 2005; Capitanio, Mason, 

Mendoza, Del Rosso, and Roberts, 2006; Golub, Hogrefe, Widaman, and Capitanio, 2009). 

In general, infants approximately 3-4 mos old (range for present sample: 93-126 days old) 

are removed from familiar social partners, including their mothers, and introduced to a novel 

indoor testing environment where they are housed individually for approximately 25 hours 

before being returned to their mothers and then to their home housing. Behavioral and 

physiological tests are conducted over the 25-h period to assess the individuals’ 

responsiveness to the novel testing conditions, and to particular stimuli. The current study 

uses four types of measures from BioBehavioral Assessment as predictors of later-life hair 

cortisol concentrations (Table 1). All BioBehavioral Assessment data are provided in the 

supplementary materials (Table S1).

Activity and Emotionality: Activity and Emotionality scores were assigned for Day 1 

and Day 2 of the 25-h assessment period based on focal behavioral observations conducted 

by trained observers with annual inter-observer reliabilities greater than 85%. Five-min focal 

observations were conducted beginning approximately 15 min after the animals arrived in 

the testing suite (Day 1), and again 22 hrs later (Day 2). We consider both Day 1 and Day 2 

measures here, because either immediate responses (Day 1) or slightly more long-term 

adaptation (Day 2) to BioBehavioral Assessment might be relevant to how the individual 

copes with the novel stressor of group formation. Activity and Emotionality scales were 

identified through exploratory and confirmatory factor analyses of the various behaviors 

scored by observers (described in Golub et al., 2009). “Activity” included the following 

quantitatively measured behaviors: proportion of total time spent locomoting, proportion of 

total time spent not hanging from the top/side of cage, rate of environmental exploration, a 

dichotomous variable for whether individuals ate food or not, a dichotomous variable for 

whether individuals drank water or not; and a dichotomous variable for whether individuals 

crouched or not. “Emotionality” included the following quantitatively measured behaviors: 

rate of cooing, rate of barking, a dichotomous variable for whether individuals scratched or 

not; a dichotomous variable for whether individuals displayed threats or not; and a 

dichotomous variable for whether individuals lipsmacked or not. Each of the four scales was 

z-scored following procedures established in Golub et al. (2009), and these measures were 

used as predictors in the analysis.

Nervous Temperament: At the end of the 25-hr assessment period, observers rated each 

animal on a scale of 1 to 7 for each of 16 traits. Previous work from the BioBehavioral 
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Assessment program has identified four temperament scales in rhesus macaques using 

exploratory and confirmatory factor analyses of these 16 traits (described in Golub et al., 

2009). These scales are Vigilant, Gentle, Confident, and Nervous temperaments. We focus 

here on one of these scales, Nervous temperament, because previous work suggests it 

mediates negative emotional responses to stressors, such as the new group formation 

examined here (Capitanio et al., 2011). Individuals were rated for how nervous, fearful, 

timid, calm, and confident (the last two items were reverse scored) they were. We used z-

scores for Nervous temperament within each year’s cohort of testing subjects as predictors 

in this study’s analysis.

Preference for Novelty: This measure was included in our analysis because previous 

work has linked Preference for Novelty to high vs. low sociability in juvenile rhesus 

macaques (Sclafani et al., 2016), and sociability might mediate individual perceptions of the 

new group formation as stressful. Preference for Novelty was assessed approximately 2.5 

hours into BioBehavioral Assessment using a visual paired comparison (i.e., preferential 

looking) test with pictures of unfamiliar animals as stimuli. Animals were given seven 

“problems,” each lasting 51 sec, and shown on a video monitor (see Sclafani et al., 2016, for 

more details and links to the stimuli). For each problem, individuals were shown a blank 

white screen (5 sec), followed by a pair of identical images displayed on the screen during a 

familiarization period (20 sec). Following another blank screen (5 sec), a pair of images, one 

now-familiar and one novel, randomly placed to the right or left side of the screen was 

displayed for 8 sec, after which the animals saw a blank white screen (5 sec), followed by 

the same pair of images swapped to opposite sides of the screen (8 sec). Animals were 

filmed and observers scored the duration of time spent looking at the images. For some trials 

individuals were not scored because they were not facing the screen during the 

familiarization period. A mean value for each individual was taken across all of the 

problems that individuals completed, and was computed as the proportion of total looking 

time that the animal looked at the novel stimuli (i.e., (duration of looking at novel)/(duration 

of looking at novel + familiar).

Blood Cortisol Concentrations: We used data from two blood samples taken during 

BioBehavioral Assessment and assayed to measure cortisol concentrations. One sample was 

drawn on Day 1 approximately 7 hr into testing (1600 h), and thus reflects the animal’s 

“Afternoon Response” to the testing experience: presumably, higher cortisol concentrations 

at this time point reflect the continued experience of stress. Animals were then given a 

dexamethasone injection (500 ug/kg), which suppresses cortisol production, and another 

blood sample was drawn the following morning, approximately 23.5 h after arrival for 

testing (0830 h). Cortisol responses to the Dexamethasone Suppression Test reflect the 

functioning of the HPA axis’s negative feedback mechanism. These measures are described 

in more detail in Capitanio et al. (2005).

Hair Sample Collection

We collected hair samples from the subjects on 15 May, 2012 (which was 8 days after the 

group formation), and again nine months later on 12 Feb, 2013, during routine health checks 

conducted by CNPRC staff. Management staff sedated animals using weight-specific doses 
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of ketamine and shaved hair from the inner thigh of each individual present in the enclosure. 

We placed each hair sample in an aluminum foil pouch and labeled the sample with the 

individual’s unique identification number, the date of collection, and the enclosure number. 

Foil pouches were then sealed and stored at room temperature until laboratory processing for 

assay.

Hair Sample Processing

We processed hair samples following a modification of Davenport et al., (2006). We cleaned 

and processed hair samples to extract cortisol and reconstituted it in a liquid substrate that 

could be assayed. To wash the hair, we weighed out 100 mg of each sample (or the 

maximum weight possible if the sample contained less than 100 mg). We then placed these 

100 mg-aliquots in a labeled 15 ml conical tube with 5 ml isopropanol and gently inverted to 

remove external contaminants. The isopropanol was then poured out and the wash was 

repeated with another 5 ml isopropanol. Once this was completed, we moved the hair to a 

closed petri dish to dry for at least five days.

We then weighed 35-mg aliquots of each sample and placed them in labeled microcentrifuge 

tubes. Within each tube, we minced hair using nail scissors and ground the minced hair in a 

Retsch Ball Mill by adding two 7-mm steel balls to each tube and placing tubes in 5-slot 

welled jars. Samples were ground for 10 min at 30 hz. True weights of each sample were 

calculated by subtracting the empty tube weight from the sample-plus-tube weight after 

grinding.

We extracted cortisol from powdered hair by adding 1ml methanol to each tube and placing 

tubes in a rotator overnight (18-24 hrs). We pelleted powdered hair in a microcentrifuge for 

five min and siphoned 0.6ml methanol from the top into a new labeled microcentrifuge tube. 

The methanol in each tube then dried under a stream of air, leaving a dry film containing 

cortisol at the bottom of each tube. To assay the cortisol, we added 0.4 ml of diluent to each 

tube, using buffer solution from commercially available assay kits (Salimetrics, State 

College, PA). Each sample was vortexed for 20 sec before storing in a freezer at −80 degrees 

Celsius until assay.

We then estimated cortisol concentrations in duplicate using commercially available 

Salimetrics Cortisol Assay kits. Finally, we converted these concentrations to pg/mg hair to 

allow comparison among slightly different weights of hair in each sample.

This process produced a series of two hair cortisol concentrations for each of 24 individuals: 

hair cortisol values from the hair samples collected soon after group formation in May 2012 

(“Baseline Hair Cortisol”) and hair cortisol values from the hair samples collected nine 

months later in February 2013 (“9-mo Hair Cortisol”). We limit our sample to individuals 

present at both hair sample collections, as many individuals were removed because they 

suffered or caused frequent trauma during the nine months between hair sample collections. 

We consider the first set of samples “Baseline” because, although they were collected eight 

days after the new group formation, hair cortisol reflects a long period of time, hair growth 

begins beneath the surface of the skin, and hairs grow asynchronously (Fourie and Bernstein, 
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2011; Meyer and Novak, 2012). Thus, any growth during this time would have had minimal 

impact on cortisol concentrations.

Post-hoc Examination of Trauma

To help interpret our results, we also examined which individuals had to be removed from 

the group because they suffered severe or recurrent physical trauma during the nine months 

following the new group formation. Trauma was assessed by behavioral management staff 

independently from researchers, as part of ongoing management practices. We coded 

permanent removal due to trauma as a dichotomous variable based on whether individuals 

were permanently removed in the nine months following new group formation.

Statistical Analyses

We used log likelihood-ratio tests to compare three mixed-effect models fitted to hair 

cortisol values with the lme function from the nlme package in R, using the maximum 

likelihood method (Pinheiro, Bates, DebRoy, Sarkar, and R Core Team, 2018). All predictors 

are listed in Table 1. The Null Model included fixed effects for change in cortisol at nine 

months, sex, and age, and random effects for individual. The Baseline Effects Model also 

included effects for the BioBehavioral Assessment measures, assuming those effects were 

the same at Baseline and at Nine Months. The Nine-Month Effects Model allowed 

BioBehavioral Assessment effects to vary at nine months, entertaining the possibility that 

these measures affect hair cortisol differently during periods of social instability. We used 

the anova function in R to compare models (R Core Team, 2016). Comparing these three 

models allowed us to ask whether knowing an individual’s temperament tells us something 

meaningful about its HPA activity in general (Baseline Effects Model), or their HPA activity 

following a novel social stressor more specifically (Nine-Month Effects Model).

Two individuals had missing data for one BioBehavioral Assessment measurement each. We 

performed conditional mean imputation to impute the expected values in each of those fields 

using sex and BioBehavioral Assessment variables from a broader dataset of 47 individuals. 

We log-transformed age, Afternoon Response, and DST to ensure Gaussian distributions.

Results

The Nine Months Effects Model fit the data significantly better than the Baseline Effects 

Model, which itself was significantly better than the Null Model (Table 2). Thus, 

BioBehavioral Assessment measures provided useful information in predicting hair cortisol 

values and they had effects during the period of social instability that they did not have 

under stable social conditions.

We can examine the coefficients relative to their standard errors (Table 3, Figure 1) to infer 

which BioBehavioral Assessment measures are better supported as influencing hair cortisol 

values at Nine Months and examine the directionality of their effects. These coefficients 

indicate how each variable affects an individual’s change from Baseline Hair Cortisol to 

Nine Month Hair Cortisol.
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Afternoon Response, DST, Day 2 Activity, and Day 1 Emotionality each have a fairly large 

coefficient relative to standard error, but not all these relationships were in the direction we 

predicted (Table 4). As predicted, individuals with higher blood cortisol values following the 

Dexamethasone Suppression Test in infancy also had higher hair cortisol values nine months 

after the new group formation later in life. Also as predicted, individuals who were more 

active during the stressor of BioBehavioral Assessment in infancy had lower hair cortisol 

values after the new group formation. Contrary to our predictions, individuals with higher 

Afternoon Responses in their blood cortisol values during BioBehavioral Assessment had 

lower hair cortisol values following the new group formation. Also contrary to our 

predictions, individuals who responded more emotionally to the stressor of BioBehavioral 

Assessment in infancy also had lower hair cortisol values following the new group 

formation.

To visualize the data, we plotted the model-estimated change in hair cortisol (delta-log-

cortisol) for females across different values of the BioBehavioral Assessment measures, 

assuming average values for the other BioBehavioral Assessment measures and age (Figure 

2). Note that because these plots assume other BioBehavioral Assessment measures and age 

are average, the lines are not directly comparable to the datapoints shown in each plot.

Post-hoc Examination of Removal Due to Trauma

During the BioBehavioral Assessment, most infants are not highly emotionally reactive, and 

emotionality also tends to decrease from Day 1 to Day 2. Greater emotionality therefore 

suggests a more extreme negative response to the stressor of BBA testing. On the other hand, 

individuals that manage to overcome their initial (Day 1) behavioral inhibition more quickly, 

becoming more active on Day 2, have demonstrably adapted to the stressor to some extent. 

In addition, greater Day 1 Emotionality is linked to longer-term deleterious outcomes in 

captive rhesus macaques (e.g., Hennessy et al., 2014), while greater Day 2 Activity is linked 

to more positive outcomes (e.g., K. Hinde, unpublished data; see Discussion). High initial 

(i.e., Day 1) emotional reactivity is therefore generally interpreted in the research produced 

by the BioBehavioral Assessment program as a negative reaction to the stressor, while 

greater activity on Day 2 is interpreted as reflecting more successful coping. Thus, we 

initially predicted that high Emotionality would lead to higher hair cortisol values and high 

Activity would lead to low hair cortisol values following the new group formation; our 

results for Emotionality, however, were in the opposite direction. There are several possible 

explanations for this. Perhaps both high-Activity and high-Emotionality individuals adapted 

well to this particular stressor, despite previous work suggesting high Emotionality or low 

Activity are linked to poorer outcomes (Hennessy et al., 2014, K. Hinde, unpublished data). 

Perhaps neither high-Emotionality nor high-Activity individuals adapted well, leading to 

HPA axis dysregulation as has been seen in some other studies of social instability (e.g., 

Capitanio, Mendoza, Lerche, and Mason, 1998). Or perhaps both frameworks are relevant 

here, with high Activity leading to low hair cortisol via adaptive coping and high 

Emotionality leading to low hair cortisol due to HPA axis dysregulation. While the available 

data for this group formation cannot conclusively distinguish these hypotheses, we were able 

to conduct a post-hoc analysis to look for differences in how highly active and highly 

emotional individuals fared following the new group formation, which might indicate 

Linden et al. Page 10

Am J Primatol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differences in how well they coped with the stressor. We focused on the experience of severe 

or recurrent physical trauma during the social instability following new group formation as 

an indicator of coping with the new group formation. These injuries could be severe, and 

individuals who managed to avoid them presumably coped with the social instability in ways 

that those who did suffer serious injuries did not.

Therefore, for the broader sample of 47 individuals with BioBehavioral Assessment data 

present at the beginning of the new group formation, we also examined Day 1 Emotionality 

and Day 2 Activity scores in relation to removal from the group due to physical trauma. As 

aggression is common among rhesus macaques, particularly during periods of social 

instability, many individuals suffered socially inflicted trauma in the aftermath of the new 

group formation. Individuals requiring veterinary treatment for this trauma were removed 

from the group and treated. Assessment for veterinary treatment was conducted by 

veterinary staff independently of the researchers, following established protocols at the 

CNPRC. Some of the individuals removed for treatment were then returned to the group, but 

others suffered such severe or recurrent trauma that they had to be permanently relocated for 

their own safety. Using removal data obtained from CNPRC records, we fitted logistic 

regression models in R with the glm function (R Core Team, 2016). High Day 1 

Emotionality did not reduce the likelihood of removal due to trauma during the nine-month 

period immediately following group formation (Figure 3, ß = −0.77, SE = 0.61, P = 0.2), but 

high Day 2 Activity did, and the estimated effect in the model was larger (Figure 4, ß = 

−1.19, SE = 0.55, P = 0.03). Thus, high Day 2 Activity individuals coped with trauma, either 

by avoiding more severe trauma or by avoiding recurrences of trauma, in a way that high 

Day 1 Emotionality individuals did not.

Discussion

Early-life measures of temperament and physiological responsiveness are important in 

predicting individual changes in hair cortisol concentrations during a period of social 

instability later in life. Four measures considered in our study are particularly salient in 

predicting these changes in cortisol levels. Two are behavioral temperament metrics, 

Activity and Emotionality. The other two are blood cortisol measurements, both the 

Afternoon Response to BioBehavioral Assessment and the response to the Dexamethasone 

Suppression Test. These measures were not all associated with hair cortisol in the ways we 

predicted, however, and below we discuss possible explanations for these results. We failed 

to find evidence that Preference for Novelty or Nervous Temperament influenced 

individuals’ hair cortisol values following the new group formation. Below, we consider the 

implications of our results in terms of how temperament might influence cortisol levels.

Activity and Emotionality

We predicted that higher Emotionality and Activity would have positive and negative effects, 

respectively, on hair cortisol concentrations following the group formation. However, we 

found that both were associated with lower hair cortisol values. During BioBehavioral 

Assessment, Emotionality and Activity may be interpreted as reflecting coping responses to 

the immediate (Day 1) and longer-term (Day 2) relocation and separation. Immediately upon 
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relocation to the BioBehavioral Assessment room on Day 1, individuals typically exhibit 

low rates of the behaviors encompassed in Activity scores (Capitanio, 2017), but by Day 2, 

as animals become more comfortable in the situation, Activity levels generally increase 

(e.g., locomoting and eating more, while spending less time hanging on the side of the cage). 

In contrast, behaviors associated with Emotionality are typically higher on Day 1 compared 

to Day 2 (although we note that the modal rate of vocalization on Day 1 is zero). Generally, 

then, greater Day 1 Emotionality means that the individual is highly emotionally reactive, 

which is interpreted as reflecting poor coping during BioBehavioral Assessment. Greater 

Day 2 Activity means that the individual has overcome any initial behavioral inhibition, 

which is interpreted as reflecting successful coping. In fact, follow-up studies that we have 

conducted support this interpretation: Hennessy et al. (2014) found that high Day 1 

Emotionality during BBA was significantly associated in adulthood with a greater likelihood 

of displaying depressive behavior upon removal from the animal’s familiar social group. 

Similarly, in an analysis of reproductive performance among females, individuals with high 

Day 2 Activity showed the typical pattern of reproduction, having their first viable birth at 3 

or 4 years of age, while animals with low Day 2 Activity did not have their first viable 

offspring until 5 years of age or later (K. Hinde, unpublished data). In short, Activity and 

Emotionality scores measured in infancy have been shown to map on to different outcomes 

later in life that suggest, at least for stressors encountered in the captive environment, the 

coping style of highly active individuals may be more adaptive than the coping style of 

highly emotionally reactive individuals. It is therefore surprising that both high Day 1 

Emotionality and high Day 2 Activity were associated with lower hair cortisol levels 

following new group formation. These two measures are not significantly correlated 

(Pearson’s r = −0.08, n=24, P=0.7), meaning that the individuals with high Day 1 

Emotionality are not the same individuals with high Day 2 Activity. We expected lower 

cortisol values in high Day 2 Activity individuals, because these individuals adapted well to 

the stressor of BioBehavioral Assessment and might therefore be expected to adapt well to 

the new group formation later in life, and found support for this hypothesis. Our post-hoc 

analysis provides further support for the idea that more active individuals coped with the 

new group formation in ways other individuals did not: more active individuals were less 

likely to require permanent removal due to trauma, meaning that they avoided severe, 

recurrent injuries from their groupmates. Importantly, the relationship between activity in 

infancy and later hair cortisol concentrations is not likely a result of the fact that physical 

activity is metabolically associated with greater cortisol production (Sapolsky, Romero, and 

Munck, 2000): our finding that Day 2 Activity is associated with lower 9 month Hair 

Cortisol demonstrates an effect in opposition to the expected metabolic influence of physical 

activity levels on cortisol production. Taken together, our results and previous research are 

consistent with the hypothesis that activity is a coping style that allows captive rhesus 

macaques to successfully adapt to novel situations, leading to more typical patterns of 

reproduction (K. Hinde, unpublished data) or less severe injuries in periods of social 

instability, as shown here.

Emotional reactivity has been linked to poor outcomes in rhesus macaques that have been 

relocated indoors (Hennessy et al., 2014). Why, then, do highly emotional individuals in our 

sample have lower hair cortisol following the new group formation? There are several 
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possible explanations. First, perhaps these individuals cope well with the new group 

formation, as more active individuals do, leading to lower cortisol values nine months later. 

In making our initial predictions, we used the simplistic theoretical framework that better 

coping leads to reduced experience of stress, and in turn, lower cortisol levels. However, as 

discussed above, highly emotional individuals are known to adapt poorly to a different novel 

stressor, social isolation (Hennessy et al., 2014). Future research will be necessary to 

examine how well highly emotional individuals cope with the specific stressor of group 

formation. However, we should not ignore alternative explanations based on other factors 

that are known to alter HPA activity.

We therefore offer an alternative interpretation based on previous work, although we note 

that this explanation is a hypothesis and further research will be necessary to test it. We 

initially predicted that greater emotionality would lead to higher hair cortisol concentrations 

following the new group formation because highly emotional captive rhesus macaques tend 

to have negative outcomes indicative of poorer coping with novel stressors. However, 

regulatory mechanisms of the HPA axis that normally function well in some individuals may 

become dysregulated in others following chronic activation of the HPA axis (Beehner and 

Bergman, 2017; McEwen and Wingfield, 2003; Romero, Dickens, and Cyr, 2009). Two 

individuals might therefore have low cortisol levels compared to conspecifics, but for 

different underlying reasons: one because its successful coping strategy allows it to maintain 

low cortisol levels, and the other, because its poorer coping style has led to such chronically 

high levels of cortisol that its HPA axis has become dysregulated. If animals that are highly 

emotionally reactive as infants continue to respond emotionally to subsequent stressors, it 

could lead to chronic activation of the HPA axis. In humans, low hair cortisol levels have 

been shown for individuals experiencing chronic stress, such as major depression disorder 

(Pochigaeva et al., 2017), post-traumatic stress disorder (Steudte et al., 2013), or suicide 

attempts (Melhem et al., 2017), and low plasma cortisol levels following Dexamethasone 

Suppression Tests have been shown in individuals with bipolar disorder (Maripuu, Wikgren, 

Karling, Adolfsson, and Norrback, 2017). A similar effect has been demonstrated in rhesus 

macaques subjected to chronically stressful social conditions (Capitanio, et al., 1998). This 

is presumably because chronic stress alters sensitivity of the HPA axis, causing down-

regulation of cortisol production. For example, Maripuu et al. (2017) found decreased blood 

cortisol levels following Dexamethasone Suppression Tests in older individuals compared to 

younger individuals with bipolar disorder. Older people with bipolar disorder have 

presumably experienced the chronic stress associated with the disorder for a prolonged time, 

and in the long term this may lead to down-regulation of the HPA axis. Similarly, 

Pochigaeva et al. (2017) found higher plasma cortisol concentrations in patients with major 

depression disorder, but lower hair cortisol values, which suggests that this disorder is also 

associated with increased downregulation of the HPA axis. In our study, individuals who 

behaved more emotionally as infants during BioBehavioral Assessment may have continued 

to show that same behavioral pattern in response to other stressors they encountered 

throughout their lives, including the new group formation. The experience of chronic 

activation of the HPA axis could eventually lead to down-regulation of this system. While 

we do not have behavioral or physiological data on our subjects between the time of the 

BBA assessment and the group formation, we contrasted animals that were above versus 
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below the median on Day 1 Emotionality on the change in plasma cortisol from our first 

sample (taken two hours after arrival for BBA testing; data not presented here) with the 

second sample (described herein as the Afternoon Response), taken five hours later. 

Consistent with the notion that these two sets of animals respond differently to stressors, we 

found that animals high on Day 1 Emotionality showed a 9 ug/dl increase in plasma cortisol 

concentrations over this five hour period, while the low Day 1 Emotionality animals showed 

a 5 ug/dl decrease in cortisol concentrations. Although the result was not significant 

(p=0.182, data not shown), it is in the direction expected if high Day 1 Emotionality 

individuals are showing poorer coping in the BioBehavioral Assessment situation.

We propose, then, that high Day 2 Activity indexes adaptability, a trait that confers benefits 

in navigating social encounters that might otherwise result in severe or repeated trauma, 

while high Day 1 Emotionality does not. The lower cortisol concentrations for the high Day 

2 Activity animals reflect, we believe, adaptive coping, while the lower cortisol 

concentrations for the high Day 1 Emotionality animals reflect poorer coping, results that 

are consistent with the BioBehavioral Assessment program’s previous research on 

Emotionality and Activity, described above, as well as the post-hoc analysis on trauma 

presented here. We consider this interpretation provisional at this point, requiring more 

prospective study, but we suggest that at the very least, these results add to the literature 

suggesting that caution is required in interpreting differences in hair cortisol values among 

individuals; in particular, the idea that lower values of hair cortisol are always ‘better’ may 

not be correct.

Afternoon Response and Dexamethasone Suppression Test

Individuals with higher blood cortisol values following Dexamethasone Suppression Tests 

during BioBehavioral Assessment in infancy also had higher hair cortisol values following 

group formation later in life, as predicted. This suggests some stability in inter-individual 

differences in HPA axis regulation, such that infants with strong down-regulating 

mechanisms become adults with strong down-regulating mechanisms. This offers support to 

the idea that BioBehavioral Assessment conducted once in infancy can characterize stable 

traits of the individual. We also found that, contrary to predictions, individuals with higher 

blood cortisol concentrations in their Afternoon Response to BioBehavioral Assessment 

went on to exhibit lower hair cortisol concentrations later in life after the new group 

formation. Ultimately, the increase in cortisol following a stressor is associated with an 

adaptive response that presumably helps the individual deal with the stressor (Sapolsky et 

al., 2000). If the stressor is dealt with more effectively, this could decrease the need for 

future stress responses, which might ultimately decrease long-term HPA axis activity. 

However, it might also be that these individuals’ HPA axes have become down-regulated due 

to chronic high cortisol production earlier in life, similar to one of our proposed explanations 

for lower hair cortisol concentrations in highly emotional individuals. For example, a greater 

cortisol response to BioBehavioral Assessment might indicate poorer coping with stressors 

more generally, which could eventually lead to down-regulation of the HPA axis.
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Nervous Temperament and Preference for Novelty

We did not find evidence that Nervous temperament was associated with changes in hair 

cortisol concentrations following the new group formation. We initially hypothesized that 

more nervous individuals would have higher hair cortisol levels after the group formation, 

based on previous work showing highly nervous individuals exhibit more negative emotional 

responses to a Human Intruder Test during BioBehavioral Assessment (Capitanio et al., 

2011). Nervous temperament might therefore be compared to Emotionality, in that both 

metrics are correlated with some measure of negative emotional responsiveness exhibited 

during different portions of BioBehavioral Assessment. It is surprising, then, that Nervous 

temperament is not associated with changes in cortisol after group formation, while 

Emotionality is. However, we note that Nervous temperament and Emotionality are not 

correlated in our sample, meaning these metrics index different characteristics. One key 

difference between these metrics is that the negative emotional responses that Capitanio et 

al. (2011) reported in highly nervous individuals occur during one portion of testing, in 

response to a specific threatening stimulus: a human intruder who moves close to the animal 

and maintains eye contact with it. In contrast, the negative emotional responses encompassed 

in Emotionality scores are exhibited outside of the Human Intruder Test, in the absence of 

this direct threat. Highly emotional individuals might therefore have a lower threshold for 

exhibiting these behaviors than highly nervous individuals do. If emotionality is indeed 

associated with HPA axis downregulation, this might explain why highly nervous individuals 

do not suffer the same consequences: they do not exhibit negative emotional reactions in as 

wide a range of circumstances as highly emotional individuals do.

We also did not find that Preference for Novelty was associated with changes in hair cortisol 

values following group formation. Previous work has shown that high Preference for 

Novelty was associated with greater sociability later in life (Sclafani et al., 2016). We 

hypothesized that this tendency to be more sociable would help individuals adapt to the new 

social setting following the new group formation, leading to lower hair cortisol 

concentrations. Differences in individuals’ sociability may not affect how stressful a new 

group formation is, or the effects may be too small to detect in our current sample.

Summary and Future Directions

We have demonstrated that inter-individual differences in temperament measured in infancy 

predict physiological responses to new group formation years later, although some of the 

associations of these measures with hair cortisol were not in the predicted direction. There 

are a number of possible explanations for the relationships we have found between 

temperament characteristics and hair cortisol values following new group formation. Based 

on previous work on Emotionality and Activity, we favor the explanation that there are two 

ways in which individuals can reach the outcome of low 9-month Hair Cortisol: either 

through chronic stress leading to down-regulation of the HPA axis (higher Day 1 

Emotionality) or through adaptive coping (as indexed by higher Day 2 Activity). This 

interpretation is most consistent with other lines of evidence indicating that in captivity high 

Day 1 Emotionality indexes poor coping with stressors and that high Day 2 Activity indexes 

successful coping with stressors. However, due to our small sample size and the lack of data 

on later life HPA axis regulation, this is necessarily a speculative conclusion. It is also 
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possible that both high Day 1 Emotionality and high Day 2 Activity lead to successful 

coping, or that both lead to HPA axis dysregulation. Additional research is required to 

distinguish between low cortisol due to successful coping and low cortisol due to HPA axis 

dysregulation.

Our results lead us to several specific avenues for future study. First, the most critical follow-

up is to assess changes in HPA axis function over the course of a period of social instability, 

such as that following a new group formation. It remains to be determined what the exact 

mechanism is by which greater early-life measures of Day 1 Emotionality and Day 2 

Activity produce lower hair cortisol values. HPA axis function could be assessed repeatedly 

via plasma cortisol responses to Dexamethasone Suppression Tests before and after a new 

group formation. If our interpretation is correct, individuals with high Day 1 Emotionality 

will have increased sensitivity to negative feedback inhibition of the HPA axis (as, for 

example, in rhesus macaques in socially unstable housing: Capitanio et al., 1998), while 

individuals with high Day 2 Activity will not. Similarly, longitudinal studies of individuals’ 

cortisol production and HPA axis regulation could compare high-Afternoon Response and 

low-Afternoon Response groups to see if the former experiences chronically high cortisol 

levels, eventually leading to down-regulation of the HPA axis. Incorporating data from later-

life health outcomes besides HPA activity could also strengthen the importance of these 

findings by illustrating a cascading effect of temperament on HPA activity, which in turn 

might influence disease risk, reproductive function, or other evolutionarily significant 

parameters.

Second, future work on social instability should examine behavioral and social correlates of 

HPA activity during periods of social instability. Behavioral data demonstrating continued 

differences in Activity and Emotionality following captive group formations would support 

our interpretation that these early-life measures reflect stable individual differences in 

responding to novel stressors. Behavioral data during the period immediately following a 

new group formation would also clarify how certain individuals avoided severe or recurrent 

physical trauma, while others did not. Rank is an important organizer of an individual’s 

social experience, but we could not examine rank here due to limitations in sample size. 

Future studies could expand on our findings by examining whether rank, HPA activity, and 

temperament are correlated. If these measures are related, behavioral data will be crucial in 

determining the mechanism by which they influence one another. For example, individuals 

with particular temperament traits might also achieve higher rank, which might in turn affect 

HPA activity. Behavioral data might also help explain why Nervous temperament and 

Preference for Novelty were not associated with changes in hair cortisol concentrations 

following group formation. For example, such data could tell us whether highly Emotional 

individuals do indeed respond emotionally to a broader range of circumstances than highly 

Nervous individuals do.

Finally, we examined only one group formation here. This group formation combined 

several fairly large subgroups within which individuals were familiar with one another, 

along with some indoor-housed individuals who were unfamiliar with their new groupmates. 

Future studies could examine captive group formations involving subgroups of varying sizes, 

for example consisting of smaller groups closer to the size seen in wild group fusion events. 

Linden et al. Page 16

Am J Primatol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Larger studies comparing multiple new group formations could also examine whether 

variation in group composition (e.g., age, sex, temperament) affects HPA activity. For 

example, the temperaments of others in the new group might affect which temperaments are 

most successful in coping with social instability following a new group formation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure1: 
Nine Months Effects model coefficients (circles), standard errors (heavy black lines), and 

95% confidence intervals (narrow black lines). Coefficients indicate model-estimated change 

in hair cortisol concentrations following group formation for each unit increase in 

BioBehavioral Assessment measures. Dashed red line indicates estimated change of 0. Note 

that because BioBehavioral Assessment measures are in different units, the relative effects of 

coefficients are not directly comparable in this figure.
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Figure2: 
Nine Months Effects model-estimated change in hair cortisol concentrations relative to 

BioBehavioral Assessment measurements. Open circles represent individual datapoints. Line 

indicates mean expected change in hair cortisol concentration, holding other parameters 

constant. Shaded region indicates 95% confidence interval for mean. Note that estimated 

means were calculated assuming the individual was female and had average values for other 

parameters, and therefore raw datapoints are not directly comparable to estimated means.
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Figure3 : 
Probability of removal due to trauma by Day 1 Emotionality. Open circles represent whether 

an individual was removed during the 9-month study period after group formation. Solid red 

line indicates estimated probability of removal due to trauma for varying Day 1 Emotionality 

scores. Red dotted lines indicate 95% confidence intervals for estimated probabilities.
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Figure 4: 
Probability of removal due to trauma by Day 2 Activity. Open circles represent whether an 

individual was removed during the 9-month study period after group formation. Solid red 

line indicates estimated probability of removal due to trauma for varying Day 2 Activity 

scores. Red dotted lines indicate 95% confidence intervals for estimated probabilities.
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Table 1.

BioBehavioral Assessment (BBA) measures and other variables considered as predictors of hair cortisol.

Predictor name Description

Afternoon Response BBA blood cortisol value for afternoon response (7 hr into testing)

DST BBA blood cortisol value for dexamethasone suppression test

Day 1 Activity BBA activity z-score for day 1 of testing

Day 2 Activity BBA activity z-score for day 2 of testing

Day 1 Emotionality BBA emotionality z-score for day 1 of testing

Day 2 Emotionality BBA emotionality z-score for day 2 of testing

Nervous BBA z-score for nervous temperament

Preference for Novelty BBA score for proportion of time looking at novel image across all preferential look test trials

Age individual’s age in days when hair sample was collected

Sex individual’s sex (0 = male, 1 = female)
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Table 2.

Description and results of model comparison for the three models considered.

Model Predictors Intraclass Correlation Coefficient log likelihood

Null Sex, age, shared 9-month effect, random intercepts for 
individuals

0.23 32.94

Baseline Effects Same as Null, along with BioBehavioral Assessment 
measures

4.16*10^-10 43.07

Nine Months Effects Same as Baseline Effects, along with interaction of 
BioBehavioral Assessment measures and 9-month effect

0.24 55.44

log likelihood ratio comparisons: Baseline-vs-Null: 20.26, p<0.01; Nine-Months-vs-Baseline: 24.75, p<0.002
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Table 3.

Coefficients for effects of BioBehavioral Assessment measures on change in hair cortisol at nine months after 

the group formation, from Nine-Months Effects model

Nine-month effect of: Coefficient Standard Error

Afternoon Response −0.37 0.14

Dexamethasone Suppression Test 0.11 0.07

Preference for Novelty −0.17 0.21

Nervous Temperament 0.02 0.02

Day 1 Activity 0.03 0.04

Day 2 Activity −0.08 0.03

Day 1 Emotionality −0.08 0.04

Day 2 Emotionality −0.02 0.04
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